
TOPICS

9 .1 Introduction to Search Algorithms

9.2 Searching an Array of Objects

9 .3 Introduction to Sorting Algorithms

9.4 Sorting an Array of Objects

9.5 Sorting and Searching Vectors

9 .6 Introduction to Analysis of Algorithms

9.7 Case Studies

9.8 Tying It All Together: Secret Messages

9.1 Introduction to Search Algorithms

C 0 NC E PT: A search algorithm is a method of locating a specific item in a collection of

data.

It's very common for programs not only to store and process data stored in arrays , but to

search arrays for specific items. This section will show you two methods of searching an

array: the linear search and the binary search. Each has its advantages and disadvantages.

The Linear Search

The linear search is a very simple algorithm. Sometimes called a sequential search, it uses a

loop to sequentially step through an array, starting with the first element. It compares each
element with the value being searched for, and stops when either the value is found or the

end of the array is encountered. If the value being searched for is not in the array, the

algorithm will search to the end of the array.

595

596 Chapter 9 Searching, Sorting, and Algorithm Analysis

Here is the pseudocode for a function that performs the linear search:

Set found to false
Set position to -1

Set index to 0

While index < number of elements and found is false
If list{index} is equal to search value

found = true
position = index

End If
Add 1 to index

End While
Return position

The function searchList, which follows, is an example of C++ code used to perform a linear
search on an integer array. The array list, which has a maximum of size elements, is
searched for an occurrence of the number stored in value. If the number is found, its array
subscript is returned. Otherwise, -1 is returned, indicating the value did not appear in the
array.

int searchList(const int list[], int size, int value)

{

}

int index = O;

int position = -1;

bool found = false;

while (index
•

< size

{
if (list[index]

{

&&

--

--

found - true; -

II Used as
II Used to

a subscript to search array
record position of search value

to indicate if the value was found II Flag

!found)

value) II If the value is found

II Set the flag
position - index; II - Record the value's subscript

}
index++; II Go to the next element

}
return position; II Return the position, or -1

NOTE: The reason -1 is chosen to indicate that the search value was not found in the
array is that -1 is not a valid subscript. Any other nonvalid subscript value could also
have been used to signal this.

Program 9-1 is a complete program that uses the searchList function. It searches the five
element tests array to find a score of 100.

Program 9-1

1 II This program demonstrates the searchList function,
2 II which performs a linear search on an integer array.
3 #include <iostream>
4 using namespace std;
5

(program continues)

Introduction to Search Algorithms 597

Program 9-1 (continued)

6 II Function prototype

7 int searchList(const int [], int, int);

8
9 canst int SIZE = 5;

10
11 int main()

12 {
13 int tests[SIZE] = {87, 75, 98, 100, 82 } ;
14 int results; II Holds the search results

15
16 II Search the array for the value 100
17 results = searchList(tests, SIZE, 100);
18
19 II If searchList returned -1, 100 was not found

20 if (results == -1)
21 cout << ''You did not earn 100 points on any test. \n '';

22 else

23 { II Otherwise results contains the subscript of

24 II the first 100 found in the array

25 cout << ''You earned 100 points on test '';

26 cout <<(results + 1) << ''.\n '';

27 }
28 return O;

29 }
30
31 I***

32
33
34
35
36

* searchList *
* This function performs a linear search on an integer array. *
* The list array, which has size elements, is searched for *
* the number stored in value. If the number is found, its array *
* subscript is returned. Otherwise, -1 is returned. *

37 ***I

38 int searchList(const int list[], int size, int value)

39 {
int index = O;

int position = -1;
bool found = false;

while (index <
•

size

{
if (list[index]

{
found - true; -

&&

--

--

II Used as a subscript to search array
II Used to record position of search value
II Flag to indicate if the value was found

!found)

value) II If the value is found

II Set the flag

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

position -

- index; II Record the value 's subscript

}
index++; II Go to the next element

}
return position; II Return the position, or -1

}

Program Output

You earned 100 points on test 4.

598 Chapter 9 Searching, Sorting, and Algorithm Analysis

VideoNote

Performing a
Binary Search

Inefficiency of the Linear Search

The advantage of the linear search is its simplicity. It is very easy to understand and

implement. Furthermore, it doesn't require the data in the array to be stored in any

particular order. Its disadvantage, however, is its inefficiency. If the array being searched

contained 20,000 elements, the algorithm would have to look at all 20,000 elements in

order to find a value stored in the last element or to determine that a desired element was

not in the array.

In a typical case, an item is just as likely to be found near the beginning of the array as near

the end. On average, for an array of N items, the linear search will locate an item in N/2
attempts. If an array has 20,000 elements, the linear search will make a comparison with

10,000 of them on average. This is assuming, of course, that the search item is consistently

found in the array. (N/2 is the average number of comparisons. The maximum number of

comparisons is always N.)

When the linear search fails to locate an item, it must make a comparison with every

element in the array. As the number of failed search attempts increases, so does the average

number of comparisons. When it can be avoided the linear search should not be used on

large arrays if speed is important.

The Binary Search

The binary search is a clever algorithm that is much more efficient than the linear search.

Its only requirement is that the values in the array be in order. Instead of testing the array's

first element, this algorithm starts with the element in the middle. If that element happens

to contain the desired value, then the search is over. Otherwise, the value in the middle

element is either greater than or less than the value being searched for. If it is greater than

the desired value then the value (if it is in the list) will be found somewhere in the first half

of the array. If it is less than the desired value then the value (again, if it is in the list) will be

found somewhere in the last half of the array. In either case, half of the array's elements
have been eliminated from further searching.

If the desired value wasn't found in the middle element, the procedure is repeated for the
half of the array that potentially contains the value. For instance, if the last half of the

array is to be searched, the algorithm immediately tests its middle element. If the desired

value isn't found there, the search is narrowed to the quarter of the array that resides

before or after that element. This process continues until the value being searched for is

either found or there are no more elements to test.

Here is the pseudocode for a function that performs a binary search on an array whose

elements are stored in ascending order.

Set first to 0

Set last to the last subscript in the array

Set found to false

Set position to -1

Introduction to Search Algorithms 599

While found is not true and first is less than or equal to last
Set middle to the subscript halfway between first and last
If array[middle] equals the desired value

Set found to true
Set position to middle

Else If array[middle] is greater than the desired value
Set last to middle - 1

Else
Set first to middle + 1

End If
End While
Return position

This algorithm uses three index variables: first, last, and middle. The first and last

variables mark the boundaries of the portion of the array currently being searched. They

are initialized with the subscripts of the array's first and last elements. The subscript of the

element approximately halfway between first and last is calculated and stored in the

middle variable. If there is no precisely central element, the integer division used to

calculate middle will select the element immediately preceding the midpoint. If the element

in the middle of the array does not contain the search value, the first or last variables

are adjusted so that only the top or bottom half of the array is searched during the next

iteration. This cuts the portion of the array being searched in half each time the loop fails

to locate the search value.

The function binarySearch in the following example C++ code is used to perform a

binary search on an integer array. The first parameter, array, which has size elements,

is searched for an occurrence of the number stored in value. If the number is found, its

array subscript is returned. Otherwise, -1 is returned indicating the value did not appear

in the array.

int binarySearch(const int array[], int size, int value)

{

}

int first = O,

last = size - 1,

middle,

position = -1;

bool found = false;

while (!found && first <= last)

{
middle = (first + last) I 2;

if (array[middle] == value)

{

}

found = true;

position = middle;

II First array element

II Last array element

II Midpoint of search

II Position of search value

II Flag

II Calculate midpoint

II If value is found at mid

else if (array[middle] > value) II If value is in lower half

last = middle - 1;

else

first = middle + 1·
'

II If value is in upper half

}
return position;

600 Chapter 9 Searching, Sorting, and Algorithm Analysis

Program 9-2 is a complete program using the binarySearch function. It searches an array
of employee ID numbers for a specific value.

Program 9-2

1 II This program performs a binary search on an integer

2 II array whose elements are in ascending order.

3 #include <iostream>

4 using namespace std;

5

6 II Function prototype

7 int binarySearch(const int [], int, int);

8

9 canst int SIZE = 20;

10

11 int main()

12 {

13 II Create an array of ID numbers sorted in ascending order

14 int IDnums[SIZE] = {101, 142, 147, 189, 199, 207, 222,

15 234, 289, 296, 310, 319, 388, 394,

16 417, 429, 447, 521, 536, 600 };

17

18

19

20

int empID,

results;

II Holds the ID to search for

II Holds the search results

21

22

23

24

II Get an employee ID to search for

cout << ''Enter the employee ID you wish to search for: '';
•

cin >> empID;

25 II Search for the ID

26 results = binarySearch(IDnums, SIZE, empID);

27

28 II If binarySearch returned -1, the ID was not found

29 if (results == -1)

30 cout << ''That number does not exist in the array. \n '';

31 else

32 { II Otherwise results contains the subscript of

33 II the specified employee ID in the array

34 cout << ''ID '' << empID << '' was found in element ''

35 << results << '' of the array. \n '';

36 }

37 return O;

38 }

39

(program continues)

Introduction to Search Algorithms 601

Program 9-2 (continued)

40 I***

41 * binarySearch *

42 * This function performs a binary search on an integer array *

43 * with size elements whose values are stored in ascending *

44 * order. The array is searched for the number stored in the *

45 * value parameter. If the number is found, its array subscript *

46 * is returned. Otherwise, -1 is returned. *

47 ***I
48 int binarySearch(const int array[], int size, int value)

49 {
50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70 }

int first = O,

last = size - 1,

middle,

position = -1;

bool found = false;

while (!found && first <= last)

{
middle = (first + last) I 2;

if (array[middle] == value)

{

}

found = true;

position = middle;

II First array element

II Last array element

II Midpoint of search

II Position of search value

II Flag

II Calculate midpoint

II If value is found at mid

else if (array[middle] > value) II If value is in lower half

last = middle - 1;

else

first = middle + 1· '
II If value is in upper half

}
return position;

Program Output with Example Input Shown in Bold

Enter the employee ID you wish to search for: 199[Enter]
ID 199 was found in element 4 of the array.

The Efficiency of the Binary Search

Obviously, the binary search is much more efficient than the linear search. Every time

it makes a comparison and fails to find the desired item, it eliminates half of the

remaining portion of the array that must be searched. For example, consider an array

with 20,000 elements. If the binary search fails to find an item on the first attempt, the

number of elements that remains to be searched is 10,000. If the item is not found on

the second attempt, the number of elements that remains to be searched is 5,000. This
process continues until the binary search locates the desired value or determines that

it is not in the array. With 20,000 elements in the array, this takes a maximum of

15 comparisons. (Compare this to the linear search, which would make an average of

10,000 comparisons!)

602 Chapter 9 Searching, Sorting, and Algorithm Analysis

Powers of 2 are used to calculate the maximum number of comparisons the binary search
will make on an array of any size. (A power of 2 is 2 raised to some integer exponent.)
Simply find the smallest power of 2 that is greater than the number of elements in the
array. That will tell you the maximum number of comparisons needed to find an element,
or to determine that it is not present. For example, a maximum of 16 comparisons will
be made to find an item in an array of 50,000 elements (216 == 65,536), and a maximum
of 20 comparisons will be made to find an item in an array of 1,000,000 elements
(220 == 1,048,576).

9.2 Searching an Array of Objects

C 0 NC E PT: Linear and binary searches can also be used to search for a specific entry in
an array of objects or structures.

In Programs 9-1 and 9-2 we searched for a particular value in an array of integers. We can
just as easily search through an array holding values of some other data type, such as
double or string. We can even search an array of objects or structures. In this case,
however, the search value is not the entire object or structure we are looking for, but rather
a value in a particular member variable of that object or structure. The member variable
being examined by the search is sometimes called the key field, and the particular value
being looked for is called the search key.

Assume we have a class named Inventory that includes the following member variables

string itemCode;

string description;

double price;

as well as methods to set and get the value of each of these. Assume also that we have set up
an array of Inventory objects. We might want to search for a particular object in the array,
say the object whose itemCode is K33, so that we can then call the getPrice method for
that object. Program 9-3 illustrates how to do this. It searches the array of Inventory

objects using a search function similar to the searchList function we used earlier in this
chapter. However, it has been modified to work with an array of Inventory objects.

Program 9-3

1 II This program searches an array of Inventory objects to get

2 II the price of a particular object. It demonstrates how to

3 II perform a linear search using an array of objects.

4 #include <iostream>

5 #include <string>

6 using namespace std;

7

8 II Inventory class declaration

9 class Inventory

10 { private:

11 string itemCode;

12 string description;

13 double price;

14

(program continues)

Searching an Array of Objects 603

Program 9-3

15 public:

(continued)

16 Inventory() I I Default constructor
1 7 { i temCode = '' XXX '' ; description = '' '' ; pr ice = 0. 0; }
18

19

20

21

22

23

24

Inventory(string c, string d, double p) I I 3 argument constructor

{ itemCode = c;

description = d;
•

price = p;

}

25 I I Add methods setCode, setDescription, and setPrice here.

26

27 I I Get functions to retrieve member variable values

28 string getCode() canst

29 { string code = itemCode;

30 return code;

31 }
32

33 string getDescription() canst

34 { string d = description;

35 return d;

36 }
37

38 double getPrice() canst

39 { return price;

40 }
41

42 }; I I End Inventory class declaration

43
44 I I Program that uses the Inventory class

45

46 I I Function prototype

47 int search(const Inventory[], int, string);

48

49 /***

50 *
•

main *

51 *** I
52 int main ()

53 {

54 canst int SIZE = 6;

55
I I Create and initialize the array of Inventory objects

Inventory silverware[SIZE] =

{ Inventory ('' S 15 '', ''soup spoon '',

Inventory ('' S 12 '' , ''teaspoon '' ,

Inventory(''Fl5 '', ''dinner fork '',

Inventory ('' FO 9 '', ''salad fork '' ,

Inventory ('' K3 3 '' , ''knife '' ,

Inventory ('' K4 l '', ''steak knife '',

II The itemCode to search for

2.35),

2.19),

3.19),

2.25),

2.35),

4.15) };

56

57

58

59

60

61

62

63

64

65

66

67

string desiredCode;

int pas;

char doAgain;

I I Position of desired object in the array

I I Look up another price (Y/N)?
(program continues)

604 Chapter 9 Searching, Sorting, and Algorithm Analysis

Program 9-3 (continued)

68

69 do

{ II Get the itemCode to search for

cout << '' \nEnter an i tern code: '';

cin >> desiredCode;

II Search for the object

pas = search(silverware, SIZE, desiredCode);

II If pas = -1 , the code was not found

if (pas == - 1)
cout << ''That code does not exist in the array\n '';

else

{ II The object was found, so use pas to get the

II description and price

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

cout << ''This '' << silverware[pos] .getDescription()

<< '' costs $'' << silverware[pos] .getPrice() << endl;

}

II Does the user want to look up another price?

cout << '' \nLook up another price (YIN)? '';

cin >> doAgain;

} while (doAgain

92 return O;

93 }II End main

94

---- I y I
11 doAgain ---- I y I) ;

95 I**

96 * search *

97 * This function performs a linear search on an array of *

98 * Inventory objects, using itemCode as the key field. *

99 * If the desired code is found, its array subscript is *

100 * returned. Otherwise, -1 is returned. *

101 **I
102 int search(const Inventory object[], int size, string value)

103 {
104

105

106

107

int index = O;

int position

bool found =

= -1· '

false;

II Used as a subscript to search array

II Used to record position of search value

II Flag to indicate if the value was found

108 while (index < size && !found)

109 {
110 if (object[index].getCode() == value) II If the value is found

111 {

}

found = true;

position = index;

112

113

114

115 index++;

116 }
117 return position;

118 }II End search

II Set the flag

II Record the value 's subscript

II Go to the next element

II Return the position, or -1

(program continues)

Program 9-3 (continued)

Program Output with Example Input Shown in Bold
Enter an item code: F15[Enterj
This dinner fork costs $3.19

Look up another price (Y/N)? n[Enterj

Introduction to Sorting Algorithms 605

Recall from Chapter 7 that when an object is passed to a function as a constant reference,
any of the object's member functions that the receiving function will call must also be
defined with the key word canst. This is also the case when an array of objects is passed to

a function. In Program 9-3 the search function uses a canst array parameter to receive
the array of Inventory objects in order to safeguard it from any changes being made to it.
Therefore, the Inventory class member functions it calls are also declared to be canst.

Checkpoint

9 .1 Describe the difference between the linear search and the binary search.

9.2 On average, with an array of 20,000 elements, how many comparisons will the
linear search perform? (Assume the items being search for are consistently found
in the array.)

9 .3 With an array of 20,000 elements, what is the maximum number of comparisons
the binary search will perform?

9.4 If a linear search is performed on an array, and it is known that some items are searched
for more frequently than others, how can the contents of the array be reordered to
improve the average performance of the search?

9.3 Introduction to Sorting Algorithms

Video Note

Sorting a Set

of Data

C 0 NC E PT: Sorting algorithms are used to arrange data into some order.

Often the data in an array must be sorted in some order. Customer lists, for instance, are
commonly sorted in alphabetical order. Student grades might be sorted from highest to
lowest. Mailing label records could be sorted by ZIP code. To sort the data in an array, the
programmer must use an appropriate sorting algorithm. A sorting algorithm is a technique

for scanning through an array and rearranging its contents in some specific order. This
section will introduce two simple sorting algorithms: the bubble sort and the selection sort .

The Bubble Sort

The bubble sort is an easy way to arrange data in ascending or descending order. Sorting data
in ascending order means placing the values in order from lowest to highest. Sorting in
descending order means placing them in order from highest to lowest. Bubble sort works by
comparing each element in the array with its neighbor and swapping them if they are not in
the desired order. Let's see how it arranges the following array 's elements in ascending order:

7 2 3 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

606 Chapter 9 Searching, Sorting, and Algorithm Analysis

The bubble sort starts by comparing the first two elements in the array. If element 0 is

greater than element 1, they are exchanged. After the exchange, the array appears as

2 7 3 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

This process is repeated with elements 1 and 2. If element 1 is greater than element 2, they

are exchanged. The array now appears as

2 3 7 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Next, elements 2 and 3 are compared. However, in this array, these two elements are

already in the proper order (element 2 is less than element 3), so no exchange takes place.

As the cycle continues, elements 3 and 4 are compared. Once again, because they are already in

the proper order, no exchange is necessary. When elements 4 and 5 are compared, however, an

exchange must take place because element 4 is greater than element 5. The array now appears as

2 3 7 8 1 9

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

At this point, the entire array has been scanned. This is called the first pass of the sort. Notice

that the largest value is now correctly placed in the last array element. However, the rest of

the array is not yet sorted. So the sort starts over again with elements 0 and 1. Because they

are in the proper order, no exchange takes place. Elements 1 and 2 are compared next, but

once again, no exchange takes place. This continues until elements 3 and 4 are compared.

Because element 3 is greater than element 4, they are exchanged. The array now appears as

2 3 7 1 8 9

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Notice that this second pass over the array elements has placed the second largest number

in the next to the last array element. This process will continue, with the sort repeatedly

passing through the array and placing at least one number in order on each pass, until the

array is fully sorted. Ultimately, the array will appear as

1 2 3 7 8 9

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Here is the bubble sort in pseudocode. Notice that it uses a pair of nested loops. The

outer loop, a do-while loop, iterates once for each pass of the sort. The inner loop, a

for loop, holds the code that does all the comparisons and needed swaps during a pass.
If two elements are exchanged, the swap flag variable is set to true. The outer loop continues

iterating, causing additional passes to be made, until it finds the swap flag false, meaning
that no elements were swapped on the previous pass. This indicates that the array is now

fully sorted.

Do

Set swap flag to false

Introduction to Sorting Algorithms 607

For count = 0 to the next-to-last array subscript

If array[count] is greater than array[count + l]

Swap the contents of array[count] and array[count + l]

Set swap flag to true

End If

End For

While the swap flag is true II A swap ocurred on the previous pass.

The following C++ code implements the bubble sort as a function. The parameter array

references an integer array to be sorted. The parameter size contains the number of
elements in array.

void sortArray(int array[], int size)

{

}

int temp;
bool swap;

do

{ swap = false;
for (int count = O; count < (size - l); count++)

{

}

if (array[count] > array[count + l])

{

}

temp = array[count];
array[count] = array[count + l];
array[count + l] = temp;
swap = true;

} while (swap); II Loop again if a swap occurred on this pass.

Let's look more closely at the for loop that handles the comparisons and exchanges during
a pass. Here is its starting line:

for (int count = O; count < (size - l); count++)

The variable count holds the array subscripts. It starts at zero and is incremented as long

as it is less than size - 1. The value of size is the number of elements in the array, and
count stops just short of reaching this value because the following line compares each

element with the one after it:

if (array[count] > array[count + l])

When array [count] is the next-to-last element, it will be compared to the last element. If
the for loop were allowed to increment count past size - 1, the last element in the array

would be compared to a value outside the array.

608 Chapter 9 Searching, Sorting, and Algorithm Analysis

Here is the if statement in its entirety:

if (array[count] > array[count + l])

{

}

temp = array[count];

array[count] = array[count + l];

array[count + l] = temp;

swap = true;

If array [count] is greater than array [count + 1], the two elements must be

exchanged. First, the contents of array [count] is copied into the variable temp. Then
the contents of array [count + 1] is copied into array [count]. The exchange is made
complete when temp (which holds the previous contents of array [count]) is copied to
array [count + 1]. Last, the swap flag variable is set to true. This indicates that an

exchange has been made.

Program 9-4 demonstrates the bubble sort function in a complete program.

Program 9-4

1 II This program uses the bubble sort algorithm to sort an array

2 II of integers in ascending order.

3 #include <iostream>

4 using namespace std;

5

6 II Function prototypes

7 void sortArray(int [], int);

8 void showArray(const int [], int);

9

10 int main()

11 {

12 canst int SIZE = 6;

13

14 II Array of unsorted values

15 int values[SIZE] = {7, 2, 3, 8, 9, l};

16

17 II Display the values

18 cout << ''The unsorted values are:\n'' ;

19 showArray(values, SIZE);

20

21 II Sort the values

22 sortArray(values, SIZE);

23

24 II Display them again

25 cout << ''The sorted values are:\n'';

26 showArray(values, SIZE);

27 return O;

28 }

29

(program continues)

Program 9-4 (continued)

Introduction to Sorting Algorithms 609

30 I**

31 * sortArray *

32 * This function performs an ascending-order bubble sort on *

33 * array. The parameter size holds the number of elements *

34 * in the array. *

35 ** I

36 void sortArray(int array[], int size)

37 {
38 int temp;

39 bool swap;

40

41 do

42 { swap = false;

43 for (int count = O; count < (size - 1); count++)

44 {
45
46
47
48
49
50

51
52
53
54 }
55

}

if (array[count] > array[count + l])

{

}

temp = array[count];

array[count] = array[count + l];

array[count + l] = temp;

swap = true;

} while (swap); II Loop again if a swap occurred on this pass.

56 I***

57 * showArray *

58 * This function displays the contents of array. The *

59 * parameter size holds the number of elements in the array. *

60 *** I

61 void showArray(const int array[], int size)

62 {
63
64

for (int count = O; count < size;

cout << array [count] << '' '';

65 cout << endl;

66 }

Program Output

The unsorted values are:

7 2 3 8 9 1
The sorted values are:

1 2 3 7 8 9

The Selection Sort

count++)

The bubble sort is inefficient for large arrays because repeated data swaps are often

required to place a single item in its correct position. The selection sort, like the bubble

sort, places just one item in its correct position on each pass. However, it usually performs

fewer exchanges because it moves items immediately to their correct position in the array.

610 Chapter 9 Searching, Sorting, and Algorithm Analysis

Like any sort, it can be modified to sort in either ascending or descending order. An ascending

sort works like this: The smallest value in the array is located and moved to element 0.

Then the next smallest value is located and moved to element 1. This process continues

until all of the elements have been placed in their proper order.

Let's see how the selection sort works when arranging the elements of the following array :

5 7 2 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

The selection sort scans the array, starting at element 0, and locates the element with the

smallest value . The contents of this element are then swapped with the contents of element

0. In this example, the 1 stored in element 5 is the smallest value, so it is swapped with the

5 stored in element 0. This completes the first pass and the array now appears as

1 7 2 8 9 5

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

The algorithm then repeats the process, but because element 0 already contains the smallest

value in the array, it can be left out of the procedure . For the second pass, the algorithm begins

the scan at element 1. It locates the smallest value in the unsorted part of the array, which is the
2 in element 2. Therefore, element 2 is exchanged with element 1. The array now appears as

1 2 7 8 9 5

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Once again the process is repeated, but this time the scan begins at element 2. The

algorithm will find that element 5 contains the next smallest value and will exchange this
element's contents with that of element 2, causing the array to appear as

1 2 5 8 9 7

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Next, the scanning begins at element 3. Its contents is exchanged with that of element 5,

causing the array to appear as

1 2 5 7 9 8

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

At this point there are only two elements left to sort. The algorithm finds that the value in

element 5 is smaller than that of element 4, so the two are swapped. This puts the array in

its final arrangement:

1 2 5 7 8 9

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Introduction to Sorting Algorithms 611

Here is the selection sort algorithm in pseudocode:

For startScan = 0 to the next-to-last array subscript

Set index to startScan

Set minindex to startScan

Set minValue to array{startScan}

For index = (startScan + 1) to the last subscript in the array

If array[index} is less than minValue

Set minValue to array[index}

Set minindex to index

End If

Increment index

End For

Set array[minindex} to array{startScan}

Set array{startScan} to minValue

End For

The following function uses the selection sort to arrange the values in an integer array in
ascending order. It accepts two arguments. The first parameter, array, receives the array to
be sorted and the second, size, indicates how many values are stored in the array.

void selectionSort(int array[], int size)

{

}

int startScan, minindex, minValue;

for (startScan = O; startScan < (size - l); startScan++)

{

}

minindex = startScan;

minValue = array[startScan];

for (int index = startScan + 1; index < size; index++)

{

}

if (array[index] < minValue)

{

}

minValue = array[index];

minindex = index;

array[minindex] = array[startScan];

array[startScan] = minValue;

As with bubble sort, selection sort uses a pair of nested loops, in this case two for loops.
The inner loop sequences through the array, starting at array [start Scan + 1], searching
for the element with the smallest value. When the element is found, its subscript is stored in

the variable minindex, and its value is stored in minValue. The outer loop then exchanges
the contents of this element with array [startScan] and increments startScan. This

procedure repeats until the contents of every element have been moved to their proper

location. For N pieces of data this requires N-1 passes.

612 Chapter 9 Searching, Sorting, and Algorithm Analysis

Program 9-5 demonstrates the selection sort function in a complete program.

Program 9-5

1 II This program uses the selection sort algorithm to sort

2 II an array in ascending order.

3 #include <iostream>

4 using namespace std;

5

6 II Function prototypes

7 void selectionSort(int [], int);

8 void showArray(const int [], int);

9

10 int main()

11 {

12 canst int SIZE = 6;

13

14 II Array of unsorted values

15 int values[SIZE] = {5, 7, 2, 8, 9, l};

16

17 II Display the values

18 cout << '' The unsorted values are\n '';

19 showArray(values, SIZE);

20

21 II Sort the array

22 selectionSort(values, SIZE);

23

24 II Display the values again

25 cout << ''The sorted values are\n'';

26 showArray(values, SIZE);

27 return O;

28 }

29

30 /**

31 * selectionSort *

32 * This function performs an ascending-order selection sort *

33 * on array. The parameter size holds the number of elements *

34 * in the array. *

35 ** /

36 void selectionSort(int array[], int size)

37 {

38 int startScan, minindex, minValue;

39

(program continues)

Introduction to Sorting Algorithms 613

Program 9-5 (continued)

40 for (startScan = O; startScan < (size - l); startScan++)

41 {
42 minindex = startScan;

43 minValue = array[startScan];

44 for(int index = startScan + 1; index < size; index++)

45 {
46 if (array[index] < minValue)

47

48

49

50

51 }

{

}

minValue = array[index];

minindex = index;

52 array[minindex] = array[startScan];

53 array[startScan] = minValue;

54 }
55 }
56

57 /***

58

59

60

* showArray
* This function displays the contents of array. The
* parameter size holds the number of elements in the

*
*

array. *

61 ***/

62 void showArray(const int array[], int size)

63 {
64 for (int count = O; count < size; count++)

65 cout << array [count] << '' '' ;

66 cout << endl;

67 }

Program Output

The unsorted values are

5 7 2 8 9 1

The sorted values are

1 2 5 7 8 9

Checkpoint

9 .5 True or false: Any sort can be modified to sort in either ascending or descending

order.

9.6 What one line of code would need to be modified in the bubble sort to make it sort

in descending, rather than ascending order? How would the revised line be written?

9.7 After one pass of bubble sort, which value is in order?

9.8 After one pass of selection sort, which value is in order?

9 .9 Which sort usually requires fewer data values to be swapped, bubble sort or

selection sort?

