
North-Holland 
Microprocessing and Microprogramming 18 (1986) 567-580 567 

A LANGUAGE FOR BEHAVIOR, STRUCTURE AND GEOMETRY 

Gunnar Carlstedt 

Hybridlaboratoriet Hylab AB, Tr~ringen 47, S-416 79 Gothenburg, Sweden 

A representation for behavior. I t  is a type of language specialised for synthesis tools. 
This report also outlines a syntax for documentational purpose. 

The representation isolates dif ferent language issues as parallelism (spatial), time depen- 
dency, alternatives, hiding, rules, conditionals (guards), abstraction and l inks (data- 
paths). 

A comparison is done with normal imperative, applicative and declarative languages. Dif- 
ferent types of language constructs are outlined in the representational form. 

Several types of hardware structures are shown. They range from graphics over nets to pro- 
cessors. 

INTRODUCTION 

This report describes a representation for 
behavior adapted for machine synthesis and the 
design of VLSI c i rcui ts.  

Description of time dependance 

Computer languages have been used for a long 
time. There  are several examples of such 
languages, one is Pascal (JENS75). Most 
languages have been able to describe sequencies 
of action. Each step of such a sequence takes 
zero time. Consequently the sequence cannot 
~ r i ~ i m e .  The language is therefore unable 
to describe behavior. Except for the use of 
read and write clauses the language describes a 
mapping of values into an output structure of 
values. 

CCS (MILN80) may define several parallel 
processes. They perform actions by transporting 
messages between each other. Because there are 
no means to describe time delays CCS cannot 
fu l l y  describe a behavior. I t  may only be used 
to describe event synchronisation. 

Simula (BIRTW73) can describe parallel struc- 
tures of processes. Each such one may depend on 
a global clock. The language has been used 
intensively to simulate real-time behavior. 

The general behavior needs a possibi l i ty  to 
describe waveforms of values. HHDL(HHDL83), 
VHDL (VHDL85) and VERITAS (HANN85) are the only 
languages known to be able to do this. 

Parallelism 

The Pascal language except for read and write 
clauses cannot describe any parallel behavior. 
Data structures may be f o r ~ ~ r ~ f  
parallel objects. Pascal is therefore only able 
to describe parallel structure, but not actions. 

Both Ada and Simula can describe structures of 
parallel processes. A process is described by a 
sequence of statements describing by effect the 
actions of a process (imperative parallelism). 

Ella and CCS can also describe parallel 
processes. Each process is describe in a func- 
tional approach (applicative parallelism). 

True hardware consists of (hierarchical) struc- 
tures of processes, each acting dependent on 
values of other processes. Such parallelism can 
in a straight forward manner be modelled by Ada, 
CCS or Simula. 

Synchronisation method 

On lowest level hardware may be modelled as a 
The Ada language (ADA82) has processes defined system of non-linear equations. The resultant 
that may be structured parallel to records or behavior are currents and voltages describing 
arrays. Ada can express time-delays. Ada is waveforms. 
therefore capable of describing discrete time 
behavior. On register transfer level hardware can be 

modelled as f i n i te  state machines with many 
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states. The states may correspond to register 
values and microprogram sequence state. 

On a high-level in a system components generally 
communicate by sending messages. On this level 
the Ada and CCS can m o d e ~ h a v i o r .  

Most hardware description languages has adopted 
a synchronising method different from computer 
languages. They assume the existence of sig- 
nals, that are time dependant values, i e 
waveforms. Signals are modelled by functions 
from values of signals. The function can 
express some sort of delay mechanism. The delay 
may be discrete steps. VHDL (VHDL85), ELLA 
(ELLA85) and Karl (HART77) are using this 
method. 

Both Ada and CCS synchronise by transferring 
messages. Normal hardware do not synchronise in 
this way. 

In order to be able to model al l  levels in a 
design a language must have a semantics that can 
describe non-linear continuous time behavior, 
f in i te  state machines with functions controlled 
by the state and by interchanging messages with 
certain delays. 

Language type 

The language shall be used for automatic syn- 
thesis. All programming by "effect" should be 
avoided. The synthesis tool often has d i f f i -  
culty in modelling such actions into a manage- 
able action. 

Applicative languages are well suited for 
sythesis. The Ella language (ELLA85) is an 
applicative language for RTL level behavior. 
Other applicative languages are Sticks and 
stones adapted for topology. 

Declarative languages l ike PROLOG (CLOCK81) may 
probably be synthesised easily. The description 
power of such languages are high. They gen- 
eral ly by rules describe the properties of the 
result, but not the result. 

The synthesis is used for finding the result. 
I t  is therefore no meaning to synthesise such 
programs. Instead i t  should probably be possi- 
ble to introduce supplementary rules describing 
adequate properties in order to get comparative 
results. 

The language should be of functional type, where 
al l  functions are performed in paral lel ,  in 
order to make synthesis simple. 

Abstraction mechanism 

Common languages use types and subroutines to 
hide properties or implementation. They contain 
means to abstract behavior / value. 

There is a need of abstraction in order to build 
large good systems. This abstraction shall not 
be mixed up with the abstract behavioral mechan- 
ism of a computer. 

There are several types of abstractions in the 
hardware, e g: 

RANGES 
use of a "0" when voltage less than 0.8 V, 
The language shall abstract a real range to 
a symbol. In this case true or false. 

NUMBERS 
bitcombination "1101" corresponds to the 
value 13. Functions shall be used to map a 
number into an implementation. In this 
case a function "binary_code" shall con- 
struct a bit-vector of ones and zeroes. 

ACTIONS 
the instruction "add"  corresponds to 
several actions as reading two registers, 
transfering values to an ALU, adding in the 
ALU, storing the result in a register, and 
advancing to next instruction. A symbol 
shall abstract a behavior. In this case 
the add instruction code abstracts several 
microsteps of action. 

DYNAMIC CHANGE OF ABSTRACTION 
an instruction set is an abstraction from 
code to behavior. A processor may load a 
new instruction set dynamically and then 
start to execute i t .  Therefore the 
language must be able to dynamically change 
abstraction. 

Some of these abstraction mechanisms are gen- 
eral ly found in compiler-compilers. Denotation 
semantics GORD79b do also describe such abstrac- 
tions. 

In order to describe these abstractions the 
language must be able to dynamically alter an 
abstraction mechanism. The abstraction mechan- 
ism shall also be able to map patterns of sym- 
bols (codes) into behavior. 

Existence in space 

Several types of objects need a description of 
the existence of an object and the behavior 
within the limits of the object. 

Typical such objects are graphic objects. They 
exist in a certain environment, the space. Each 
object exists within a certain volume where each 
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point may have a behavior. 
colour, density, material, 
speed etc. 

The behavior may be 
potential, current, 

The space may be frequency, room etc. 

Predicate logic have some simi lar i t ies with this 
type of abstraction. 

The language must be able to separate the notion 
of existence and the behavior for parts of the 
object. 

bescription of design objects 

The design object may be described from mask- 
pattern to system behavior. The la t ter  may be a 
man-machine interface. 

The EDIF (EDIF85) format is a language for a 
medium to be interchanged between different 
design-tool users. I t  is by mode switching 
capable describing both structure, geometry, 
nets and behavior. 

I t  is our bel ief that there really is no di f fer-  
ence between these type of design objects. 

The generally used meaning by "structure" and 
"behavior" is in our world the same. A struc- 
ture is a behavior that is implementable. The 
generally used structure does not have any 
behavior but is bound to a set of parallel 
objects occupying area on sil icon. In our opin- 
ion the general behavior may also be bound to 
some type of si l icon area. 

With this new type of structural object the 
behavior of the object is known Such struc- 
tural object must be described by some other 
similar type of implementable behavior (object). 
The lowest level of objects are probably gates 
or wires and transistors. 

This new type of structural object defines a 
graphic layout consisting of a mask pattern 
specifying the existence of wires and transis- 
tors. Each wire or transistor has a behavior 
changing currents and voltages. 

There are several "aspects" of such a behavior: 
area, power consumptlon-=-~--~ fabrication mask level 
etc. Thus the concept behavior must contain a 
mechanism to describe such type of aspects. 

Syntax 

The purpose of this report is to outline a 
language capable of describing most levels of 
design objects. 

language may be depicted by a hardware descrip- 
tion language for human beings and as a data 
structure for a computer. 

I t  is not the purpose of this report to find an 
optimal man-machine interface. Thus the syntax 
is just scetched. The description occurs only 
for the purpose of making communication with the 
reader simple. 

SEMANTICS 

The semantics describes behavior. Behavior is 
synonymous to process and act iv i ty.  In this 
report the word behavior wi l l  be used. 

A behavior is said to be time discrete i f  i t  
exhibits i tse l f  only a c - e - ~ t a ~ i t e s i m a l  
points in time. The behavior is time continuous 
i f  i t  is exhibited al l  the time. 

The behavior can exist between two points in 
time. I f  the time interval is zero, then the 
behavior is a pulse behavior. I f  the interval 
is f in i te  t h e n ~ b ~ i s  terminable. 

The elementary behavior is a behavior which does 
not show any o ~ i g n s  of change, but s t i l l  
exists. 

At every moment in time, the behavior shows a 
value which is an inf ini tesimally small part of 
a course of events. A behavior is constant i f  
i ts value is unchanged during the time. Other- 
wise the behavior is variable. 

The different issues of behavior may be discrete 
or continuous. The discrete types consists of 
quantified behaviors. The continuous types con- 
sists of an i n f i n i t  infinitesimal small 
behaviors that together specifies a "l inear" 
range of behaviors, compare points and a l ine. 

The behavior as such may be controlled by the 
followning semantic issues: 

Parallelism, (Structure) 

par(bl, b2, . . . ,  bn) 
par cont 

Several separate behaviors bl to bn are confi- 
gurated to one new compound behavior. The 
external view of this behavior is ONE UNIT con- 
taining SEVERAL parallel discrete behaviors. A 
special continuous structure of parallel 
behavior is described further down. 

Proposed syntax is: 

bl b2 ... bn 

In the following paragraphs a language is The syntax consists av a l i s t  of behaviors 
described. I t  consists of firm semantics. The separated by blanks. A l i s t  may be enclosed 
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within parenthesis in order to describe 
unit. 

Time dependency, (Temporal) 

seq(bl, b2, . . . ,  bn) 
seq_cont 

Several terminable behaviors follow each other 
in the order of the l i s t  bl .. bn. A new 
behavior starts when the preceeding behavior 
finishes. The external view of this behavior is 
ONE behavior that is CHANGED by time to new 
behaviors. A special continuous sequence of 
behavior is described further down. 

Proposed syntax is: 

bl • b2 ~ . . .  ; bn ; 

The syntax consists of behaviors separated by 
semicolons. A l i s t  may be enclosed within 
parenthesis in order to describe one unit. 

Alternatives, (Sets) 

a l t (b l ,  b2, .. .  , bn) 
a l t  cont 

Several behaviors are alternatives to a 
behavior. The external view of this behavior is 
ONE behavior, that may take the appearance of 
several ALTERNATIVE behaviors. A special con- 
tinuous set of alternative behaviors is 
described further down. 

Proposed syntax is: 

bl , b2 , . . .  , bn 

The syntax consists of containing behaviors 
separated by commas. A l i s t  may be enclosed 
within parenthesis in order to describe one 
unit. 

Hiding parts 

hide(bh, bv) 

A behavior consists of a hidden behavior bl and 
a visible behavior bv. The hidden behavior bh 
is hidden. An external view of this behavior is 
only the VISIBLE behavior bv. 

Proposed syntax is: 

b l l  . . .  bln ! bol .. bom 

The syntax consists of two l is ts  f i r s t ,  the 
local behavior and the visible behavior, 
separated by the sign !. The construct may be 
enclosed within parenthesis in order to describe 

one one unit. 

Rule (Lambda expressions) 

rule(bp,bs) 

A rule is a pair of pattern and substitute 
behavior. 

The rule is applied to an actual behavior ba. 
I f  the value of the actual behavior ba and a 
pattern behavior bp are equal the resultant 
behavior is the substitute behavior bs. The 
value of the pattern behavior when substituted 
is a formal behavior bf. 

The equality depends on the structure of the two 
behaviours ba and bp: 

elementary elementary 
The two values are equal. The 
behavior equals the actual behavior. 

formal 

elementary parallel 
or vice versa. 
equal. 

The two values are not 

parallel parallel 
The two values are equal i f  each 
corresponding subelement are equal. The 
formal behavior equals the actual behavior. 

parallel alternative 
or vice versa. For each alternative the 
the rule may be assumed to to be duplicated 
in an alternative behavior form: 

rule((bpl,bp2),bs) 

equals 

alt(rule(bpl,bs), 
rule(bp2,bs) ) 

general hiding 
The equality corresponds to the equality 
where the visible part of the hiding con- 
struct replaces the hiding construct. 

general rule 
The equality corresponds to the equality 
where the pattern behavior of the rule 
replaces the rule. The formal behavior 
equals the substitute behavior of the rule. 

general behavior 
The "general" and the "behavior" are two 
behaviors, not values. The two are equal 
i f  the last part of the "general" equals 
the "behavior" for each point in time. The 
formal behavior equals the "behavior" 
behavior. This is generally the case only 
just when equality occurs. 
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The rules may be included into structures as 
paral lel ,  sequence and alternative behaviors. 

parallel rule matches an equally parallel struc- 
~ c t u - - u a l -  behavior. The elements of the 
actual behavior must then equal the correspond- 
ing pattern behavior. The formal pattern value 
is substituted at each element. 

In the sequence of rules and the alternative of 
rules ~ r ~ l - - 6 - 6 h - a v i o r  equals the behavio-r 
when the actual behavior is moved and duplicated 
to al l  the elements: 

ba ( r l ,  . . .  , rN) 
ba ( r l ;  . . .  ; rN) 

equals: 

(ba r l ,  .. , barN) 
(ba r l ;  . . .  , barN) 

Proposed syntax is: 

bp -> bs 

The syntax consists of the pattern behaviors an 
arrow and the substitute behavior. 

Existence of behavior, (Guard) 

guard(ba,r) 

The guard consists of an abstract behavior ba 
and a rule. The rule may be structured as 
paral lel ,  sequence or alternative rule. 

I f  the value o f  behavior ba and a pattern 
behavior bp of the rule are equal the resultant 
behavior is the substitute behavior bs. I f  
several of the alternatives substitute, the 
result is a l i s t  of alternative behaviors. Oth- 
erwise no external behavior is existent. 

The external view of this behavior is an ALTER- 
NATIVE behavior SUBSTITUTED for the abstract 
behavior ba or NO behavior at a l l .  

When a substitution takes place the construct is 
non-cutting, otherwise cutting. 

Proposed syntax is: 

b a r  

or with alternative rules: 

ba ( r l ,  

The syntax consists of the abstract and the rule 
behaviors. The construct may be enclosed within 
parenthesis in order to describe one unit. 

Abstraction, (Reduction) 

abstract(bd, ba) 

An abstract behavior contains rules bd and 
abstract behavior patterns ba. 

The abstract behavior pattern may contain nested 
behaviors eg paral lel,  sequence, alternative, 
hidden, and guard behavior type. For each ele- 
ment or l i s t  of elements of them a recursive 
replacement occurs. 

Each such element, part of l i s t  or fu l l  l i s t  is 
an actual abstraction of a behavior. 

The definit ion may be an unstructured rule or a 
structured rule. The definit ion may therefore 
define alternatives of rules. Assume that each 
alternative is one guard where the pattern and 
substitute have taken their corresponding places 
and the actual abstraction is used as abstract 
behavior. 

I f  at least one of the alternatives is NOT CUT 
the substitution takes place. Many alternatives 
may be created. I f  CUT the actual abstraction 
remains. 

The external view of the abstraction is a SUB- 
STITUTION of by rules defined behaviors. 

Proposed syntax is: 

def r 
ba 

or with alternative rules: 

def r l ,  
r2, 

ba 

The syntax consists of the symbol "def", rule/s 
and a substitute behavior. Optionally each rule 
may be preceeded by the symbol "def". I f  so 
abstract behavior patterns and rules may be 
mixed. The construct may be enclosed within 
parenthesis in order to describe one unit. 

LINKS 

bind(b, symb) 

i~'use(symb) .. 

A symbol symb is bound to a behavior b. The 
external view of the binding construct is the 
behavior b. 

A symbol is a behavior. Generally i t  is static 
and just a sequence of characters. 
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"adam 
"a row" 
"(bp -> bs) 

corresponds to 

(a d a m) 
(a r o w) 
rul~(bp,bs) 

The symbol marks just here the space symbol. 
The rule is converted to a structure containing 
the rule designator and the pattern and substi- 
tute behavior. 

OPERATORS 

Operators are rules. Some of these are prede- 
fined. 

Several classes of operators have one operator 
working on either of the constructs paral lel ,  
sequence or alternative. These types of opera- 
tors generally alters the structure of the con- 
struct. 

COMPARISON WITH OTHER LANGUAGES 

Languages 

The language describes syntax of normal 
languages in a stright forward method. Each 
language category is represented by a rule. The 
following rules are translation from the Pascal 
manual: 

def int -> . . . .  

def in t : l  "<> in t : r  -> . . . .  
real : l  "<> real :r  -> . . .  , 
bool:l "<> bool:r -> . . . .  

def rel op -> 

"> :  , "> , " i n )  

-<= 

def simpl_expr -> . . .  

def exp -> ( 
simpl_exp:l -> l ,  
simpl exp:l rel_op:op simpl_exp:r 

->Top  r ) 

The "expression" category is defined in one 
definit ion containing two rules. The f i r s t  rule 
specifies only a single simple "expression". 
The other rules contains two simple expressions 
separated by a relational operator. 

Now consider the last rule. The pattern is 
"simpl exp" "rel op .... simpl exp". The value of 
them a~ bound by T, op and r-respectively. The 
substitute is l o p  r. 

The pattern is described in an abstract form. 
The simple exp and rel_op is described else- 
where. 

The category rel op is defined as a pattern con- 
sisting of the aTternative containing al l  alter- 
native symbols = to in. The rule only defines 
the set of symbol. 

There is a definit ion containing al l  rules for 
relational operators. They consist of two type 
patterns separated by a relational operator. 
The semantics, i e the substitute behavior, is 
not shown here. 

Protocols 

There is no big difference between a protocol 
and a language. On a channel where the protocol 
is transfered the sequence of symbols 
transferred are described by a language. In a 
computer language the symbols are in parallel 
but in a protocol in a sequence. In a language 
there is really no producer of symbols. In a 
protocol either of two parties sends the symbol. 

The following rules are part of the CCITT s.62 
standard: 

def party id:pid (any:w) -> . . .  

def s62 -> . . .  

( party A ch ) :A 
( party B ch ) :B 
( s62 A B ) :ch 

The description of a protocol contains two 
behaviors A and B, the two parties, and the 
act iv i ty s62 on the channel. Each party l isten 
to the channel ch and contains the state for the 
party. The channel reads the parties A and B. 

The channel shows a parallel structure contain- 
ing the A and B party change of state. 

Each party checks whether update shall occur or 
not. I f  so i t  updates the state in the party. 

The channel may be defined as simplex or duplex. 
Let us now consider a simplex channel. 

def s62 any:a any:b -> 
((css; (rssp; session; cse; rsep), 

rssn) a b) 

def css any:a any:b -> 
((s css a):ch (r css ch b)), 

rssn -> 
((r rssn ch a) (s rssn b):ch), 

rssp -> 
((r_rssp ch a) (s_rssp b ):ch), 

c s e  - >  
((s cse a):ch (r cse ch b)), 
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rsep -> 
((r_rsep ch a) (s_rsep b):ch) 

def r css party:b -> 
-( scan cmd co css ( 

sc~n_pg ~ sr ( 
(scan_p co t id  ) : t id  ; 
(scan p co-dat ):dat ; 
(scan-_p co-asrn ):asrn ); 

(scan p co sid ):sid ; 
(scan-pg co nbtc ( 

(scan_p co grchs ):grchs ; 
(scan_p co-cchs ):cchs ; 
(scan p co-pfmt ):pfmt ; 
(scan~p co_-mtc ):mtc )) 

- ~  • " ' )  5 

r rssn ...  , 

r_rsep . . .  

def s css party:a -> 
-( fmt cmd co css ( 

~ t  pg co sr ( 
~t_p c~ t i d  a. t id ; 
fmtp co-dat a.dat ; 
fmt p co-asrn a.asrn ); 

fmt p-co sTd a.sid ; 
fmt-pg co nbtc ( 

~t_p co grchs a.grchs ; 
fmt p co-cchs a.cchs ; 
fmt_-p co_-pfmt a.pfmt ; 
fmt_p co_mtc a.mtc ))) , 

s rssn . . .  , 

s_rsep . . .  

def fmt cmd byte:c any:p -> 
Tc (size p) p) 

fmtp . . . .  
fmtpg . . .  

def co css -> 13 , 
co sr -> i , 

co mtc -> 75 

The f i r s t  def ini t ion defines the s62 protocol. 
The s62 protocol is simplified but the main 
parts are shown. The s62 protocol consists of 
two variants, one with negative acknowledge and 
one with positive. All message are in a 
sequence. The messages are abstract. 

The second definit ion contains the semantic 
definit ion of messages. Each message definit ion 
is a parallel behavior of a transmitter and 
receiver. They are connected by a l ink "ch" 
corresponding to the channel. The s . . .  is the 
transmitter and the r . . .  the receive~. 

and responses. The third rule is shown as the 
receivers action. The fourth rule is the 
senders action. The css command is shown. 

The command is a structured sequence of bytes. 
They are formed by nested format constructors. 
Each such forms a sequence of bytes. All con- 
structors form a sequence. 

The f i f t h  definit ion contains the three defini- 
tions of coding commands / responses, parameters 
and group parameters. The rules are not fu l ly  
defined, because those details are not con- 
sidered here. 

The sixth definit ion contains al l  definit ion of 
codes for commands, responses and parameters. 
Each symbol is replaced with a code. 

Statements 

Statements are a sequence of actions. Typical 
Pascal and Ada statements are sequencies of such 
actions separated by " ;" .  A sequence of $1 ; .. 
; Sn statements is: 

Sl ; S2 ; . . .  : Sn 

Type definitions 

The type definit ion i Pascal and Ada specifies 
al l  possible values a variable ocr expression 
may take. 

The type information is used as pattern 
behaviors in implementation of languages. The 
Pascal integer is defined as: 

def type id -> 
('Tnteger, "boolean, 
"real, "record, "array) 

def int:v -> 
((+ , -) nat) 

An integer consists of a sign, +/-, and a 
natural number. I t  is a discrete alternative 
specified as a basic alternative. 

Variables 

In imperative languages there are variables. 
Each variable is a parallel process. There is 
also one central protocol, the statements, con- 
t ro l l ing  the variables: 

def var type id:type id:ad -> 
( ad := type:v -> v, 

(not id := type) -> v ad ) :v ad 

The third and forth definit ion contains al l  (cntrl (var integer " id l  )): idl 
specification of formats for individual commands (cntrl (var integer "id2 )): id2 
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( . . .  : name := expr ; . . . ) :cn t r l  

The variable is defined as a process with feed- 
back. The rule for a variable has as parameter 
the variable type and ident i f ier .  

The variable is a process listening to the con- 
t ro l .  When i t  shows an ident i f ier ,  an assign 
symbol and a correct value the process takes the 
value from the parameter. In other cases the 
value is kept by a feedback. 

To each variable process and ident i f ier  is 
bound. They may be used at several placess in 
the control sequence. 

The variable definit ion is schematic because a 
master slave function must be included in order 
to allow the update of a variable that also is 
read. 

When there are several activation records, the 
ident i f ier  for a variable has to be supplemented 
by an activation record ident i f ier .  

Conditionals 

The generally used case-clause can be described 
as: 

expr (pat1 -> $1, 
pat2 -> $2, 

There is one expression expr calculating the 
control variable. There are N rules defined. 
Each rule contains the choser pat and the state- 
ment S. The expr select the alternatives, zero, 
one or more i f  patterns overlap. 

The if-clause is implemented as: 

expr:cond true -> Strue, 
cond false -> Sfalse 

Two symbols true and false are defined. A 
boolean expression expr is a behavior and bound 
to the symbol cond. A guard choses either the 
of the statements Strue or Sfalse. 

Function calls 

A function is an abstraction in Pascal, Ada 
Ella. I t  is implemented as: 

def f id ptypel:pl . . .  -> 
- ( . . . .  ! expr ) 

and 

. . .  ; f id expr . . .  expr ; . . .  

The function is defined by a rule. The pattern 
behavior consists of the function ident i f ier  
followed by the type pattern behaviors for the 
parameters. Each parameters has an ident i f ier  
bound to i ts value. 

The substitute behavior consists of a hiding 
constructs. The visible part is the result 
expression. 

The procedure call is more complex, because i t  
has the ab i l i t y  to write in imported variables. 

Lamda functions 

The lambda functions are available in Lambda 
Calculus and in most functional languages. The 
guard and the lambda function performs approxi- 
mately the same semantics. The guard uses a 
pattern matching but the lambda function uses 
direct replacement. 

The following lambda expressions: 

lambda x. f  ap 
lambda x.y.f(x,y) apx apy 

are implemented as: 

ap any:x -> bs 
apy apx any:x -> (any:y -> f x y) 

The last example is an high-order function. The 
example shows two curried operands. Each func- 
tion is implemented as a rule. The any behavior 
is an alternative stating any type of structure. 

Inference - Prolog 

The reduction mechanism is d i r ec t l y  appl icable 
to implement Prolog. Thus the fo l lowing Prolog 
program: 

r u l e l ( l i t , v )  :- predl(v), pred2(v) 
ruel2... 

goa l ( l i t ,v )  

is implemented as: 

def rule1 l i t : v1  t v:v2 -> 
(predl v) ant -> 
(pred2 v) any -> (vl,v2) 

rule2... 

goal l i t  any:v 

The predicate is implemented as a guard with the 
pattern equal to any ("true"). Several nested 
guards form a sequence of predicates. Parame- 
ters are bound in the conventional way. 
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In the goal each variable is substituted by the 
any behavior. The reduction mechanism wi l l  
reduce this behavior to cases that are imple- 
mented. The result consisting of ( l i t , v ) ,  ~ere 
l i t  is the specified l i t e ra l  and v is the 
searched variable. The result may consist of 
several alternatives. 

Message passing 

Message passing occurs in the Ada rendezvous, in 
CCS and CSP. They are in their basic function 
similar but from user point of view different. 

Such systems are f in i te-state machines and may 
be implemented as: 

(process1 p2 ):pl 
(process2 pl ):p2 

. . .  

(process2 pm ):pN 

def proc id m types:m -> 
( ( - s t a ~ m ) : s t a t e  
! transmit) 

def state1: s m_types :m -> 
(m (pat1 -> $1, 

pat2 -> $2, 

SK, 
else -> s), 

state2:s ... 

The state machine consists of N processes. They 
may read other processes. 

Each process rule has a pattern behavior 
describing the process id and the message chan- 
nel m. 

The substitute behavior constitutes the behavior 
of the process. I t  is a hidden construct. The 
visible part are the messages transmitted. The 
hidden part contains the states. 

The different states are described by an own 
rule. I t  consists of a guard with a set of 
rules, one for each possible message and one for 
none and al l  other messages. The last guard 
contains a feedback, that preserves the current 
state. 

Wave-form 

In several cases a waveform is needed. An 
osci l lator with frequency 1/2*tph is: 

def osc real:tph -> 
((0 o> tph ; 1 o> tph ) ; 
osc tph ) 

The operator o> keeps a value constant over a 
time. The use of operators are essential when 
designing waveforms. Important operators are 
the apply and the value to sequence operators. 

DESCRIPTION OF DIFFERENT OBJECTS, EXAMPLES 

Processors and controllers 

Below is a very simple processor shown: 

( . . .  ; sub a ; . . . ) :  program 
def sub_a T> ( . . .  ; op_b ; . . . )  

def op a reg:pl -> (micro cntrl opa, pl), 
op~b -> (micro cntrl_opb ()-) 

def micro rac:c reg:pl -> 
(c (cntrl opa -> 

(aTu pl (c l lp i  c12p2)), 
cntrl opb -> 

(aTu () (cllreg1 c12clock))) 

def alu reg:pl (ral:c ulpl ra2:c ulp2) -> 
((adder c_ulpl (cTlpl -> p1,- 

c11reg1 -> regl) 
c_ulp2 (c12u2 -> u2, 

c12clock -> clock)):ul 
(adder regl clock):u2 
(ram 64 bit16):reg1 
(. . .) :clock 
! ul) 

def ral -> (c l lp l ,  c11reg1), 
ra2 -> (c12u2, c12clock), 
rac -> (cntrl opa, cntr lopb),  
reg -> (0 .. 65535) 

def adder reg:pl reg:pl -> . . .  

The f i r s t  construct is a program. I t  is a 
sequence of statements. A subroutine call is 
shown as one step. 

The f i r s t  definit ion specifies the called sub- 
routine. The subroutine contains a sequence 
operators. The operator op_b is shown. 

The second definit ion contains definitions for 
operators. Two operators, op a and op b, are 
shown. The f i r s t  operator has a-paramet~, the 
other none. Each operator is specified by one 
microinstruction. I t  has two parameter f ields, 
one for a control code and one parameter. 

The third definit ion specifies the microinstruc- 
tion. I t  has as earl ier mentioned two parame- 
ters. The microinstruction uses the control- 
f ie ld  c to select among two different alu opera- 
tions. The alu is controlled by one l i t e r l  
parameter and two control symbols. 
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The fourth definit ion specifies the alu. I t  has 
two parameters as mentioned befog.  The alu 
consists of two "hardw" units ul and u2, unit 
regl and clock. All units except ul are hidden. 

The unit ul is a hardw unit having two parame- 
ters. By a guard a multiplexing structure is 
used for both of them. 

The f i f th  definit ion specifies the range of four 
types ral,  ra2, rac and reg. The last type is 
specified to contains a 65536 different states. 

The sixth definit ion specifies the pure physical 
unit for the alu. I t  is not fu l ly  s h o w n ~  

ALU:s 

An arithmetic unit may be parametrised in order 
to perform different operations. This switch- 
able function is specified further down in the 
description of a processor. 

The arithmetic unit uses a code for the operands 
and performs a mathematic function. Both have 
to be specified: 

def binary nat:le -> 
(nat:v -> 

(O.. le) :b i t  * 
(v mod (2 ** b i t ) ) )  

def add nat:l nat:r -> l + r 

and an implementation: 

def add binary nat:bit  
(bTnary b i t ) : l  (binary b i t )y : r  -> 

(O.. le) :b i t  * 
(half add l . b i t  r . b i t  

(carry (bi t -1): lec 
l .(O.. lec) r.(O.. lec))) 

def half add bool:l bool:r bool:c -> 
(T r c) ((0 0 O) -> O, 

(0 0 i )  -> 1, 
(0 1 0) -> 1, 
(0 1 I) -> O, 
(1 0 O) -> I ,  
(1 0 I) -> 0, 
(1 1 O) -> O, 
(1 1 1) -> I) 

def carry nat:bit  
(binary b i t ) : l  (binary b i t )y : r  -> 
( ( l . b i t  r .b i t )  
((o o) -> o, 
((o 1), (1 o)) -> 

(carry (bi t -1): lec 
l . (O.. lec) (r.(O..lec)) 

( i  1) -> 1)) 

positive values. 

The f i r s t  definit ion specifies how the binary 
code is generated. By use of a special high- 
order function this definit ion may be converted 
into a add_binary definit ion. 

The third definit ion specifies binary add of b i t  
long words. An alternative containing 0 to le 
is specified. Each alternative corresponds to 
one b i t  of the binary word. The apply operator 
* converts this alternative to a parallel struc- 
tore containing a half adder. I t  has as parame- 
ters the corresponding b i t  from the l and r 
operand and a carry calculated by al l  less sig- 
n i f ic iant  bits. 

The half adder uses three boolean values. 
According to a guard containing 8 rules a result 
consisting of 0 or 1 is substituted. 

The f i f t h  definit ion specifies the carry. I t  
has three parameters, a word length b i t  and two 
words l and r of this length. A guard selects 
three cases. Two of them substitutes 0 or 1. 
The third case substitutes a carry calculated 
from the least signif ic iant bits. 

This adder is not optimal, because i t  contains a 
carry chain for each bi t .  Simple modifications 
removes this problem. 

Memories 

A conventional read-write random access memory 
is defined as: 

def cellop -> (nop, read, write) 

def cell type:ty nat:addec -> 
(cellop:rw nat:ad ty:di -> ( 

(rw (hop -> vout, 
read -> vout:do, 
write -> 

ad addec -> di, 
ad (<> addec) -> vout) 

):vout 
! ad addec -> do)) 

def ram nat:si type:ty -> 
((0 .. si):ad * (cell ty ad)) 

(op address di) (ram 1024 bit16 ) 

The f i r s t  definit ion specifies the operations 
for a memory. 

The second definit ion specifies a memory cel l .  
The cell is characterised by two parameters, the 
f i r s t  ty specifies the type of the stored word, 
the second specifies the cell address. 

The add operation is specified in the second The cell is a rule for a guard. The cell is 
definit ion. I t  is a general description for al l  controlled by three parameters, the 
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celloperation rw, the address ad and the data 
input di. 

The celloperator rw specifies that the cell out- 
put is stable by a feedback. During the write 
operation the cell is written i f  adress ad 
equals the celladdress addec. Otherwise the 
cell is stable. 

All the mentioned behavior is hidden. When the 
adress ad equals the cell address addec the out- 
put of the cell equals do. I t  is only defined 
during the read operation. 

The ram array is specified by giving the size si 
a n d S 6  type ty for the memory ce l l .  An al ter-  
native structure containing the values 0 to si 
is defined. An apply operator * uses each 
alternative value and replaces i t  with an 
abstract cell of type ty and an address equal to 
the value. The apply operator alters the struc- 
ture from alternative to parallel structure. 

Gate-level, NAND, NOR etc 

All simple gates are easily described as: 

def s -> (0, 1) 

def nor3 s:a s:b s:c -> 
((a b c) ((0 0 O) -> O, 

(1 s s) -> 1, 
(s 1 s) -> 1, 
(s s 1) -> I ) )  

def half add gate s:l s:r s:c -> 
nor4 ~r3 Tnot l ) : I b  (not r ) : rb c 

nor3 Ib r (not c):cb 
nor3 l rb cb 
nor3 l r c 

The "def s" defines an alternative containing 
the possible signals. 

The "nor3" defines a nor gate. The description 
is a simple guard containing a rule for each 
case. The "s" is used for alternative 0 or 1, 
ie don't care. 

The "half adder gate" is an implementation of a 
halfadder~- I t -con ta ins  3 not and 4 nor3 and 1 
nor4 behaviors. All are implemented as gates. 

The above shown description of the halfadder can 
be altered to separately specify al l  gates and 
then connect them by l inks: 

def half add gate s:l s:r s:c -> 
((nor4-wl w2 w3 w4):wfu 

(nor3 wlb wrb c): wl 
(not l ) :wlb 
(not r):wrb 

(nor3 Ib r wcb):w2 
(not c):wcb 

(nor3 l rb cb):w3 
(nor3 l r c):w4 

! wfu) 

Extra l inks denotated by wx have been added. 
The substitute has to be hidden in order to 
specify the same function. 

Nets and topology 

The logic abstraction is a functional abstrac- 
t ion, where the result is a substitution of the 
parameters. 

This description can be turn into an equivalent 
description where al l  connections, input as well 
as output, are connected to net components. 
Each operator is translated to an element of a 
parallel behavior: 

def half add unit 
(s:l s:r s:c s:fu) -> 
(nor4unit wll w21 w31 v#$1 wfu 

nor3unit wl l  wrl wcl w12 
notunit wl2 wlbl 
notunit wr2 wrbl 

nor3unit wlb2 wr3 wcbl w22 
notunit wc2 wcb2 

nor3unit wl3 wrb2 wcb3 w32 
nor3unit wl4 wr4 wc3 w42 

net (wll wl2 wl3 wl4 l )  
net (wrl wr2 wr3 wr4 r) 
net (wcl wc2 wc3 wc4 c) 
net (wfu fu) 
net (wlbl wlb2) 
net (wrbl wrb2) 
net (wcbl wcb2 wcb3) 
net (wll w12) 
net (w21 w22) 
net (w31 w32) 
net (w41 w42) 

connect:wll 
connect:wl2 

connect:w42) 

def connect -> (0, 1) 

The topology consists of components, nets and 
connections. The connection may take only logi-  
cal values. 

Transistor and wire 

The abstraction mechanism specifies new levels 
that are independent of earl ier levels. This 
fact is very important to consider when discrib- 
ing nets. 

Generally al l  components do depend on other com- 
ponents. Because of this each component cannot 
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be considered alone. Larger portion of a net 
structure must therefore be flattened out into 
one level. 

On each such level a component is described by 
linear or non-linear equations. All components 
together define a system of equations. By solv- 
ing this system for voltages and currents the 
behavior on the conductors can be evaluated. 

def half add unit 
(v:vcc v:gnd s:l s:r s:c s:fu) -> 
(nor4unit vl gl wll w21 w31 w41 wfu 

nor3unit v2 g2 wll wrl wcl w12 
notunit v3 g3 wl2 wlbl 
notunit v4 g4 wr2 wrbl 

nor3unit v5 g5 wlb2 wr3 wcbl w22 
notunit v6 g6 wc2 wcb2 

nor3unit v7 g7 wl3 wrb2 wcb3 w32 
nor3unit v8 g8 wl4 wr4 wc3 w42 

wlre C1 (wll wl2 wl3 wl4 l )  
wlre C2 (wrl wr2 wr3 wr4 r) 
wlre C3 (wcl wc2 wc3 wc4 c) 
wlre C4 (wfu fu) 
wlre C5 (wlbl wlb2) 
wlre C6 (wrbl wrb2) 
wire C7 (wcbl wcb2 wcb3) 
wlre C8 (w11 w12) 
wlre cg (w21 w22) 
wlre Cll (w31 w32) 
wire C12 (w41 w42) 
power (vl v2 v3 v4 v5 v6 v7 v8 

VCC) 
power (gl g2 g3 g4 g5 g6 g7 g8 

gnd) 

plug:wll 
plug:wl2 

;iug w42) 
def plug -> (0.5..2.4 0.0..0.001) 

A network consists of components, wires and 
plug. A plug may take any voltage and current 
within the capability of the circuits. 

Wires are special components having several com- 
ponents connected. All their terminals have the 
same potential and the sum of their currents is 
zero. Wires do have a capacitance. 

Components have other characteristics. 

Geometric object 

Geometric objects are described by guards. The 
guard uses a pattern checking the coordinates to 
be within certain boarders. For points inside 
the border the value of the geometric objects is 
specially defined: 

def geom__obj -> 

(p:pos border -> (point pos) 

The border behavior is a static continuous 
alternative behavior. I t  contains al l  points 
inside the border of the geom_obj. 

The border object is generally bui l t  by con- 
structors. Such ones may be ABUT, VECTOR, TURN, 
MIRROR, SCALE, PRIORITY, POLYGONE, COORDINATE, 
ARC, PAD, WIRE, BRANCH, END or CUT. There may 
be several systems of constructors. I t  is not 
the purpose of this report to define them. 

The geometry of the halfadder is: 

def half add geom 
(v:vcc v:gnd s:l s:r s:c s:fu) -> 

((x y) nor4geom vl gl pl l  p21 p31 
p41 pfu 

(x y) nor3geom v2 g2 p l l  prl 
pc1 p12 

(x y) notgeom v3 g3 pl2 plbl 
(x y) notgeom v4 g4 pr2 prbl 
(x y) nor3geom v5 g5 plb2 pr3 

pcbl p22 
(x y) notgeom v6 g6 pc2 pcb2 
(x y) nor3geom v7 g7 pl3 prb2 

pcb3 p32 
(x y) nor3geom v8 g8 pl4 pr4 

pc3 p42 

wlre me p l l  pl2 p13 pl4 l )  
wlre me prl pr2 pr3 pr4 r) 
wlre me pc1 pc2 pc3 pc4 c) 
wlre me pfu fu) 
wlre me plbl plb2) 
wlre me prbl prb2) 
w]re me pcbl pcb2 pcb3) 
wlre me pl l  p12) 
wlre me p21 p22) 
wlre me p31 p32) 
wlre me p41 p42) 
power (vccl vcc2 vcc3 vcc4 

vcc5 vcc6 vcc7 vcc8 
VCC) 

power (gndl gnd2 gnd3 gnd4 
gnd5 gnd6 gnd7 gnd8 
gnd) 

position:wll 
position:wl2 

position:w42) 

def position -> (xrange yrange) 

A geometry consists of components, wires and 
positions.. Power is a special wire. The posi- 
tion may take arbitrary coordinate value. 

Wires are special components having several com- 
ponents connected in points p. Wires are imple- 
mented in a certain layer (me). 
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Components have a size and interface specifying 
coordinates for connections. Components are 
placed in certain positions (x y).  

A wire may be accurately described by eg: 

wire width 
(l ine 11 
branchT2 (l ine 12 wireend) 

(l ine 13 cut wireend) 

CONCLUSION 

A language has been specified. I t  has a simple 
and strong semantics. Two types of syntaxes has 
been shown, one for computers and one for human 
beeings. The last one is just scetched in order 
to simplify communication with the reader. 

The main target for the language is as a 
representation for design objects. Especially 
such a simple and strong semantics is necessary 
for automatic synthesis. 

The strength of the language has been shown by 
examples. All important levels of a hardware 
design has been shown by examples, ie the fu l l  
processor function, ALU and memories, topology 
and geometry. Important parts of imperative, 
functional and declarative languages has been 
shown written in the language. 

The language wi l l  be named "H". 
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