
Pin Control Sybsystem – Building Pins and
GPIO from the ground up

Linus Walleij
Linaro Kernel Workgroup
ST-Ericsson

Pins, Muxing and Controlling

Two subjects:
- Pin control hardware
- Affected kernel subsystem

Pin control is mainly two things:

- Pin multiplexing - Reusing the same pin for different purposes
- Pin configuration - Configuring electronic properties of pins

Related but separate concepts:

- GPIO input/output
- Interrupt generation on GPIO pins

What is a Pin from a Hardware Engineers
Point of View?
∙ Pins are equivalent to balls found on a BGA etc.
∙ In an SoC pins are connected to a pad (also called finger) on a silicon die

(chip)
∙ Each pad is driven by a specific piece of logic, called a cell. These cells

come from a cell library with a name such as “My IO cells”
∙ Using a CAD tool, the hardware designer place pads around the edges of

the chip, forming a pad ring
∙ Each cell has a number of discrete control signals, for example this simple

bidirectional IO cell:
∙ OEN – output enable
∙ OUT – value of output
∙ IN – value of input
∙ PUEN – pull-up enable
∙ PDEN – pull-down enable

∙ The cell signals may be hard-coded to certain states or connected to
register maps that are controlled by software

∙ “My IO cell” is used for various things: busses, memories, etc, one specific
use case is GPIO (general purpose I/O) which typically group e.g. 32 cells
into a GPIO block

Dual In-Line (DIL) Packages

Ball Grid Array (BGA) Package

Pin Grid Array (PGA) Package

Pad with
bonding wire

System on
Chip (SoC)

Pad ring

Image sources: the linked Wikipedia entries

http://en.wikipedia.org/wiki/Dual_in-line_package
http://en.wikipedia.org/wiki/Ball_grid_array
http://en.wikipedia.org/wiki/Pin_grid_array

The MyIO Cell from the Library ”MyIO Cells”

Complex pin cells

∙ Pin properties does not have to be controlled by signals, so when you
choose cell you may select a cell which is:
∙ Only input or only output or bidirectional (as in the example)
∙ Has a certain number of drive stages
∙ Has a certain hard-wired pull-up or pull-down resistance
∙ Even if things are controllable using signals, default values like biased to

pull-up, pull-down or input (usually called tri-state, high impedance or
High-Z)

∙ Another option is to wire the control signals to VDD or GND when
synthetisizing (VHDL or Verilog) thus forcing pull-up always on for example

∙ Pin cells may have complex configurable options that can each be
selected at synthetization or at runtime using signals:
∙ Drive strength, i.e. number of driver stages
∙ Schmitt-trigger input (hysteresis)
∙ Debounce period selector
∙ Slew rate for rise, fall or both edges, reducing EMI (Electromagnetic

Interference) from signals
∙ Sleep mode – what happens when the cell get a special sleep signal

How a GPIO block is formed from an IO cell

∙ A GPIO block is formed by taking a number of IO cells and lumping them
into a block

∙ For example is is convenient to take 8 cells and create a 8 bit GPIO block
∙ Control registers for each cell such as “PUEN” are then typically grouped

into a 32 bit register where you can set pull-up/pull-down by
setting/clearing bit N in the register, OEN, OUT, IN, PUEN, PDEN are just
passed through to one bit each in a register

∙ The GPIO logic then typically adds asynchronous edge detection logic for
rising/falling/both edges when the pin us used as input and builds:
∙ IRQ signals from edges and an IRQ enable bit per pin
∙ Wakeup signals from edges and a WAKEUP enable bit per pin
∙ Typically both of these are OR:ed into a single IRQ or WAKEUP signal out

of the block

Simple GPIO block register map after
Ctrl+C Ctrl+V x8 of this cell for 8 pins

∙ 0x00 8 bits MY_GPIO_OEN
∙ 0x01 8 bits MY_GPIO_OUT
∙ 0x02 8 bits MY_GPIO_IEN
∙ 0x03 8 bits MY_GPIO_INVAL

The GPIO subsystem in drivers/gpio can handle this 100%

Now we add IRQ generation on the GPIO
pins

Simple GPIO block register map after
Ctrl+C Ctrl+V x8 of this cell for 8 pins

∙ 0x00 8 bits MY_GPIO_OEN
∙ 0x01 8 bits MY_GPIO_OUT
∙ 0x02 8 bits MY_GPIO_IEN
∙ 0x03 8 bits MY_GPIO_INVAL
∙ 0x04 8 bits MY_GPIO_IRQ_EN
∙ 0x05 8 bits MY_GPIO_IRQ_FALLING

The GPIO subsystem in drivers/gpio needs help from the
IRQ core struct irq_chip to handle this and register interrupts

Multiplexing MyIO pins – not just GPIO

∙ Since we want to be able to use each pin also for other things than GPIO,
we add pin multiplexing

∙ This is also known as “alternate functions”, “mission modes”, etc.
∙ This can be done in conjunction with individual GPIO control for each pin or

separately, for pins that cannot also do GPIO
∙ Often the pin config attributes are kept – even if we reuse two GPIO pins for

an I2C bus, I2C require that its clock (SCL) and data (SDA) lines be pulled-
up, so the pin config logic enabling pull-ups can be reused. So basically only
the input/output lines are multiplexed.

∙ Multiplexing two I/O cells on the same pin is an exotic option, this usually
just replaces the electrical routing to the pad. When you cannot for example
control drive strength other than when synthesizing your hardware, this
approach may be chosen.

MyIO GPIO Block

GPIO block register map after
Ctrl+C Ctrl+V x8 of this cell for 8 pins

∙ 0x00 8 bits MY_GPIO_OEN
∙ 0x01 8 bits MY_GPIO_OUT
∙ 0x02 8 bits MY_GPIO_IEN
∙ 0x03 8 bits MY_GPIO_INVAL
∙ 0x04 8 bits MY_GPIO_IRQ_EN
∙ 0x05 8 bits MY_GPIO_IRQ_FALLING
● 0x06 8 bits MY_GPIO_PUEN
∙ 0x07 8 bits MY_GPIO_PDEN
∙ 0x08 8 bits MY_GPIO_WAKE_EN
∙ 0x09 8 bits MY_GPIO_WAKE_FALLING
∙ 0x0A 8 bits MY_GPIO_HYST
∙ 0x0B 8 bits MY_GPIO_MUX0
∙ 0x0C 8 bits MY_GPIO_MUX1

Different ways of connecting MUX0 and
MUX1

Group mux control – now the ASIC engineer
attempts to be helpful

Several Involved Subsystems

∙ Now we just constructed a piece of hardware that needs to involve
three different subsystems at once:
∙ The GPIOlib subsystem handles the GPIO pin portions – setting pins to

input or output (selecting direction) and driving them high or low, it also
interacts with IRQ core to map a certain pin to a certain interrupt line
(Grant Likely)

∙ The IRQ core code (irqchips.h) handles the IRQ enable/disable, edge
selection and wakeup enable/disable for the pin (Thomas Gleixner)

∙ Pin control and pin multiplexing is the subject addressed by the pin
control subsystem (Linus Walleij)

GPIO sybsystem driver interface “gpiolib”
include/asm-generic/gpio.h
struct gpio_chip {

const char *label;
struct device *dev;
struct module *owner;
int (*request)(struct gpio_chip *chip,

unsigned offset);
void (*free)(struct gpio_chip *chip,

unsigned offset);
int (*direction_input)(struct gpio_chip *chip,

unsigned offset);
int (*get)(struct gpio_chip *chip,

unsigned offset);
int (*direction_output)(struct gpio_chip *chip,

unsigned offset, int value);
int (*set_debounce)(struct gpio_chip *chip,

unsigned offset, unsigned debounce);
void (*set)(struct gpio_chip *chip,

unsigned offset, int value);
int (*to_irq)(struct gpio_chip *chip,

unsigned offset);
void (*dbg_show)(struct seq_file *s,

struct gpio_chip *chip);
int base;
u16 ngpio;
const char *const *names;
unsigned can_sleep:1;
unsigned exported:1;

};

struct irq_chip IRQ subsystem interface
include/linux/irq.h

struct irq_chip {
const char *name;
unsigned int (*irq_startup)(struct irq_data *data);
void (*irq_shutdown)(struct irq_data *data);
void (*irq_enable)(struct irq_data *data);
void (*irq_disable)(struct irq_data *data);

void (*irq_ack)(struct irq_data *data);
void (*irq_mask)(struct irq_data *data);
void (*irq_mask_ack)(struct irq_data *data);
void (*irq_unmask)(struct irq_data *data);
void (*irq_eoi)(struct irq_data *data);

int (*irq_set_affinity)(struct irq_data *data, const struct cpumask *dest, bool force);
int (*irq_retrigger)(struct irq_data *data);
int (*irq_set_type)(struct irq_data *data, unsigned int flow_type);
int (*irq_set_wake)(struct irq_data *data, unsigned int on);

void (*irq_bus_lock)(struct irq_data *data);
void (*irq_bus_sync_unlock)(struct irq_data *data);

void (*irq_cpu_online)(struct irq_data *data);
void (*irq_cpu_offline)(struct irq_data *data);

void (*irq_suspend)(struct irq_data *data);
void (*irq_resume)(struct irq_data *data);
void (*irq_pm_shutdown)(struct irq_data *data);

void (*irq_print_chip)(struct irq_data *data, struct seq_file *p);

unsigned long flags;

};

Pin configuration subsystem interface
include/linux/pinctrl/pinctrl.h

struct pinctrl_desc {
const char *name;
struct pinctrl_pin_desc const *pins;
unsigned int npins;
struct pinctrl_ops *pctlops;
struct pinmux_ops *pmxops;
struct pinconf_ops *confops;
struct module *owner;

};

struct pinctrl_ops {
int (*list_groups) (struct pinctrl_dev *pctldev, unsigned selector);
const char *(*get_group_name) (struct pinctrl_dev *pctldev,

 unsigned selector);
int (*get_group_pins) (struct pinctrl_dev *pctldev,

 unsigned selector,
 const unsigned **pins,
 unsigned *num_pins);

void (*pin_dbg_show) (struct pinctrl_dev *pctldev, struct seq_file *s,
 unsigned offset);

};

Composite pin controllers

∙ If your GPIO/pin controller can only do simple GPIO,
implement just struct gpio_chip in drivers/gpio/gpio-
foo.c and keep it there. Please do not use generic GPIO and
old-style GPIO.

∙ If your GPIO/pin controller can generate interrupts on top of
the GPIO functionality, keep it in drivers/gpio, just fill in
your struct irq_chip and register to the IRQ subsystem.

∙ If you have pin multiplexing, advanced pin driver strength,
complex biasing etc, please put the composite pin controller
drivers in drivers/pinctrl/pinctrl-foo.c

∙ Still implement all three interfaces: struct gpio_chip,
struct irq_chip, struct pinctrl_desc

Other common pin config subjects

∙ Pin Biasing – apart from pull up/pull down some controllers can ground
pins or connect them to VDD.

∙ Pin Driving – pins may be driven push-pull (the most common mode, and
illustrated) or as open source/open drain (MOS) or open collector/open
emitter (TTL) – the latter may be exposed in the GPIO subsystem as well.

∙ Pin Drive Strength for output pins. The amplifier typically supports
something like a fixed 2mA drive for a capacitive load, by shunting in
several driver stages the pin can drive several loads.

∙ Pin Debounce – for keypads connected to GPIO lines this avoids multiple
key presses for example. Also exposed in the GPIO subsystem.

∙ Pin Slew Rate – rise and fall time-control for the output signals – if these
have too sharp edges they can cause EMI disturbances in neighbor circuitry.

The above appear as yet more control lines to the cells resulting in yet
more bits in different control registers that need to be set up.

Multiplexed pads with hard-coded I/O cells

Pin control has been part of the arch/arm/*
churn
∙ Pin control, especially pin multiplexing, was seen as one of the

“necessarily different” properties of any one ARM SoC.
∙ Instances of ARM machines starting to copy each others' pin

controller implementations hint at a hidden consolidation
opportunity.

∙ In the U300 machine we had modeled our “pad multiplex” code
after the regulator subsystem with get/enable/disable/put
operations.

∙ The GPIO subsystem also has problems: several drivers start
accumulating custom interfaces that are not part of gpiolib:
foo_set_pinmux(), foo_do_pullup() etc.

∙ The pin control subsystem may be part of the solution

The Pin Control Subsystem

∙ The first iteration of the Pin Control subsystem was basically a
patch set I evolved from the U300 arch/arm/mach-u300/padmux.[c|
h]

∙ Several people provided extensive feedback
∙ The tenth iteration of the patch set was eventually pulled into the

mainline kernel for kernel 3.2 with support for U300
∙ Several bug fixes, a basic pin configuration interface and a new

driver for Sirf Prima II was integrated into kernel 3.3
∙ For kernel 3.4 we will likely have atleast pin configuration states

and a driver for the PXA/MMP platform which migrates that support
from its current form in arch/arm

∙ Linaro have got involved in the pin control work and are working
on board support for a range of contemporary high-end ARM
devices.

∙ Something not-ARM would be very welcome so the generality of
the subsystem can be established.

The Pin Control Subsystem

∙ The subsystem lives in drivers/pinctrl/*
∙ Documentation in Documentation/pinctrl.txt
∙ The subsystem will handle some sanity checks like assuring that a

pin is not used for two functions at the same time.
∙ Drivers can select to implement the pin multiplexing interface or

the pin configuration interface or both.
∙ Drivers can interact with the GPIO subsystem so that GPIO pins

and pin control pins can be cross-referenced – GPIOs have a global
number space.

∙ A pin controller is registered by filling in a struct pinctrl_desc and
registering it to the subsystem with pinctrl_register()

∙ The boards/machines can register a number of pin multiplexing
settings to be auto-activated on boot called pinmux hogs.

∙ Drivers can get/enable/disable/put mux settings at runtime akin to
how they get/enable/disable/put clocks or regulators.

Example: just a pin controller and its pins

#include <linux/pinctrl/pinctrl.h>

const struct pinctrl_pin_desc foo_pins[] = {
 PINCTRL_PIN(0, "A8"),
 PINCTRL_PIN(1, "B8"),
 PINCTRL_PIN(2, "C8"),
 ...
 PINCTRL_PIN(61, "F1"),
 PINCTRL_PIN(62, "G1"),
 PINCTRL_PIN(63, "H1"),
};

static struct pinctrl_desc foo_desc = {
 .name = "foo",
 .pins = foo_pins,
 .npins = ARRAY_SIZE(foo_pins),
 .maxpin = 63,
 .owner = THIS_MODULE,
};

int __init foo_probe(void)
{
 struct pinctrl_dev *pctl;

 pctl = pinctrl_register(&foo_desc, <PARENT>, NULL);
 if (IS_ERR(pctl))
 pr_err("could not register foo pin driver\n");
}

Example: pin groups
#include <linux/pinctrl/pinctrl.h>

struct foo_group {
const char *name;
const unsigned int *pins;
const unsigned num_pins;

};

static const unsigned int spi0_pins[] = { 0, 8, 16, 24 };
static const unsigned int i2c0_pins[] = { 24, 25 };

static const struct foo_group foo_groups[] = {
{

.name = "spi0_grp",

.pins = spi0_pins,

.num_pins = ARRAY_SIZE(spi0_pins),
},
{

.name = "i2c0_grp",

.pins = i2c0_pins,

.num_pins = ARRAY_SIZE(i2c0_pins),
},

};

static int foo_list_groups(struct pinctrl_dev *pctldev,
unsigned selector)

{
if (selector >= ARRAY_SIZE(foo_groups))

return -EINVAL;
return 0;

}

static const char *foo_get_group_name(struct
pinctrl_dev *pctldev,

 unsigned selector)
{

return foo_groups[selector].name;
}

static int foo_get_group_pins(struct pinctrl_dev
*pctldev,

unsigned selector,
 unsigned ** const pins,
 unsigned * const num_pins)

{
*pins = (unsigned *) foo_groups[selector].pins;
*num_pins = foo_groups[selector].num_pins;
return 0;

}

static struct pinctrl_ops foo_pctrl_ops = {
.list_groups = foo_list_groups,
.get_group_name = foo_get_group_name,
.get_group_pins = foo_get_group_pins,

};

static struct pinctrl_desc foo_desc = {
 ...
 .pctlops = &foo_pctrl_ops,
};

Example: using pin control from a driver

foo_switch()
{

struct pinctrl *p;

/* Enable on position A */
p = pinctrl_get(&device, "spi0-pos-A");
if IS_ERR(p)

return PTR_ERR(p);
pinctrl_enable(p);

/* This releases the pins again */
pinctrl_disable(p);
pinctrl_put(p);

/* Enable on position B */
p = pinctrl_get(&device, "spi0-pos-B");
if IS_ERR(p)

return PTR_ERR(p);
pinmux_enable(p);
...

}

Pin Control Subsystem – Next Steps

∙ Pin Config States – currently we only have some open-coded
functions to set configuration for individual pins and groups, with
config states you can supply initialization settings at boot time or
per-device at runtime similar to how pin muxes can currently be
handled. (Patch is in v2.)

∙ Device Tree Bindings – several ideas being discussed. The main
issue is that the data collected in the kernel for pin controllers tend
to grow quite rapidly and for platforms with large and complex pin
configurations we need to get this out of the kernel. The main
source of the problem is that ARM systems lack a BIOS (think ACPI,
UEFI) so these services need to be open-coded into the kernel.

∙ Convert over as many in-tree pin configuration drivers as possible.
∙ One PCI driver in the works (Alessandro Rubini)

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

