
North-Holland
Microprocessing and Microprogramming 18 (1986) 567-580 567

A LANGUAGE FOR BEHAVIOR, STRUCTURE AND GEOMETRY

Gunnar Carlstedt

Hybridlaboratoriet Hylab AB, Tr~ringen 47, S-416 79 Gothenburg, Sweden

A representation for behavior. I t is a type of language specialised for synthesis tools.
This report also outlines a syntax for documentational purpose.

The representation isolates dif ferent language issues as parallelism (spatial), time depen-
dency, alternatives, hiding, rules, conditionals (guards), abstraction and l inks (data-
paths).

A comparison is done with normal imperative, applicative and declarative languages. Dif-
ferent types of language constructs are outlined in the representational form.

Several types of hardware structures are shown. They range from graphics over nets to pro-
cessors.

INTRODUCTION

This report describes a representation for
behavior adapted for machine synthesis and the
design of VLSI c i rcui ts.

Description of time dependance

Computer languages have been used for a long
time. There are several examples of such
languages, one is Pascal (JENS75). Most
languages have been able to describe sequencies
of action. Each step of such a sequence takes
zero time. Consequently the sequence cannot
~ r i ~ i m e . The language is therefore unable
to describe behavior. Except for the use of
read and write clauses the language describes a
mapping of values into an output structure of
values.

CCS (MILN80) may define several parallel
processes. They perform actions by transporting
messages between each other. Because there are
no means to describe time delays CCS cannot
fu l l y describe a behavior. I t may only be used
to describe event synchronisation.

Simula (BIRTW73) can describe parallel struc-
tures of processes. Each such one may depend on
a global clock. The language has been used
intensively to simulate real-time behavior.

The general behavior needs a possibi l i ty to
describe waveforms of values. HHDL(HHDL83),
VHDL (VHDL85) and VERITAS (HANN85) are the only
languages known to be able to do this.

Parallelism

The Pascal language except for read and write
clauses cannot describe any parallel behavior.
Data structures may be f o r ~ ~ r ~ f
parallel objects. Pascal is therefore only able
to describe parallel structure, but not actions.

Both Ada and Simula can describe structures of
parallel processes. A process is described by a
sequence of statements describing by effect the
actions of a process (imperative parallelism).

Ella and CCS can also describe parallel
processes. Each process is describe in a func-
tional approach (applicative parallelism).

True hardware consists of (hierarchical) struc-
tures of processes, each acting dependent on
values of other processes. Such parallelism can
in a straight forward manner be modelled by Ada,
CCS or Simula.

Synchronisation method

On lowest level hardware may be modelled as a
The Ada language (ADA82) has processes defined system of non-linear equations. The resultant
that may be structured parallel to records or behavior are currents and voltages describing
arrays. Ada can express time-delays. Ada is waveforms.
therefore capable of describing discrete time
behavior. On register transfer level hardware can be

modelled as f i n i te state machines with many

568 G. Carlstedt /A Language for Behavior, Structure and Geometry

states. The states may correspond to register
values and microprogram sequence state.

On a high-level in a system components generally
communicate by sending messages. On this level
the Ada and CCS can m o d e ~ h a v i o r .

Most hardware description languages has adopted
a synchronising method different from computer
languages. They assume the existence of sig-
nals, that are time dependant values, i e
waveforms. Signals are modelled by functions
from values of signals. The function can
express some sort of delay mechanism. The delay
may be discrete steps. VHDL (VHDL85), ELLA
(ELLA85) and Karl (HART77) are using this
method.

Both Ada and CCS synchronise by transferring
messages. Normal hardware do not synchronise in
this way.

In order to be able to model al l levels in a
design a language must have a semantics that can
describe non-linear continuous time behavior,
f in i te state machines with functions controlled
by the state and by interchanging messages with
certain delays.

Language type

The language shall be used for automatic syn-
thesis. All programming by "effect" should be
avoided. The synthesis tool often has d i f f i -
culty in modelling such actions into a manage-
able action.

Applicative languages are well suited for
sythesis. The Ella language (ELLA85) is an
applicative language for RTL level behavior.
Other applicative languages are Sticks and
stones adapted for topology.

Declarative languages l ike PROLOG (CLOCK81) may
probably be synthesised easily. The description
power of such languages are high. They gen-
eral ly by rules describe the properties of the
result, but not the result.

The synthesis is used for finding the result.
I t is therefore no meaning to synthesise such
programs. Instead i t should probably be possi-
ble to introduce supplementary rules describing
adequate properties in order to get comparative
results.

The language should be of functional type, where
al l functions are performed in paral lel , in
order to make synthesis simple.

Abstraction mechanism

Common languages use types and subroutines to
hide properties or implementation. They contain
means to abstract behavior / value.

There is a need of abstraction in order to build
large good systems. This abstraction shall not
be mixed up with the abstract behavioral mechan-
ism of a computer.

There are several types of abstractions in the
hardware, e g:

RANGES
use of a "0" when voltage less than 0.8 V,
The language shall abstract a real range to
a symbol. In this case true or false.

NUMBERS
bitcombination "1101" corresponds to the
value 13. Functions shall be used to map a
number into an implementation. In this
case a function "binary_code" shall con-
struct a bit-vector of ones and zeroes.

ACTIONS
the instruction "add" corresponds to
several actions as reading two registers,
transfering values to an ALU, adding in the
ALU, storing the result in a register, and
advancing to next instruction. A symbol
shall abstract a behavior. In this case
the add instruction code abstracts several
microsteps of action.

DYNAMIC CHANGE OF ABSTRACTION
an instruction set is an abstraction from
code to behavior. A processor may load a
new instruction set dynamically and then
start to execute i t . Therefore the
language must be able to dynamically change
abstraction.

Some of these abstraction mechanisms are gen-
eral ly found in compiler-compilers. Denotation
semantics GORD79b do also describe such abstrac-
tions.

In order to describe these abstractions the
language must be able to dynamically alter an
abstraction mechanism. The abstraction mechan-
ism shall also be able to map patterns of sym-
bols (codes) into behavior.

Existence in space

Several types of objects need a description of
the existence of an object and the behavior
within the limits of the object.

Typical such objects are graphic objects. They
exist in a certain environment, the space. Each
object exists within a certain volume where each

G. Carlstedt / A Language for Behavior, Structure and Geometry 569

point may have a behavior.
colour, density, material,
speed etc.

The behavior may be
potential, current,

The space may be frequency, room etc.

Predicate logic have some simi lar i t ies with this
type of abstraction.

The language must be able to separate the notion
of existence and the behavior for parts of the
object.

bescription of design objects

The design object may be described from mask-
pattern to system behavior. The la t ter may be a
man-machine interface.

The EDIF (EDIF85) format is a language for a
medium to be interchanged between different
design-tool users. I t is by mode switching
capable describing both structure, geometry,
nets and behavior.

I t is our bel ief that there really is no di f fer-
ence between these type of design objects.

The generally used meaning by "structure" and
"behavior" is in our world the same. A struc-
ture is a behavior that is implementable. The
generally used structure does not have any
behavior but is bound to a set of parallel
objects occupying area on sil icon. In our opin-
ion the general behavior may also be bound to
some type of si l icon area.

With this new type of structural object the
behavior of the object is known Such struc-
tural object must be described by some other
similar type of implementable behavior (object).
The lowest level of objects are probably gates
or wires and transistors.

This new type of structural object defines a
graphic layout consisting of a mask pattern
specifying the existence of wires and transis-
tors. Each wire or transistor has a behavior
changing currents and voltages.

There are several "aspects" of such a behavior:
area, power consumptlon-=-~--~ fabrication mask level
etc. Thus the concept behavior must contain a
mechanism to describe such type of aspects.

Syntax

The purpose of this report is to outline a
language capable of describing most levels of
design objects.

language may be depicted by a hardware descrip-
tion language for human beings and as a data
structure for a computer.

I t is not the purpose of this report to find an
optimal man-machine interface. Thus the syntax
is just scetched. The description occurs only
for the purpose of making communication with the
reader simple.

SEMANTICS

The semantics describes behavior. Behavior is
synonymous to process and act iv i ty. In this
report the word behavior wi l l be used.

A behavior is said to be time discrete i f i t
exhibits i tse l f only a c - e - ~ t a ~ i t e s i m a l
points in time. The behavior is time continuous
i f i t is exhibited al l the time.

The behavior can exist between two points in
time. I f the time interval is zero, then the
behavior is a pulse behavior. I f the interval
is f in i te t h e n ~ b ~ i s terminable.

The elementary behavior is a behavior which does
not show any o ~ i g n s of change, but s t i l l
exists.

At every moment in time, the behavior shows a
value which is an inf ini tesimally small part of
a course of events. A behavior is constant i f
i ts value is unchanged during the time. Other-
wise the behavior is variable.

The different issues of behavior may be discrete
or continuous. The discrete types consists of
quantified behaviors. The continuous types con-
sists of an i n f i n i t infinitesimal small
behaviors that together specifies a "l inear"
range of behaviors, compare points and a l ine.

The behavior as such may be controlled by the
followning semantic issues:

Parallelism, (Structure)

par(bl, b2, . . . , bn)
par cont

Several separate behaviors bl to bn are confi-
gurated to one new compound behavior. The
external view of this behavior is ONE UNIT con-
taining SEVERAL parallel discrete behaviors. A
special continuous structure of parallel
behavior is described further down.

Proposed syntax is:

bl b2 ... bn

In the following paragraphs a language is The syntax consists av a l i s t of behaviors
described. I t consists of firm semantics. The separated by blanks. A l i s t may be enclosed

570 G. Carlstedt / A Language for Behavior, Structure and Geometry

within parenthesis in order to describe
unit.

Time dependency, (Temporal)

seq(bl, b2, . . . , bn)
seq_cont

Several terminable behaviors follow each other
in the order of the l i s t bl .. bn. A new
behavior starts when the preceeding behavior
finishes. The external view of this behavior is
ONE behavior that is CHANGED by time to new
behaviors. A special continuous sequence of
behavior is described further down.

Proposed syntax is:

bl • b2 ~ . . . ; bn ;

The syntax consists of behaviors separated by
semicolons. A l i s t may be enclosed within
parenthesis in order to describe one unit.

Alternatives, (Sets)

a l t (b l , b2, .. . , bn)
a l t cont

Several behaviors are alternatives to a
behavior. The external view of this behavior is
ONE behavior, that may take the appearance of
several ALTERNATIVE behaviors. A special con-
tinuous set of alternative behaviors is
described further down.

Proposed syntax is:

bl , b2 , . . . , bn

The syntax consists of containing behaviors
separated by commas. A l i s t may be enclosed
within parenthesis in order to describe one
unit.

Hiding parts

hide(bh, bv)

A behavior consists of a hidden behavior bl and
a visible behavior bv. The hidden behavior bh
is hidden. An external view of this behavior is
only the VISIBLE behavior bv.

Proposed syntax is:

b l l . . . bln ! bol .. bom

The syntax consists of two l is ts f i r s t , the
local behavior and the visible behavior,
separated by the sign !. The construct may be
enclosed within parenthesis in order to describe

one one unit.

Rule (Lambda expressions)

rule(bp,bs)

A rule is a pair of pattern and substitute
behavior.

The rule is applied to an actual behavior ba.
I f the value of the actual behavior ba and a
pattern behavior bp are equal the resultant
behavior is the substitute behavior bs. The
value of the pattern behavior when substituted
is a formal behavior bf.

The equality depends on the structure of the two
behaviours ba and bp:

elementary elementary
The two values are equal. The
behavior equals the actual behavior.

formal

elementary parallel
or vice versa.
equal.

The two values are not

parallel parallel
The two values are equal i f each
corresponding subelement are equal. The
formal behavior equals the actual behavior.

parallel alternative
or vice versa. For each alternative the
the rule may be assumed to to be duplicated
in an alternative behavior form:

rule((bpl,bp2),bs)

equals

alt(rule(bpl,bs),
rule(bp2,bs))

general hiding
The equality corresponds to the equality
where the visible part of the hiding con-
struct replaces the hiding construct.

general rule
The equality corresponds to the equality
where the pattern behavior of the rule
replaces the rule. The formal behavior
equals the substitute behavior of the rule.

general behavior
The "general" and the "behavior" are two
behaviors, not values. The two are equal
i f the last part of the "general" equals
the "behavior" for each point in time. The
formal behavior equals the "behavior"
behavior. This is generally the case only
just when equality occurs.

G. Carlstedt / A Language for Behavior, Structure and Geometry 571

The rules may be included into structures as
paral lel , sequence and alternative behaviors.

parallel rule matches an equally parallel struc-
~ c t u - - u a l - behavior. The elements of the
actual behavior must then equal the correspond-
ing pattern behavior. The formal pattern value
is substituted at each element.

In the sequence of rules and the alternative of
rules ~ r ~ l - - 6 - 6 h - a v i o r equals the behavio-r
when the actual behavior is moved and duplicated
to al l the elements:

ba (r l , . . . , rN)
ba (r l ; . . . ; rN)

equals:

(ba r l , .. , barN)
(ba r l ; . . . , barN)

Proposed syntax is:

bp -> bs

The syntax consists of the pattern behaviors an
arrow and the substitute behavior.

Existence of behavior, (Guard)

guard(ba,r)

The guard consists of an abstract behavior ba
and a rule. The rule may be structured as
paral lel , sequence or alternative rule.

I f the value o f behavior ba and a pattern
behavior bp of the rule are equal the resultant
behavior is the substitute behavior bs. I f
several of the alternatives substitute, the
result is a l i s t of alternative behaviors. Oth-
erwise no external behavior is existent.

The external view of this behavior is an ALTER-
NATIVE behavior SUBSTITUTED for the abstract
behavior ba or NO behavior at a l l .

When a substitution takes place the construct is
non-cutting, otherwise cutting.

Proposed syntax is:

b a r

or with alternative rules:

ba (r l ,

The syntax consists of the abstract and the rule
behaviors. The construct may be enclosed within
parenthesis in order to describe one unit.

Abstraction, (Reduction)

abstract(bd, ba)

An abstract behavior contains rules bd and
abstract behavior patterns ba.

The abstract behavior pattern may contain nested
behaviors eg paral lel, sequence, alternative,
hidden, and guard behavior type. For each ele-
ment or l i s t of elements of them a recursive
replacement occurs.

Each such element, part of l i s t or fu l l l i s t is
an actual abstraction of a behavior.

The definit ion may be an unstructured rule or a
structured rule. The definit ion may therefore
define alternatives of rules. Assume that each
alternative is one guard where the pattern and
substitute have taken their corresponding places
and the actual abstraction is used as abstract
behavior.

I f at least one of the alternatives is NOT CUT
the substitution takes place. Many alternatives
may be created. I f CUT the actual abstraction
remains.

The external view of the abstraction is a SUB-
STITUTION of by rules defined behaviors.

Proposed syntax is:

def r
ba

or with alternative rules:

def r l ,
r2,

ba

The syntax consists of the symbol "def", rule/s
and a substitute behavior. Optionally each rule
may be preceeded by the symbol "def". I f so
abstract behavior patterns and rules may be
mixed. The construct may be enclosed within
parenthesis in order to describe one unit.

LINKS

bind(b, symb)

i~'use(symb) ..

A symbol symb is bound to a behavior b. The
external view of the binding construct is the
behavior b.

A symbol is a behavior. Generally i t is static
and just a sequence of characters.

572 G. Car/$tedt /A Language for Behavior, Structure and Geometry

"adam
"a row"
"(bp -> bs)

corresponds to

(a d a m)
(a r o w)
rul~(bp,bs)

The symbol marks just here the space symbol.
The rule is converted to a structure containing
the rule designator and the pattern and substi-
tute behavior.

OPERATORS

Operators are rules. Some of these are prede-
fined.

Several classes of operators have one operator
working on either of the constructs paral lel ,
sequence or alternative. These types of opera-
tors generally alters the structure of the con-
struct.

COMPARISON WITH OTHER LANGUAGES

Languages

The language describes syntax of normal
languages in a stright forward method. Each
language category is represented by a rule. The
following rules are translation from the Pascal
manual:

def int ->

def in t : l "<> in t : r ->
real : l "<> real :r -> . . . ,
bool:l "<> bool:r ->

def rel op ->

"> : , "> , " i n)

-<=

def simpl_expr -> . . .

def exp -> (
simpl_exp:l -> l ,
simpl exp:l rel_op:op simpl_exp:r

->Top r)

The "expression" category is defined in one
definit ion containing two rules. The f i r s t rule
specifies only a single simple "expression".
The other rules contains two simple expressions
separated by a relational operator.

Now consider the last rule. The pattern is
"simpl exp" "rel op simpl exp". The value of
them a~ bound by T, op and r-respectively. The
substitute is l o p r.

The pattern is described in an abstract form.
The simple exp and rel_op is described else-
where.

The category rel op is defined as a pattern con-
sisting of the aTternative containing al l alter-
native symbols = to in. The rule only defines
the set of symbol.

There is a definit ion containing al l rules for
relational operators. They consist of two type
patterns separated by a relational operator.
The semantics, i e the substitute behavior, is
not shown here.

Protocols

There is no big difference between a protocol
and a language. On a channel where the protocol
is transfered the sequence of symbols
transferred are described by a language. In a
computer language the symbols are in parallel
but in a protocol in a sequence. In a language
there is really no producer of symbols. In a
protocol either of two parties sends the symbol.

The following rules are part of the CCITT s.62
standard:

def party id:pid (any:w) -> . . .

def s62 -> . . .

(party A ch) :A
(party B ch) :B
(s62 A B) :ch

The description of a protocol contains two
behaviors A and B, the two parties, and the
act iv i ty s62 on the channel. Each party l isten
to the channel ch and contains the state for the
party. The channel reads the parties A and B.

The channel shows a parallel structure contain-
ing the A and B party change of state.

Each party checks whether update shall occur or
not. I f so i t updates the state in the party.

The channel may be defined as simplex or duplex.
Let us now consider a simplex channel.

def s62 any:a any:b ->
((css; (rssp; session; cse; rsep),

rssn) a b)

def css any:a any:b ->
((s css a):ch (r css ch b)),

rssn ->
((r rssn ch a) (s rssn b):ch),

rssp ->
((r_rssp ch a) (s_rssp b):ch),

c s e - >
((s cse a):ch (r cse ch b)),

G. Carlstedt / A Language for Behavior, Structure and Geometry 573

rsep ->
((r_rsep ch a) (s_rsep b):ch)

def r css party:b ->
-(scan cmd co css (

sc~n_pg ~ sr (
(scan_p co t id) : t id ;
(scan p co-dat):dat ;
(scan-_p co-asrn):asrn);

(scan p co sid):sid ;
(scan-pg co nbtc (

(scan_p co grchs):grchs ;
(scan_p co-cchs):cchs ;
(scan p co-pfmt):pfmt ;
(scan~p co_-mtc):mtc))

- ~ • " ') 5

r rssn ... ,

r_rsep . . .

def s css party:a ->
-(fmt cmd co css (

~ t pg co sr (
~t_p c~ t i d a. t id ;
fmtp co-dat a.dat ;
fmt p co-asrn a.asrn);

fmt p-co sTd a.sid ;
fmt-pg co nbtc (

~t_p co grchs a.grchs ;
fmt p co-cchs a.cchs ;
fmt_-p co_-pfmt a.pfmt ;
fmt_p co_mtc a.mtc))) ,

s rssn . . . ,

s_rsep . . .

def fmt cmd byte:c any:p ->
Tc (size p) p)

fmtp
fmtpg . . .

def co css -> 13 ,
co sr -> i ,

co mtc -> 75

The f i r s t def ini t ion defines the s62 protocol.
The s62 protocol is simplified but the main
parts are shown. The s62 protocol consists of
two variants, one with negative acknowledge and
one with positive. All message are in a
sequence. The messages are abstract.

The second definit ion contains the semantic
definit ion of messages. Each message definit ion
is a parallel behavior of a transmitter and
receiver. They are connected by a l ink "ch"
corresponding to the channel. The s . . . is the
transmitter and the r . . . the receive~.

and responses. The third rule is shown as the
receivers action. The fourth rule is the
senders action. The css command is shown.

The command is a structured sequence of bytes.
They are formed by nested format constructors.
Each such forms a sequence of bytes. All con-
structors form a sequence.

The f i f t h definit ion contains the three defini-
tions of coding commands / responses, parameters
and group parameters. The rules are not fu l ly
defined, because those details are not con-
sidered here.

The sixth definit ion contains al l definit ion of
codes for commands, responses and parameters.
Each symbol is replaced with a code.

Statements

Statements are a sequence of actions. Typical
Pascal and Ada statements are sequencies of such
actions separated by " ;" . A sequence of $1 ; ..
; Sn statements is:

Sl ; S2 ; . . . : Sn

Type definitions

The type definit ion i Pascal and Ada specifies
al l possible values a variable ocr expression
may take.

The type information is used as pattern
behaviors in implementation of languages. The
Pascal integer is defined as:

def type id ->
('Tnteger, "boolean,
"real, "record, "array)

def int:v ->
((+ , -) nat)

An integer consists of a sign, +/-, and a
natural number. I t is a discrete alternative
specified as a basic alternative.

Variables

In imperative languages there are variables.
Each variable is a parallel process. There is
also one central protocol, the statements, con-
t ro l l ing the variables:

def var type id:type id:ad ->
(ad := type:v -> v,

(not id := type) -> v ad) :v ad

The third and forth definit ion contains al l (cntrl (var integer " id l)): idl
specification of formats for individual commands (cntrl (var integer "id2)): id2

574 G. Carlstedt /A Language for Behavior, Structure and Geometry

(. . . : name := expr ; . . .) :cn t r l

The variable is defined as a process with feed-
back. The rule for a variable has as parameter
the variable type and ident i f ier .

The variable is a process listening to the con-
t ro l . When i t shows an ident i f ier , an assign
symbol and a correct value the process takes the
value from the parameter. In other cases the
value is kept by a feedback.

To each variable process and ident i f ier is
bound. They may be used at several placess in
the control sequence.

The variable definit ion is schematic because a
master slave function must be included in order
to allow the update of a variable that also is
read.

When there are several activation records, the
ident i f ier for a variable has to be supplemented
by an activation record ident i f ier .

Conditionals

The generally used case-clause can be described
as:

expr (pat1 -> $1,
pat2 -> $2,

There is one expression expr calculating the
control variable. There are N rules defined.
Each rule contains the choser pat and the state-
ment S. The expr select the alternatives, zero,
one or more i f patterns overlap.

The if-clause is implemented as:

expr:cond true -> Strue,
cond false -> Sfalse

Two symbols true and false are defined. A
boolean expression expr is a behavior and bound
to the symbol cond. A guard choses either the
of the statements Strue or Sfalse.

Function calls

A function is an abstraction in Pascal, Ada
Ella. I t is implemented as:

def f id ptypel:pl . . . ->
- (. . . . ! expr)

and

. . . ; f id expr . . . expr ; . . .

The function is defined by a rule. The pattern
behavior consists of the function ident i f ier
followed by the type pattern behaviors for the
parameters. Each parameters has an ident i f ier
bound to i ts value.

The substitute behavior consists of a hiding
constructs. The visible part is the result
expression.

The procedure call is more complex, because i t
has the ab i l i t y to write in imported variables.

Lamda functions

The lambda functions are available in Lambda
Calculus and in most functional languages. The
guard and the lambda function performs approxi-
mately the same semantics. The guard uses a
pattern matching but the lambda function uses
direct replacement.

The following lambda expressions:

lambda x. f ap
lambda x.y.f(x,y) apx apy

are implemented as:

ap any:x -> bs
apy apx any:x -> (any:y -> f x y)

The last example is an high-order function. The
example shows two curried operands. Each func-
tion is implemented as a rule. The any behavior
is an alternative stating any type of structure.

Inference - Prolog

The reduction mechanism is d i r ec t l y appl icable
to implement Prolog. Thus the fo l lowing Prolog
program:

r u l e l (l i t , v) :- predl(v), pred2(v)
ruel2...

goa l (l i t ,v)

is implemented as:

def rule1 l i t : v1 t v:v2 ->
(predl v) ant ->
(pred2 v) any -> (vl,v2)

rule2...

goal l i t any:v

The predicate is implemented as a guard with the
pattern equal to any ("true"). Several nested
guards form a sequence of predicates. Parame-
ters are bound in the conventional way.

G. Carlstedt / A Language for Behavior, Structure and Geometry 575

In the goal each variable is substituted by the
any behavior. The reduction mechanism wi l l
reduce this behavior to cases that are imple-
mented. The result consisting of (l i t , v) , ~ere
l i t is the specified l i t e ra l and v is the
searched variable. The result may consist of
several alternatives.

Message passing

Message passing occurs in the Ada rendezvous, in
CCS and CSP. They are in their basic function
similar but from user point of view different.

Such systems are f in i te-state machines and may
be implemented as:

(process1 p2):pl
(process2 pl):p2

. . .

(process2 pm):pN

def proc id m types:m ->
((- s t a ~ m) : s t a t e
! transmit)

def state1: s m_types :m ->
(m (pat1 -> $1,

pat2 -> $2,

SK,
else -> s),

state2:s ...

The state machine consists of N processes. They
may read other processes.

Each process rule has a pattern behavior
describing the process id and the message chan-
nel m.

The substitute behavior constitutes the behavior
of the process. I t is a hidden construct. The
visible part are the messages transmitted. The
hidden part contains the states.

The different states are described by an own
rule. I t consists of a guard with a set of
rules, one for each possible message and one for
none and al l other messages. The last guard
contains a feedback, that preserves the current
state.

Wave-form

In several cases a waveform is needed. An
osci l lator with frequency 1/2*tph is:

def osc real:tph ->
((0 o> tph ; 1 o> tph) ;
osc tph)

The operator o> keeps a value constant over a
time. The use of operators are essential when
designing waveforms. Important operators are
the apply and the value to sequence operators.

DESCRIPTION OF DIFFERENT OBJECTS, EXAMPLES

Processors and controllers

Below is a very simple processor shown:

(. . . ; sub a ; . . .) : program
def sub_a T> (. . . ; op_b ; . . .)

def op a reg:pl -> (micro cntrl opa, pl),
op~b -> (micro cntrl_opb ()-)

def micro rac:c reg:pl ->
(c (cntrl opa ->

(aTu pl (c l lp i c12p2)),
cntrl opb ->

(aTu () (cllreg1 c12clock)))

def alu reg:pl (ral:c ulpl ra2:c ulp2) ->
((adder c_ulpl (cTlpl -> p1,-

c11reg1 -> regl)
c_ulp2 (c12u2 -> u2,

c12clock -> clock)):ul
(adder regl clock):u2
(ram 64 bit16):reg1
(. . .) :clock
! ul)

def ral -> (c l lp l , c11reg1),
ra2 -> (c12u2, c12clock),
rac -> (cntrl opa, cntr lopb),
reg -> (0 .. 65535)

def adder reg:pl reg:pl -> . . .

The f i r s t construct is a program. I t is a
sequence of statements. A subroutine call is
shown as one step.

The f i r s t definit ion specifies the called sub-
routine. The subroutine contains a sequence
operators. The operator op_b is shown.

The second definit ion contains definitions for
operators. Two operators, op a and op b, are
shown. The f i r s t operator has a-paramet~, the
other none. Each operator is specified by one
microinstruction. I t has two parameter f ields,
one for a control code and one parameter.

The third definit ion specifies the microinstruc-
tion. I t has as earl ier mentioned two parame-
ters. The microinstruction uses the control-
f ie ld c to select among two different alu opera-
tions. The alu is controlled by one l i t e r l
parameter and two control symbols.

576 G. Car/stedt /A Language for Behavior, Structure and Geometry

The fourth definit ion specifies the alu. I t has
two parameters as mentioned befog. The alu
consists of two "hardw" units ul and u2, unit
regl and clock. All units except ul are hidden.

The unit ul is a hardw unit having two parame-
ters. By a guard a multiplexing structure is
used for both of them.

The f i f th definit ion specifies the range of four
types ral, ra2, rac and reg. The last type is
specified to contains a 65536 different states.

The sixth definit ion specifies the pure physical
unit for the alu. I t is not fu l ly s h o w n ~

ALU:s

An arithmetic unit may be parametrised in order
to perform different operations. This switch-
able function is specified further down in the
description of a processor.

The arithmetic unit uses a code for the operands
and performs a mathematic function. Both have
to be specified:

def binary nat:le ->
(nat:v ->

(O.. le) :b i t *
(v mod (2 ** b i t)))

def add nat:l nat:r -> l + r

and an implementation:

def add binary nat:bit
(bTnary b i t) : l (binary b i t)y : r ->

(O.. le) :b i t *
(half add l . b i t r . b i t

(carry (bi t -1): lec
l .(O.. lec) r.(O.. lec)))

def half add bool:l bool:r bool:c ->
(T r c) ((0 0 O) -> O,

(0 0 i) -> 1,
(0 1 0) -> 1,
(0 1 I) -> O,
(1 0 O) -> I ,
(1 0 I) -> 0,
(1 1 O) -> O,
(1 1 1) -> I)

def carry nat:bit
(binary b i t) : l (binary b i t)y : r ->
((l . b i t r .b i t)
((o o) -> o,
((o 1), (1 o)) ->

(carry (bi t -1): lec
l . (O.. lec) (r.(O..lec))

(i 1) -> 1))

positive values.

The f i r s t definit ion specifies how the binary
code is generated. By use of a special high-
order function this definit ion may be converted
into a add_binary definit ion.

The third definit ion specifies binary add of b i t
long words. An alternative containing 0 to le
is specified. Each alternative corresponds to
one b i t of the binary word. The apply operator
* converts this alternative to a parallel struc-
tore containing a half adder. I t has as parame-
ters the corresponding b i t from the l and r
operand and a carry calculated by al l less sig-
n i f ic iant bits.

The half adder uses three boolean values.
According to a guard containing 8 rules a result
consisting of 0 or 1 is substituted.

The f i f t h definit ion specifies the carry. I t
has three parameters, a word length b i t and two
words l and r of this length. A guard selects
three cases. Two of them substitutes 0 or 1.
The third case substitutes a carry calculated
from the least signif ic iant bits.

This adder is not optimal, because i t contains a
carry chain for each bi t . Simple modifications
removes this problem.

Memories

A conventional read-write random access memory
is defined as:

def cellop -> (nop, read, write)

def cell type:ty nat:addec ->
(cellop:rw nat:ad ty:di -> (

(rw (hop -> vout,
read -> vout:do,
write ->

ad addec -> di,
ad (<> addec) -> vout)

):vout
! ad addec -> do))

def ram nat:si type:ty ->
((0 .. si):ad * (cell ty ad))

(op address di) (ram 1024 bit16)

The f i r s t definit ion specifies the operations
for a memory.

The second definit ion specifies a memory cel l .
The cell is characterised by two parameters, the
f i r s t ty specifies the type of the stored word,
the second specifies the cell address.

The add operation is specified in the second The cell is a rule for a guard. The cell is
definit ion. I t is a general description for al l controlled by three parameters, the

G, Carlstedt / A Language for Behavior, Structure and Geometry 577

celloperation rw, the address ad and the data
input di.

The celloperator rw specifies that the cell out-
put is stable by a feedback. During the write
operation the cell is written i f adress ad
equals the celladdress addec. Otherwise the
cell is stable.

All the mentioned behavior is hidden. When the
adress ad equals the cell address addec the out-
put of the cell equals do. I t is only defined
during the read operation.

The ram array is specified by giving the size si
a n d S 6 type ty for the memory ce l l . An al ter-
native structure containing the values 0 to si
is defined. An apply operator * uses each
alternative value and replaces i t with an
abstract cell of type ty and an address equal to
the value. The apply operator alters the struc-
ture from alternative to parallel structure.

Gate-level, NAND, NOR etc

All simple gates are easily described as:

def s -> (0, 1)

def nor3 s:a s:b s:c ->
((a b c) ((0 0 O) -> O,

(1 s s) -> 1,
(s 1 s) -> 1,
(s s 1) -> I))

def half add gate s:l s:r s:c ->
nor4 ~r3 Tnot l) : I b (not r) : rb c

nor3 Ib r (not c):cb
nor3 l rb cb
nor3 l r c

The "def s" defines an alternative containing
the possible signals.

The "nor3" defines a nor gate. The description
is a simple guard containing a rule for each
case. The "s" is used for alternative 0 or 1,
ie don't care.

The "half adder gate" is an implementation of a
halfadder~- I t -con ta ins 3 not and 4 nor3 and 1
nor4 behaviors. All are implemented as gates.

The above shown description of the halfadder can
be altered to separately specify al l gates and
then connect them by l inks:

def half add gate s:l s:r s:c ->
((nor4-wl w2 w3 w4):wfu

(nor3 wlb wrb c): wl
(not l) :wlb
(not r):wrb

(nor3 Ib r wcb):w2
(not c):wcb

(nor3 l rb cb):w3
(nor3 l r c):w4

! wfu)

Extra l inks denotated by wx have been added.
The substitute has to be hidden in order to
specify the same function.

Nets and topology

The logic abstraction is a functional abstrac-
t ion, where the result is a substitution of the
parameters.

This description can be turn into an equivalent
description where al l connections, input as well
as output, are connected to net components.
Each operator is translated to an element of a
parallel behavior:

def half add unit
(s:l s:r s:c s:fu) ->
(nor4unit wll w21 w31 v#$1 wfu

nor3unit wl l wrl wcl w12
notunit wl2 wlbl
notunit wr2 wrbl

nor3unit wlb2 wr3 wcbl w22
notunit wc2 wcb2

nor3unit wl3 wrb2 wcb3 w32
nor3unit wl4 wr4 wc3 w42

net (wll wl2 wl3 wl4 l)
net (wrl wr2 wr3 wr4 r)
net (wcl wc2 wc3 wc4 c)
net (wfu fu)
net (wlbl wlb2)
net (wrbl wrb2)
net (wcbl wcb2 wcb3)
net (wll w12)
net (w21 w22)
net (w31 w32)
net (w41 w42)

connect:wll
connect:wl2

connect:w42)

def connect -> (0, 1)

The topology consists of components, nets and
connections. The connection may take only logi-
cal values.

Transistor and wire

The abstraction mechanism specifies new levels
that are independent of earl ier levels. This
fact is very important to consider when discrib-
ing nets.

Generally al l components do depend on other com-
ponents. Because of this each component cannot

578 G. Carlstedt /A Langu~e for Behavior, Structure and Geometry

be considered alone. Larger portion of a net
structure must therefore be flattened out into
one level.

On each such level a component is described by
linear or non-linear equations. All components
together define a system of equations. By solv-
ing this system for voltages and currents the
behavior on the conductors can be evaluated.

def half add unit
(v:vcc v:gnd s:l s:r s:c s:fu) ->
(nor4unit vl gl wll w21 w31 w41 wfu

nor3unit v2 g2 wll wrl wcl w12
notunit v3 g3 wl2 wlbl
notunit v4 g4 wr2 wrbl

nor3unit v5 g5 wlb2 wr3 wcbl w22
notunit v6 g6 wc2 wcb2

nor3unit v7 g7 wl3 wrb2 wcb3 w32
nor3unit v8 g8 wl4 wr4 wc3 w42

wlre C1 (wll wl2 wl3 wl4 l)
wlre C2 (wrl wr2 wr3 wr4 r)
wlre C3 (wcl wc2 wc3 wc4 c)
wlre C4 (wfu fu)
wlre C5 (wlbl wlb2)
wlre C6 (wrbl wrb2)
wire C7 (wcbl wcb2 wcb3)
wlre C8 (w11 w12)
wlre cg (w21 w22)
wlre Cll (w31 w32)
wire C12 (w41 w42)
power (vl v2 v3 v4 v5 v6 v7 v8

VCC)
power (gl g2 g3 g4 g5 g6 g7 g8

gnd)

plug:wll
plug:wl2

;iug w42)
def plug -> (0.5..2.4 0.0..0.001)

A network consists of components, wires and
plug. A plug may take any voltage and current
within the capability of the circuits.

Wires are special components having several com-
ponents connected. All their terminals have the
same potential and the sum of their currents is
zero. Wires do have a capacitance.

Components have other characteristics.

Geometric object

Geometric objects are described by guards. The
guard uses a pattern checking the coordinates to
be within certain boarders. For points inside
the border the value of the geometric objects is
specially defined:

def geom__obj ->

(p:pos border -> (point pos)

The border behavior is a static continuous
alternative behavior. I t contains al l points
inside the border of the geom_obj.

The border object is generally bui l t by con-
structors. Such ones may be ABUT, VECTOR, TURN,
MIRROR, SCALE, PRIORITY, POLYGONE, COORDINATE,
ARC, PAD, WIRE, BRANCH, END or CUT. There may
be several systems of constructors. I t is not
the purpose of this report to define them.

The geometry of the halfadder is:

def half add geom
(v:vcc v:gnd s:l s:r s:c s:fu) ->

((x y) nor4geom vl gl pl l p21 p31
p41 pfu

(x y) nor3geom v2 g2 p l l prl
pc1 p12

(x y) notgeom v3 g3 pl2 plbl
(x y) notgeom v4 g4 pr2 prbl
(x y) nor3geom v5 g5 plb2 pr3

pcbl p22
(x y) notgeom v6 g6 pc2 pcb2
(x y) nor3geom v7 g7 pl3 prb2

pcb3 p32
(x y) nor3geom v8 g8 pl4 pr4

pc3 p42

wlre me p l l pl2 p13 pl4 l)
wlre me prl pr2 pr3 pr4 r)
wlre me pc1 pc2 pc3 pc4 c)
wlre me pfu fu)
wlre me plbl plb2)
wlre me prbl prb2)
w]re me pcbl pcb2 pcb3)
wlre me pl l p12)
wlre me p21 p22)
wlre me p31 p32)
wlre me p41 p42)
power (vccl vcc2 vcc3 vcc4

vcc5 vcc6 vcc7 vcc8
VCC)

power (gndl gnd2 gnd3 gnd4
gnd5 gnd6 gnd7 gnd8
gnd)

position:wll
position:wl2

position:w42)

def position -> (xrange yrange)

A geometry consists of components, wires and
positions.. Power is a special wire. The posi-
tion may take arbitrary coordinate value.

Wires are special components having several com-
ponents connected in points p. Wires are imple-
mented in a certain layer (me).

G. Carlstedt / A Language for Behavior, Structure and Geometry 579

Components have a size and interface specifying
coordinates for connections. Components are
placed in certain positions (x y).

A wire may be accurately described by eg:

wire width
(l ine 11
branchT2 (l ine 12 wireend)

(l ine 13 cut wireend)

CONCLUSION

A language has been specified. I t has a simple
and strong semantics. Two types of syntaxes has
been shown, one for computers and one for human
beeings. The last one is just scetched in order
to simplify communication with the reader.

The main target for the language is as a
representation for design objects. Especially
such a simple and strong semantics is necessary
for automatic synthesis.

The strength of the language has been shown by
examples. All important levels of a hardware
design has been shown by examples, ie the fu l l
processor function, ALU and memories, topology
and geometry. Important parts of imperative,
functional and declarative languages has been
shown written in the language.

The language wi l l be named "H".

REFERENCES

ADA82
"Reference manual for the Ada Programming
language", United States Department of
Defense, 1982.

BIRT73
Graham Birtwist le et
Auerbach, 1973.

al, "Simula BEGIN",

EDIF85
"EDIF. Electronic Design
mat. Version 100", 1985.

Interchange For-

ELLA85
"The ELLA language reference
Praxis Systems Ltd, England, 1985.

manual",

GOLD83
Adele Goldberg, David Robson, "Smalltalk-
80, The Language and i ts implementation",
Addison-Wesley, 1983.

GORD79a
Michael Gordon, "The denotational descrip-
tion of programming languages", Springer-
Verlag, 1979.

GORD79b
Michael Gordon, Arthur Milner, Christopher
Wadsworth, "Edingburgh LCF", LNCS 78,
Springer-Verlag, 1979.

HAIL82
Brent Hailpern, "Verifying concurrent
processes using temporal logic", LNCS no
129, Springer-Verlag, 1982.

HANN85
F Keith Hanna, N Daeche, "Specification and
verif ication us ing high-order logic",
Proceedings Computer Hardware Description
Languages and their Applications, 1985, pp
418-433.

HART77
Reiner Hartensten, "Fundamentals of struc-
tured hardware design", North Holland,
1977.

HERB85
John Herbert, "The application of formal
specification and verif ication to a
hardware design", Proceedings Computer
Hardware Description Languages and their
Applications, 1985, pp 434-451.

HHDL83
"HHDL Language Reference Manual", in
Reference Manual, 1983.

Hel ix
BJOR78

Dines Bj6rner, C l i f f Jones, "The Vienna
development method: The meta-language", JENS75
LNCS 61, Springer-Verlag, 1978. Kathleen Jensen, Niklaus Wirth, "Pascal

user manual and report", Springer-Verlag,
CARL84 1975.

Gunnar Carlstedt, "Proposal for the NMP
design-system -8401, that compiles func- MILN80
tions described in a high-level language to Robin Milner, "A calculus of communicating
hardware and VLSI-masks", Hybridlabora- systems", LNCS no 92, Springer Verlag,
tor ie t Hylab AB, 1984. 1980.

CLOCK81
William Clocksin, Christopher Mellish,
"Programming in Prolog", Springer-Verlag,
1981.

MILN85
George J Milne, "Simulation and veri f ica-
tion: related techniques for hardware
analysis", Proceedings Computer Hardware

580 G. Car/stedt / A Language for Behavior, Structure and Geometry

Description Languages and their Applica-
tions, 1985, pp 404-417.

PIL083
R Piloty et al, "CONLAN Report",
151, Springer Verlag, 1983.

LNCS no

VHDL85
"VHDL Reference Manual", Texas Instruments,
I B M , .

