
7.7 Quicksort 309

Continuing in this manner, we obtain

T(N) = 2kT(N/2k) + k · N

Using k = log N, we obtain

T(N) = NT(1) + N log N = N log N + N

The choice of which method to use is a matter of taste. The first method tends to
produce scrap work that fits better on a standard 81/2 × 11 sheet of paper leading to fewer
mathematical errors, but it requires a certain amount of experience to apply. The second
method is more of a brute-force approach.

Recall that we have assumed N = 2k. The analysis can be refined to handle cases when
N is not a power of 2. The answer turns out to be almost identical (this is usually the case).

Although mergesort’s running time is O(N log N), it has the significant problem that
merging two sorted lists uses linear extra memory. The additional work involved in copy-
ing to the temporary array and back, throughout the algorithm, slows the sort considerably.
This copying can be avoided by judiciously switching the roles of a and tmpArray at alter-
nate levels of the recursion. A variant of mergesort can also be implemented nonrecursively
(Exercise 7.16).

The running time of mergesort, when compared with other O(N log N) alternatives,
depends heavily on the relative costs of comparing elements and moving elements in the
array (and the temporary array). These costs are language dependent.

For instance, in Java, when performing a generic sort (using a Comparator), an element
comparison can be expensive (because comparisons might not be easily inlined, and thus
the overhead of dynamic dispatch could slow things down), but moving elements is cheap
(because they are reference assignments, rather than copies of large objects). Mergesort
uses the lowest number of comparisons of all the popular sorting algorithms, and thus is a
good candidate for general-purpose sorting in Java. In fact, it is the algorithm used in the
standard Java library for generic sorting.

On the other hand, in classic C++, in a generic sort, copying objects can be expensive if
the objects are large, while comparing objects often is relatively cheap because of the abil-
ity of the compiler to aggressively perform inline optimization. In this scenario, it might
be reasonable to have an algorithm use a few more comparisons, if we can also use sig-
nificantly fewer data movements. Quicksort, which we discuss in the next section, achieves
this tradeoff and is the sorting routine that has been commonly used in C++ libraries. New
C++11 move semantics possibly change this dynamic, and so it remains to be seen whether
quicksort will continue to be the sorting algorithm used in C++ libraries.

7.7 Quicksort
As its name implies for C++, quicksort has historically been the fastest known generic
sorting algorithm in practice. Its average running time is O(N log N). It is very fast, mainly
due to a very tight and highly optimized inner loop. It has O(N2) worst-case performance,
but this can be made exponentially unlikely with a little effort. By combining quicksort

310 Chapter 7 Sorting

with heapsort, we can achieve quicksort’s fast running time on almost all inputs, with
heapsort’s O(N log N) worst-case running time. Exercise 7.27 describes this approach.

The quicksort algorithm is simple to understand and prove correct, although for many
years it had the reputation of being an algorithm that could in theory be highly optimized
but in practice was impossible to code correctly. Like mergesort, quicksort is a divide-and-
conquer recursive algorithm.

Let us begin with the following simple sorting algorithm to sort a list. Arbitrarily choose
any item, and then form three groups: those smaller than the chosen item, those equal to
the chosen item, and those larger than the chosen item. Recursively sort the first and third
groups, and then concatenate the three groups. The result is guaranteed by the basic prin-
ciples of recursion to be a sorted arrangement of the original list. A direct implementation
of this algorithm is shown in Figure 7.13, and its performance is, generally speaking, quite

1 template <typename Comparable>

2 void SORT(vector<Comparable> & items)

3 {

4 if(items.size() > 1)

5 {

6 vector<Comparable> smaller;

7 vector<Comparable> same;

8 vector<Comparable> larger;

9
10 auto chosenItem = items[items.size() / 2];

11
12 for(auto & i : items)

13 {

14 if(i < chosenItem)

15 smaller.push_back(std::move(i));

16 else if(chosenItem < i)

17 larger.push_back(std::move(i));

18 else

19 same.push_back(std::move(i));

20 }

21
22 SORT(smaller); // Recursive call!

23 SORT(larger); // Recursive call!

24
25 std::move(begin(smaller), end(smaller), begin(items));

26 std::move(begin(same), end(same), begin(items) + smaller.size());

27 std::move(begin(larger), end(larger), end(items) - larger.size());

28 }

29 }

Figure 7.13 Simple recursive sorting algorithm

7.7 Quicksort 311

respectable on most inputs. In fact, if the list contains large numbers of duplicates with rela-
tively few distinct items, as is sometimes the case, then the performance is extremely good.

The algorithm we have described forms the basis of the quicksort. However, by mak-
ing the extra lists, and doing so recursively, it is hard to see how we have improved upon
mergesort. In fact, so far, we really haven’t. In order to do better, we must avoid using
significant extra memory and have inner loops that are clean. Thus quicksort is com-
monly written in a manner that avoids creating the second group (the equal items), and
the algorithm has numerous subtle details that affect the performance; therein lies the
complications.

We now describe the most common implementation of quicksort—“classic quicksort,”
in which the input is an array, and in which no extra arrays are created by the algorithm.

The classic quicksort algorithm to sort an array S consists of the following four easy
steps:

1. If the number of elements in S is 0 or 1, then return.

2. Pick any element v in S. This is called the pivot.

3. Partition S − {v} (the remaining elements in S) into two disjoint groups: S1 = {x ∈
S − {v}|x ≤ v}, and S2 = {x ∈ S − {v}|x ≥ v}.

4. Return {quicksort(S1) followed by v followed by quicksort(S2)}.
Since the partition step ambiguously describes what to do with elements equal to the

pivot, this becomes a design decision. Part of a good implementation is handling this case
as efficiently as possible. Intuitively, we would hope that about half the elements that are
equal to the pivot go into S1 and the other half into S2, much as we like binary search trees
to be balanced.

Figure 7.14 shows the action of quicksort on a set of numbers. The pivot is chosen
(by chance) to be 65. The remaining elements in the set are partitioned into two smaller
sets. Recursively sorting the set of smaller numbers yields 0, 13, 26, 31, 43, 57 (by rule 3
of recursion). The set of large numbers is similarly sorted. The sorted arrangement of the
entire set is then trivially obtained.

It should be clear that this algorithm works, but it is not clear why it is any faster
than mergesort. Like mergesort, it recursively solves two subproblems and requires linear
additional work (step 3), but, unlike mergesort, the subproblems are not guaranteed to
be of equal size, which is potentially bad. The reason that quicksort is faster is that the
partitioning step can actually be performed in place and very efficiently. This efficiency
more than makes up for the lack of equal-sized recursive calls.

The algorithm as described so far lacks quite a few details, which we now fill in.
There are many ways to implement steps 2 and 3; the method presented here is the result
of extensive analysis and empirical study and represents a very efficient way to imple-
ment quicksort. Even the slightest deviations from this method can cause surprisingly bad
results.

7.7.1 Picking the Pivot
Although the algorithm as described works no matter which element is chosen as pivot,
some choices are obviously better than others.

312 Chapter 7 Sorting

13

81 0

92

43

65

31 57 75

26

13

81 0

92

43

65

31 57 75

26

select pivot

partition

quicksort large

65

65

13
0

26

43

57

31 75
81

92

quicksort small

0 13 26 31 43 57

0 13 26 31 43 57 65 75 81 92

75 81 92

Figure 7.14 The steps of quicksort illustrated by example

A Wrong Way
The popular, uninformed choice is to use the first element as the pivot. This is acceptable
if the input is random, but if the input is presorted or in reverse order, then the pivot
provides a poor partition, because either all the elements go into S1 or they go into S2.
Worse, this happens consistently throughout the recursive calls. The practical effect is that
if the first element is used as the pivot and the input is presorted, then quicksort will
take quadratic time to do essentially nothing at all, which is quite embarrassing. Moreover,
presorted input (or input with a large presorted section) is quite frequent, so using the
first element as pivot is an absolutely horrible idea and should be discarded immediately. An
alternative is choosing the larger of the first two distinct elements as pivot, but this has

7.7 Quicksort 313

the same bad properties as merely choosing the first element. Do not use that pivoting
strategy, either.

A Safe Maneuver
A safe course is merely to choose the pivot randomly. This strategy is generally perfectly
safe, unless the random number generator has a flaw (which is not as uncommon as you
might think), since it is very unlikely that a random pivot would consistently provide a
poor partition. On the other hand, random number generation is generally an expensive
commodity and does not reduce the average running time of the rest of the algorithm at all.

Median-of-Three Partitioning
The median of a group of N numbers is the �N/2�th largest number. The best choice
of pivot would be the median of the array. Unfortunately, this is hard to calculate and
would slow down quicksort considerably. A good estimate can be obtained by picking
three elements randomly and using the median of these three as pivot. The randomness
turns out not to help much, so the common course is to use as pivot the median of the
left, right, and center elements. For instance, with input 8, 1, 4, 9, 6, 3, 5, 2, 7, 0 as before,
the left element is 8, the right element is 0, and the center (in position �(left + right)/2�)
element is 6. Thus, the pivot would be v = 6. Using median-of-three partitioning clearly
eliminates the bad case for sorted input (the partitions become equal in this case) and
actually reduces the number of comparisons by 14%.

7.7.2 Partitioning Strategy
There are several partitioning strategies used in practice, but the one described here is
known to give good results. It is very easy, as we shall see, to do this wrong or inefficiently,
but it is safe to use a known method. The first step is to get the pivot element out of
the way by swapping it with the last element. i starts at the first element and j starts at
the next-to-last element. If the original input was the same as before, the following figure
shows the current situation:

8 1 4 9 0 3 5 2 7 6
↑ ↑
i j

For now, we will assume that all the elements are distinct. Later on, we will worry about
what to do in the presence of duplicates. As a limiting case, our algorithm must do the
proper thing if all of the elements are identical. It is surprising how easy it is to do the
wrong thing.

What our partitioning stage wants to do is to move all the small elements to the left
part of the array and all the large elements to the right part. “Small” and “large” are, of
course, relative to the pivot.

While i is to the left of j, we move i right, skipping over elements that are smaller than
the pivot. We move j left, skipping over elements that are larger than the pivot. When i
and j have stopped, i is pointing at a large element and j is pointing at a small element. If

314 Chapter 7 Sorting

i is to the left of j, those elements are swapped. The effect is to push a large element to the
right and a small element to the left. In the example above, i would not move and j would
slide over one place. The situation is as follows:

8 1 4 9 0 3 5 2 7 6
↑ ↑
i j

We then swap the elements pointed to by i and j and repeat the process until i and j
cross:

After First Swap

2 1 4 9 0 3 5 8 7 6
↑ ↑
i j

Before Second Swap

2 1 4 9 0 3 5 8 7 6
↑ ↑
i j

After Second Swap

2 1 4 5 0 3 9 8 7 6
↑ ↑
i j

Before Third Swap

2 1 4 5 0 3 9 8 7 6
↑ ↑
j i

At this stage, i and j have crossed, so no swap is performed. The final part of the
partitioning is to swap the pivot element with the element pointed to by i:

After Swap with Pivot

2 1 4 5 0 3 6 8 7 9
↑ ↑
i pivot

When the pivot is swapped with i in the last step, we know that every element in a
position p < i must be small. This is because either position p contained a small element

7.7 Quicksort 315

to start with, or the large element originally in position p was replaced during a swap. A
similar argument shows that elements in positions p > i must be large.

One important detail we must consider is how to handle elements that are equal to
the pivot. The questions are whether or not i should stop when it sees an element equal
to the pivot and whether or not j should stop when it sees an element equal to the pivot.
Intuitively, i and j ought to do the same thing, since otherwise the partitioning step is
biased. For instance, if i stops and j does not, then all elements that are equal to the pivot
will wind up in S2.

To get an idea of what might be good, we consider the case where all the elements in
the array are identical. If both i and j stop, there will be many swaps between identical
elements. Although this seems useless, the positive effect is that i and j will cross in the
middle, so when the pivot is replaced, the partition creates two nearly equal subarrays. The
mergesort analysis tells us that the total running time would then be O(N log N).

If neither i nor j stops, and code is present to prevent them from running off the end of
the array, no swaps will be performed. Although this seems good, a correct implementation
would then swap the pivot into the last spot that i touched, which would be the next-to-
last position (or last, depending on the exact implementation). This would create very
uneven subarrays. If all the elements are identical, the running time is O(N2). The effect is
the same as using the first element as a pivot for presorted input. It takes quadratic time to
do nothing!

Thus, we find that it is better to do the unnecessary swaps and create even subarrays
than to risk wildly uneven subarrays. Therefore, we will have both i and j stop if they
encounter an element equal to the pivot. This turns out to be the only one of the four
possibilities that does not take quadratic time for this input.

At first glance it may seem that worrying about an array of identical elements is silly.
After all, why would anyone want to sort 500,000 identical elements? However, recall
that quicksort is recursive. Suppose there are 10,000,000 elements, of which 500,000 are
identical (or, more likely, complex elements whose sort keys are identical). Eventually,
quicksort will make the recursive call on only these 500,000 elements. Then it really will
be important to make sure that 500,000 identical elements can be sorted efficiently.

7.7.3 Small Arrays
For very small arrays (N ≤ 20), quicksort does not perform as well as insertion sort.
Furthermore, because quicksort is recursive, these cases will occur frequently. A common
solution is not to use quicksort recursively for small arrays, but instead use a sorting algo-
rithm that is efficient for small arrays, such as insertion sort. Using this strategy can actually
save about 15 percent in the running time (over doing no cutoff at all). A good cutoff range
is N = 10, although any cutoff between 5 and 20 is likely to produce similar results. This
also saves nasty degenerate cases, such as taking the median of three elements when there
are only one or two.

7.7.4 Actual Quicksort Routines
The driver for quicksort is shown in Figure 7.15.

316 Chapter 7 Sorting

1 /**
2 * Quicksort algorithm (driver).
3 */
4 template <typename Comparable>
5 void quicksort(vector<Comparable> & a)
6 {
7 quicksort(a, 0, a.size() - 1);
8 }

Figure 7.15 Driver for quicksort

The general form of the routines will be to pass the array and the range of the array
(left and right) to be sorted. The first routine to deal with is pivot selection. The easi-
est way to do this is to sort a[left], a[right], and a[center] in place. This has the extra
advantage that the smallest of the three winds up in a[left], which is where the partition-
ing step would put it anyway. The largest winds up in a[right], which is also the correct
place, since it is larger than the pivot. Therefore, we can place the pivot in a[right - 1]
and initialize i and j to left + 1 and right - 2 in the partition phase. Yet another ben-
efit is that because a[left] is smaller than the pivot, it will act as a sentinel for j. Thus,
we do not need to worry about j running past the end. Since i will stop on elements
equal to the pivot, storing the pivot in a[right-1] provides a sentinel for i. The code in

1 /**
2 * Return median of left, center, and right.
3 * Order these and hide the pivot.
4 */
5 template <typename Comparable>
6 const Comparable & median3(vector<Comparable> & a, int left, int right)
7 {
8 int center = (left + right) / 2;
9

10 if(a[center] < a[left])
11 std::swap(a[left], a[center]);
12 if(a[right] < a[left])
13 std::swap(a[left], a[right]);
14 if(a[right] < a[center])
15 std::swap(a[center], a[right]);
16
17 // Place pivot at position right - 1
18 std::swap(a[center], a[right - 1]);
19 return a[right - 1];
20 }

Figure 7.16 Code to perform median-of-three partitioning

7.7 Quicksort 317

Figure 7.16 does the median-of-three partitioning with all the side effects described. It may
seem that it is only slightly inefficient to compute the pivot by a method that does not actu-
ally sort a[left], a[center], and a[right], but, surprisingly, this produces bad results (see
Exercise 7.51).

The real heart of the quicksort routine is in Figure 7.17. It includes the partition-
ing and recursive calls. There are several things worth noting in this implementation.
Line 16 initializes i and j to 1 past their correct values, so that there are no special cases
to consider. This initialization depends on the fact that median-of-three partitioning has

1 /**
2 * Internal quicksort method that makes recursive calls.
3 * Uses median-of-three partitioning and a cutoff of 10.
4 * a is an array of Comparable items.
5 * left is the left-most index of the subarray.
6 * right is the right-most index of the subarray.
7 */
8 template <typename Comparable>
9 void quicksort(vector<Comparable> & a, int left, int right)

10 {
11 if(left + 10 <= right)
12 {
13 const Comparable & pivot = median3(a, left, right);
14
15 // Begin partitioning
16 int i = left, j = right - 1;
17 for(; ;)
18 {
19 while(a[++i] < pivot) { }
20 while(pivot < a[--j]) { }
21 if(i < j)
22 std::swap(a[i], a[j]);
23 else
24 break;
25 }
26
27 std::swap(a[i], a[right - 1]); // Restore pivot
28
29 quicksort(a, left, i - 1); // Sort small elements
30 quicksort(a, i + 1, right); // Sort large elements
31 }
32 else // Do an insertion sort on the subarray
33 insertionSort(a, left, right);
34 }

Figure 7.17 Main quicksort routine

318 Chapter 7 Sorting

16 int i = left + 1, j = right - 2;
17 for(; ;)
18 {
19 while(a[i] < pivot) i++;
20 while(pivot < a[j]) j--;
21 if(i < j)
22 std::swap(a[i], a[j]);
23 else
24 break;
25 }

Figure 7.18 A small change to quicksort, which breaks the algorithm

some side effects; this program will not work if you try to use it without change with a
simple pivoting strategy, because i and j start in the wrong place and there is no longer a
sentinel for j.

The swapping action at line 22 is sometimes written explicitly, for speed purposes. For
the algorithm to be fast, it is necessary to force the compiler to compile this code inline.
Many compilers will do this automatically if swap is declared using inline, but for those
that do not, the difference can be significant.

Finally, lines 19 and 20 show why quicksort is so fast. The inner loop of the algorithm
consists of an increment/decrement (by 1, which is fast), a test, and a jump. There is no
extra juggling as there is in mergesort. This code is still surprisingly tricky. It is tempting
to replace lines 16 to 25 with the statements in Figure 7.18. This does not work, because
there would be an infinite loop if a[i] = a[j] = pivot.

7.7.5 Analysis of Quicksort
Like mergesort, quicksort is recursive; therefore, its analysis requires solving a recurrence
formula. We will do the analysis for a quicksort, assuming a random pivot (no median-
of-three partitioning) and no cutoff for small arrays. We will take T(0) = T(1) = 1, as in
mergesort. The running time of quicksort is equal to the running time of the two recursive
calls plus the linear time spent in the partition (the pivot selection takes only constant
time). This gives the basic quicksort relation

T(N) = T(i) + T(N − i − 1) + cN (7.1)

where i = |S1| is the number of elements in S1. We will look at three cases.

Worst-Case Analysis
The pivot is the smallest element, all the time. Then i = 0, and if we ignore T(0) = 1,
which is insignificant, the recurrence is

T(N) = T(N − 1) + cN, N > 1 (7.2)

7.7 Quicksort 319

We telescope, using Equation (7.2) repeatedly. Thus,

T(N − 1) = T(N − 2) + c(N − 1) (7.3)

T(N − 2) = T(N − 3) + c(N − 2) (7.4)
...

T(2) = T(1) + c(2) (7.5)

Adding up all these equations yields

T(N) = T(1) + c
N�

i=2

i = �(N2) (7.6)

as claimed earlier. To see that this is the worst possible case, note that the total cost of all
the partitions in recursive calls at depth d must be at most N. Since the recursion depth is
at most N, this gives an O(N2) worst-case bound for quicksort.

Best-Case Analysis
In the best case, the pivot is in the middle. To simplify the math, we assume that the two
subarrays are each exactly half the size of the original, and although this gives a slight
overestimate, this is acceptable because we are only interested in a Big-Oh answer.

T(N) = 2T(N/2) + cN (7.7)

Divide both sides of Equation (7.7) by N.

T(N)

N
= T(N/2)

N/2
+ c (7.8)

We will telescope using this equation:

T(N/2)

N/2
= T(N/4)

N/4
+ c (7.9)

T(N/4)

N/4
= T(N/8)

N/8
+ c (7.10)

...
T(2)

2
= T(1)

1
+ c (7.11)

We add all the equations from (7.8) to (7.11) and note that there are log N of them:

T(N)

N
= T(1)

1
+ c log N (7.12)

which yields

T(N) = cN log N + N = �(N log N) (7.13)

Notice that this is the exact same analysis as mergesort; hence, we get the same answer.
That this is the best case is implied by results in Section 7.8.

320 Chapter 7 Sorting

Average-Case Analysis
This is the most difficult part. For the average case, we assume that each of the sizes for S1

is equally likely, and hence has probability 1/N. This assumption is actually valid for our
pivoting and partitioning strategy, but it is not valid for some others. Partitioning strategies
that do not preserve the randomness of the subarrays cannot use this analysis. Interestingly,
these strategies seem to result in programs that take longer to run in practice.

With this assumption, the average value of T(i), and hence T(N − i − 1), is
(1/N)

�N−1
j=0 T(j). Equation (7.1) then becomes

T(N) = 2

N

⎡
⎣

N−1�

j=0

T(j)

⎤
⎦ + cN (7.14)

If Equation (7.14) is multiplied by N, it becomes

NT(N) = 2

⎡
⎣

N−1�

j=0

T(j)

⎤
⎦ + cN2 (7.15)

We need to remove the summation sign to simplify matters. We note that we can telescope
with one more equation:

(N − 1)T(N − 1) = 2

⎡
⎣

N−2�

j=0

T(j)

⎤
⎦ + c(N − 1)2 (7.16)

If we subtract Equation (7.16) from Equation (7.15), we obtain

NT(N) − (N − 1)T(N − 1) = 2T(N − 1) + 2cN − c (7.17)

We rearrange terms and drop the insignificant −c on the right, obtaining

NT(N) = (N + 1)T(N − 1) + 2cN (7.18)

We now have a formula for T(N) in terms of T(N − 1) only. Again the idea is to telescope,
but Equation (7.18) is in the wrong form. Divide Equation (7.18) by N (N + 1):

T(N)

N + 1
= T(N − 1)

N
+ 2c

N + 1
(7.19)

Now we can telescope.

T(N − 1)

N
= T(N − 2)

N − 1
+ 2c

N
(7.20)

T(N − 2)

N − 1
= T(N − 3)

N − 2
+ 2c

N − 1
(7.21)

...
T(2)

3
= T(1)

2
+ 2c

3
(7.22)

7.7 Quicksort 321

Adding Equations (7.19) through (7.22) yields

T(N)

N + 1
= T(1)

2
+ 2c

N+1�

i=3

1

i
(7.23)

The sum is about loge(N + 1) + γ − 3
2 , where γ ≈ 0.577 is known as Euler’s constant, so

T(N)

N + 1
= O(log N) (7.24)

And so

T(N) = O(N log N) (7.25)

Although this analysis seems complicated, it really is not—the steps are natural once
you have seen some recurrence relations. The analysis can actually be taken further. The
highly optimized version that was described above has also been analyzed, and this result
gets extremely difficult, involving complicated recurrences and advanced mathematics. The
effect of equal elements has also been analyzed in detail, and it turns out that the code
presented does the right thing.

7.7.6 A Linear-Expected-Time Algorithm for Selection
Quicksort can be modified to solve the selection problem, which we have seen in Chapters 1
and 6. Recall that by using a priority queue, we can find the kth largest (or smallest) element
in O(N + k log N). For the special case of finding the median, this gives an O(N log N)
algorithm.

Since we can sort the array in O(N log N) time, one might expect to obtain a better
time bound for selection. The algorithm we present to find the kth smallest element in a
set S is almost identical to quicksort. In fact, the first three steps are the same. We will
call this algorithm quickselect. Let |Si| denote the number of elements in Si. The steps of
quickselect are

1. If |S| = 1, then k = 1 and return the element in S as the answer. If a cutoff for small
arrays is being used and |S| ≤ CUTOFF, then sort S and return the kth smallest element.

2. Pick a pivot element, v ∈ S.

3. Partition S − {v} into S1 and S2, as was done with quicksort.

4. If k ≤ |S1|, then the kth smallest element must be in S1. In this case, return
quickselect(S1, k). If k = 1 + |S1|, then the pivot is the kth smallest element and
we can return it as the answer. Otherwise, the kth smallest element lies in S2, and it
is the (k − |S1| − 1)st smallest element in S2. We make a recursive call and return
quickselect(S2, k − |S1| − 1).

In contrast to quicksort, quickselect makes only one recursive call instead of two. The
worst case of quickselect is identical to that of quicksort and is O(N2). Intuitively, this is
because quicksort’s worst case is when one of S1 and S2 is empty; thus, quickselect is not

322 Chapter 7 Sorting

really saving a recursive call. The average running time, however, is O(N). The analysis is
similar to quicksort’s and is left as an exercise.

The implementation of quickselect is even simpler than the abstract description might
imply. The code to do this is shown in Figure 7.19. When the algorithm terminates, the

1 /**
2 * Internal selection method that makes recursive calls.
3 * Uses median-of-three partitioning and a cutoff of 10.
4 * Places the kth smallest item in a[k-1].
5 * a is an array of Comparable items.
6 * left is the left-most index of the subarray.
7 * right is the right-most index of the subarray.
8 * k is the desired rank (1 is minimum) in the entire array.
9 */

10 template <typename Comparable>
11 void quickSelect(vector<Comparable> & a, int left, int right, int k)
12 {
13 if(left + 10 <= right)
14 {
15 const Comparable & pivot = median3(a, left, right);
16
17 // Begin partitioning
18 int i = left, j = right - 1;
19 for(; ;)
20 {
21 while(a[++i] < pivot) { }
22 while(pivot < a[--j]) { }
23 if(i < j)
24 std::swap(a[i], a[j]);
25 else
26 break;
27 }
28
29 std::swap(a[i], a[right - 1]); // Restore pivot
30
31 // Recurse; only this part changes
32 if(k <= i)
33 quickSelect(a, left, i - 1, k);
34 else if(k > i + 1)
35 quickSelect(a, i + 1, right, k);
36 }
37 else // Do an insertion sort on the subarray
38 insertionSort(a, left, right);
39 }

Figure 7.19 Main quickselect routine

7.8 A General Lower Bound for Sorting 323

kth smallest element is in position k − 1 (because arrays start at index 0). This destroys the
original ordering; if this is not desirable, then a copy must be made.

Using a median-of-three pivoting strategy makes the chance of the worst case occurring
almost negligible. By carefully choosing the pivot, however, we can eliminate the quadratic
worst case and ensure an O(N) algorithm. The overhead involved in doing this is consid-
erable, so the resulting algorithm is mostly of theoretical interest. In Chapter 10, we will
examine the linear-time worst-case algorithm for selection, and we shall also see an inter-
esting technique of choosing the pivot that results in a somewhat faster selection algorithm
in practice.

7.8 A General Lower Bound for Sorting
Although we have O(N log N) algorithms for sorting, it is not clear that this is as good as we
can do. In this section, we prove that any algorithm for sorting that uses only comparisons
requires �(N log N) comparisons (and hence time) in the worst case, so that mergesort and
heapsort are optimal to within a constant factor. The proof can be extended to show that
�(N log N) comparisons are required, even on average, for any sorting algorithm that uses
only comparisons, which means that quicksort is optimal on average to within a constant
factor.

Specifically, we will prove the following result: Any sorting algorithm that uses only
comparisons requires �log(N!)� comparisons in the worst case and log(N!) comparisons
on average. We will assume that all N elements are distinct, since any sorting algorithm
must work for this case.

7.8.1 Decision Trees
A decision tree is an abstraction used to prove lower bounds. In our context, a decision
tree is a binary tree. Each node represents a set of possible orderings, consistent with
comparisons that have been made, among the elements. The results of the comparisons
are the tree edges.

The decision tree in Figure 7.20 represents an algorithm that sorts the three elements
a, b, and c. The initial state of the algorithm is at the root. (We will use the terms state
and node interchangeably.) No comparisons have been done, so all orderings are legal. The
first comparison that this particular algorithm performs compares a and b. The two results
lead to two possible states. If a < b, then only three possibilities remain. If the algorithm
reaches node 2, then it will compare a and c. Other algorithms might do different things;
a different algorithm would have a different decision tree. If a > c, the algorithm enters
state 5. Since there is only one ordering that is consistent, the algorithm can terminate and
report that it has completed the sort. If a < c, the algorithm cannot do this, because there
are two possible orderings and it cannot possibly be sure which is correct. In this case, the
algorithm will require one more comparison.

Every algorithm that sorts by using only comparisons can be represented by a decision
tree. Of course, it is only feasible to draw the tree for extremely small input sizes. The
number of comparisons used by the sorting algorithm is equal to the depth of the deepest

