
292 Chapter 7 Sorting

The iterators must support random access. The sort algorithm does not guarantee that
equal items retain their original order (if that is important, use stable_sort instead of sort).

As an example, in

std::sort(v.begin(), v.end());
std::sort(v.begin(), v.end(), greater<int>{ });
std::sort(v.begin(), v.begin() + (v.end() - v.begin()) / 2);

the first call sorts the entire container, v, in nondecreasing order. The second call sorts the
entire container in nonincreasing order. The third call sorts the first half of the container
in nondecreasing order.

The sorting algorithm used is generally quicksort, which we describe in Section 7.7.
In Section 7.2, we implement the simplest sorting algorithm using both our style of pass-
ing the array of comparable items, which yields the most straightforward code, and the
interface supported by the STL, which requires more code.

7.2 Insertion Sort
One of the simplest sorting algorithms is the insertion sort.

7.2.1 The Algorithm
Insertion sort consists of N−1 passes. For pass p=1 through N−1, insertion sort ensures
that the elements in positions 0 through p are in sorted order. Insertion sort makes use of
the fact that elements in positions 0 through p −1 are already known to be in sorted order.
Figure 7.1 shows a sample array after each pass of insertion sort.

Figure 7.1 shows the general strategy. In pass p, we move the element in position p left
until its correct place is found among the first p+1 elements. The code in Figure 7.2 imple-
ments this strategy. Lines 11 to 14 implement that data movement without the explicit use
of swaps. The element in position p is moved to tmp, and all larger elements (prior to posi-
tion p) are moved one spot to the right. Then tmp is moved to the correct spot. This is the
same technique that was used in the implementation of binary heaps.

Original 34 8 64 51 32 21 Positions Moved

After p = 1 8 34 64 51 32 21 1

After p = 2 8 34 64 51 32 21 0

After p = 3 8 34 51 64 32 21 1

After p = 4 8 32 34 51 64 21 3

After p = 5 8 21 32 34 51 64 4

Figure 7.1 Insertion sort after each pass

7.2 Insertion Sort 293

1 /**
2 * Simple insertion sort.
3 */
4 template <typename Comparable>
5 void insertionSort(vector<Comparable> & a)
6 {
7 for(int p = 1; p < a.size(); ++p)
8 {
9 Comparable tmp = std::move(a[p]);

10
11 int j;
12 for(j = p; j > 0 && tmp < a[j - 1]; --j)
13 a[j] = std::move(a[j - 1]);
14 a[j] = std::move(tmp);
15 }
16 }

Figure 7.2 Insertion sort routine

7.2.2 STL Implementation of Insertion Sort
In the STL, instead of having the sort routines take an array of comparable items as a single
parameter, the sort routines receive a pair of iterators that represent the start and endmarker
of a range. A two-parameter sort routine uses just that pair of iterators and presumes that
the items can be ordered, while a three-parameter sort routine has a function object as a
third parameter.

Converting the algorithm in Figure 7.2 to use the STL introduces several issues. The
obvious issues are

1. We must write a two-parameter sort and a three-parameter sort. Presumably, the two-
parameter sort invokes the three-parameter sort, with less<Object>{ } as the third
parameter.

2. Array access must be converted to iterator access.

3. Line 11 of the original code requires that we create tmp, which in the new code will
have type Object.

The first issue is the trickiest because the template type parameters (i.e., the generic
types) for the two-parameter sort are both Iterator; however, Object is not one of the
generic type parameters. Prior to C++11, one had to write extra routines to solve this
problem. As shown in Figure 7.3, C++11 introduces decltype which cleanly expresses the
intent.

Figure 7.4 shows the main sorting code that replaces array indexing with use of the
iterator, and that replaces calls to operator< with calls to the lessThan function object.

Observe that once we actually code the insertionSort algorithm, every statement in
the original code is replaced with a corresponding statement in the new code that makes

294 Chapter 7 Sorting

1 /*
2 * The two-parameter version calls the three-parameter version,
3 * using C++11 decltype
4 */
5 template <typename Iterator>
6 void insertionSort(const Iterator & begin, const Iterator & end)
7 {
8 insertionSort(begin, end, less<decltype(*begin)>{ });
9 }

Figure 7.3 Two-parameter sort invokes three-parameter sort via C++11 decltype

1 template <typename Iterator, typename Comparator>
2 void insertionSort(const Iterator & begin, const Iterator & end,
3 Comparator lessThan)
4 {
5 if(begin == end)
6 return;
7
8 Iterator j;
9

10 for(Iterator p = begin+1; p != end; ++p)
11 {
12 auto tmp = std::move(*p);
13 for(j = p; j != begin && lessThan(tmp, *(j-1)); --j)
14 *j = std::move(*(j-1));
15 *j = std::move(tmp);
16 }
17 }

Figure 7.4 Three-parameter sort using iterators

straightforward use of iterators and the function object. The original code is arguably much
simpler to read, which is why we use our simpler interface rather than the STL interface
when coding our sorting algorithms.

7.2.3 Analysis of Insertion Sort
Because of the nested loops, each of which can take N iterations, insertion sort is O(N2).
Furthermore, this bound is tight, because input in reverse order can achieve this bound.
A precise calculation shows that the number of tests in the inner loop in Figure 7.2 is at
most p + 1 for each value of p. Summing over all p gives a total of

N�

i=2

i = 2 + 3 + 4 + · · · + N = �(N2)

7.3 A Lower Bound for Simple Sorting Algorithms 295

On the other hand, if the input is presorted, the running time is O(N), because the
test in the inner for loop always fails immediately. Indeed, if the input is almost sorted
(this term will be more rigorously defined in the next section), insertion sort will run
quickly. Because of this wide variation, it is worth analyzing the average-case behavior of
this algorithm. It turns out that the average case is �(N2) for insertion sort, as well as for
a variety of other sorting algorithms, as the next section shows.

7.3 A Lower Bound for Simple
Sorting Algorithms

An inversion in an array of numbers is any ordered pair (i, j) having the property that i < j
but a[i] > a[j]. In the example of the last section, the input list 34, 8, 64, 51, 32, 21 had
nine inversions, namely (34, 8), (34, 32), (34, 21), (64, 51), (64, 32), (64, 21), (51, 32),
(51, 21), and (32, 21). Notice that this is exactly the number of swaps that needed to be
(implicitly) performed by insertion sort. This is always the case, because swapping two
adjacent elements that are out of place removes exactly one inversion, and a sorted array
has no inversions. Since there is O(N) other work involved in the algorithm, the running
time of insertion sort is O(I + N), where I is the number of inversions in the original array.
Thus, insertion sort runs in linear time if the number of inversions is O(N).

We can compute precise bounds on the average running time of insertion sort by
computing the average number of inversions in a permutation. As usual, defining aver-
age is a difficult proposition. We will assume that there are no duplicate elements (if we
allow duplicates, it is not even clear what the average number of duplicates is). Using this
assumption, we can assume that the input is some permutation of the first N integers (since
only relative ordering is important) and that all are equally likely. Under these assumptions,
we have the following theorem:

Theorem 7.1
The average number of inversions in an array of N distinct elements is N(N − 1)/4.

Proof
For any list, L, of elements, consider Lr, the list in reverse order. The reverse list of the
example is 21, 32, 51, 64, 8, 34. Consider any pair of two elements in the list (x, y) with
y > x. Clearly, in exactly one of L and Lr this ordered pair represents an inversion. The
total number of these pairs in a list L and its reverse Lr is N(N −1)/2. Thus, an average
list has half this amount, or N(N − 1)/4 inversions.

This theorem implies that insertion sort is quadratic on average. It also provides a very
strong lower bound about any algorithm that only exchanges adjacent elements.

Theorem 7.2
Any algorithm that sorts by exchanging adjacent elements requires �(N2) time on
average.

