
Proceedings of the 2017 Shared Task on Extrinsic Parser Evaluation (EPE 2017), pages 1–16,
Pisa, Italy, September 20, 2017. c�2017 Association for Computational Linguistics

The 2017 Shared Task on Extrinsic Parser Evaluation
Towards a Reusable Community Infrastructure

Stephan Oepen♣♠, Lilja Øvrelid♣♠, Jari Björne♥, Richard Johansson♦,
Emanuele Lapponi♣, Filip Ginter♥, and Erik Velldal♣

♣ University of Oslo, Department of Informatics
♠ Center for Advanced Study at the Norwegian Academy of Science and Letters

♥ University of Turku, Department of Information Technology
♦ Chalmers Technical University and University of Gothenburg, Department of Computer Science and Engineering

epe-organizers@nlpl.eu

Abstract

The 2017 Shared Task on Extrinsic Parser
Evaluation (EPE 2017) seeks to provide
better estimates of the relative utility of
different types of dependency representa-
tions for a variety of downstream applica-
tions that depend centrally on the analysis
of grammatical structure. EPE 2017 de-
fines a generalized notion of lexicalized
syntactico-semantic dependency represen-
tations and provides a common interchange
format to three state-of-the-art downstream
applications, viz. biomedical event extrac-
tion, negation resolution, and fine-grained
opinion analysis. As a first step towards
building a generic and extensible infras-
tructure for extrinsic parser evaluation, the
downstream applications have been gener-
alized to support a broad range of diverese
dependency representations (including di-
vergent sentence and token boundaries)
and to allow fully automated re-training
and evaluation for a specific collection of
parser outputs. Nine teams participated
in EPE 2017, submitting 49 distinct runs
that encompass many different families
of dependency representations, distinct ap-
proaches to preprocessing and parsing, and
various types and volumes of training data.

1 Introduction & Motivation

Natural language parsing, computing syntactico-
semantic structure according to the rules of gram-
mar, is widely considered a prerequisite technique
to most forms of language ‘understanding’. These
very broadly comprise applications of natural lan-
guage processing (NLP) that require an analysis of
(among other things) ‘who did what to whom’—as
for example diverse types of information extraction

or relation and event detection tasks.
Computational parsing of natural language has

made great advances over time. For example, the
crisp benchmark of replicating parts of the En-
glish phrase structure annotations in the venerable
Penn Treebank (PTB; Marcus et al., 1993) allows
a quantitative comparison spanning more than two
decades: Magerman (1995), one of the early pars-
ing accuracy reports against the PTB using the Par-
sEval measure of Black et al. (1991) recorded a
score for constituent labeling precision and recall
of 84.2 F1 points.1 At 91.0 F1, the parser of Char-
niak and Johnson (2005) appeared to mark a PTB
parsing plateau for some time, but neural advances
in recent years have led to ParsEval F1 levels of
93.8 (Andor et al., 2016).

Quantitative measures of parsing success in
terms of (degrees of) similarity with a gold-
standard target representation constitute intrinsic
parser evaluation and have been a central driv-
ing force in much research and engineering on
syntactico-semantic parsing. Intrinsic measures,
however, cannot predict the contribution of a token
parser to a specific NLP application, say relation de-
tection over syntactic analyses. Therefore, quanti-
tative intrinsic benchmarking or historic reflections
on parsing progress like the above do not imme-
diately inform us about corresponding advances
in natural language ‘understanding’ capabilities—
arguably the ultimate motivation for long-term re-
search interest in natural language parsing.

Another parameter that inhibits comparability
1This report is against Section 00 of the PTB, whereas

much subsequent work standardized on Section 23 for bench-
marking. More importantly, however, Magerman (1995) ex-
cluded from the evaluation test sentences above forty words in
length, a simplification that has been dropped in more recent
PTB parsing research. Under the plausible assumption that
longer sentences are, if anything, not easier for the parser to
analyze correctly, the score reported by Magerman (1995)
probably overestimates the performance level of the time,
when compared to current PTB reports.

1



and broader judgment of scientific progress is vari-
ability in the target representations for natural
language parsing. Dependency-based syntactico-
semantic representations have received much atten-
tion in parsing research of at least the past decade,
in part because they offer a comparatively easy-
to-use interface to grammatical structure. Over an
even longer period, the formal and linguistic foun-
dations of syntactico-semantic dependency analy-
sis have continously evolved, and there is consid-
erable variation across representations schemes in
use today—even within a single language.

For English, for example, variations of the so-
called LTH scheme (named after the Faculty of
Engineering at Lund University) defined by Johans-
son and Nugues (2007) were used for the 2007,
2008, and 2009 shared tasks of the Conference
on Natural Language Learning (CoNLL). Subse-
quently, the family of Stanford Dependencies (SD)
proposed by de Marneffe and Manning (2008) has
enjoyed wide popularity. And more recently, the
Universal Dependencies (UD; McDonald et al.,
2013; de Marneffe et al., 2014; Nivre et al., 2016)
and Semantic Dependency Parsing (SDP; Oepen
et al., 2014, 2016) representations further increase
diversity—as target representations for the 2017
CoNLL shared task and for parsing tasks at the
2014 and 2015 Semantic Evaluation Exercises (Se-
mEval), respectively.

For each of these representations (and others),
detailed intrinsic evaluation reports are available
that allow one to estimate parser performance (for
example in terms of average dependency accuracy
and speed) for different types of input text. These
reports, however, are difficult to compare across
types of representations (and sometimes different
selections of test data), and they fail to provide in-
sights into the actual utility of the various represen-
tations for downstream tasks that use grammatical
analysis as a preprocessing step.

The purpose of the 2017 Shared Task on Extrin-
sic Parser Evaluation (EPE 2017) was to shed more
light on the downstream utility of various represen-
tations (at the available levels of accuracy for differ-
ent parsers), i.e. to seek to contrastively isolate the
relative contributions of each type of representa-
tion (and corresponding parsing systems) to a selec-
tion of state-of-the-art downstream applications—
which use different types of text, i.e. exhibit broad
domain and genre variation.

2 Syntactico-Semantic Dependencies

Figure 1 shows a representative sample of different
dependency representations for the sentence:2

A similar technique is almost impossible
to apply to other crops.

Two ‘classic’ syntactic dependency trees are pre-
sented in 1a and 1b, viz. the target representations
from the 2008 CoNLL shared task (Surdeanu et al.,
2008) and so-called basic Stanford Dependencies
(de Marneffe et al., 2006), respectively. Both are
obtained by conversion from the phrase structure
annotations in the PTB, combining heuristic head
finding rules in the tradition of Collins (1999) with
either an interpretation of PTB functional annota-
tions, in the CoNLL case,3 or with rules targeting
specific constructions (e.g. passives or attributive
adjectives) in the case of the Stanford Dependen-
cies. While related in spirit, the two analyses differ
widely in both their choices of heads vs. arguments
and the inventory of dependency types. Where
CoNLL tends to view functional words as heads
(e.g. the predicative copula or infinitival particle to),
the Stanford scheme capitalizes more on substan-
tive heads (e.g. the predicative adjective or main
verb apply).

The Universal Dependencies (UD) in Figure 1c
(Nivre et al., 2016) derive from the Stanford Depen-
dencies but generalize beyond the study of English
and integrate several parallel initiatives for cross-
linguistically valid morphological (Zeman, 2008;
Petrov et al., 2012) and syntactic dependency an-
notation (McDonald et al., 2013; Rosa et al., 2014).
UD takes the tendency to select substantive heads
one step further, analyzing the prepositional com-
plement crops as a head, with the preposition itself
as a dependent case marker.4 This representation
was employed in the CoNLL 2017 shared task (Ze-

2This example is a simplification of a sentence from Sec-
tion 02 of the PTB and has first been discussed in detail for a
broad range of dependency representations by Ivanova et al.
(2012) and Oepen et al. (2016).

3Johansson and Nugues (2007) discuss the specifics of
the conversion for CoNLL 2008, which was implemented as
one of several variants in the so-called LTH PennCoverter
software.

4Through its so-called ‘enhanced’ dependency layer, UD
relaxes the constraint that syntactic dependency representa-
tions be trees (in the formal sense of connecting each node to
the root via a unique directed path): In 1c, for example, tech-
nique is both a subject dependent of impossible and an object
dependent of apply, marking a reentrancy into this graph node.
To date, however, hardly any UD treebanks or parsers support
such enhanced dependencies.

2



A similar technique is almost impossible to apply to other crops .
DT JJ NN VBZ RB JJ TO VB TO JJ NNS P

NMOD

NMOD SBJ

P

AMOD

PRD

AMOD IM ADV NMOD

PMOD

root

(a) CoNLL: 2008 variant of LTH Dependencies

A similar technique is almost impossible to apply to other crops .
DT JJ NN VBZ RB JJ TO VB TO JJ NNS .

root

det

amod

nsubj

cop

advmod aux

dep

prep amod

pobj

punct

(b) SB: Stanford Basic Dependencies

A similar technique is almost impossible to apply to other crops .
DET ADJ NOUN AUX ADV ADJ PART VERB ADP ADJ NOUN PUNCT

root

det

amod

nsubj

cop

advmod

punct

mark

ccomp

obl

amod

case

obj

(c) UD: Universal Dependencies (enhanced in red)

A similar technique is almost impossible to apply to other crops .
q:i-h-h a_to:e-i n:x _ a:e-h a_for:e-h-i _ v_to:e-i-p-i _ a:e-i n:x _

DT JJ NN VBZ RB JJ TO VB TO JJ NNS .

ARG2 ARG3
ARG1ARG1

BV

ARG1 ARG1

top

(d) DM: DELPH-IN MRS Bi-Lexical Dependencies

A similar technique is almost impossible to apply to other crops .
DT JJ NN VBZ RB JJ TO VB TO JJ NNS .

top

ARG1

ARG2

ARG1

ARG2

ARG2

ARG1

ARG1 ARG1ARG2 ARG1

ARG2

ARG1

(e) PAS: Enju Predicate–Argument Structures

A similar technique is almost impossible to apply to other crops .

N
P[

nb
]/N

N
/N N

(S
[d

cl
]\N

P)
/(S

[a
dj

]\N
P)

(S
[a

dj
]\N

P)
/(S

[a
dj

]\N
P)

(S
[a

dj
]\N

P)
/((

S[
to

]\N
P)

/N
P)

(S
[to

]\N
P)

/(S
[b

]\N
P)

((S
[b

]\N
P)

/P
P)

/N
P

PP
/N

P

N
/N N .

1

1

top

2

1 2 2

1

2 2

3

1

1

(f) CCD: CCGbank Word–Word Dependencies

Figure 1: Selection of syntactico-semantic dependency representations at EPE 2017.

3



man et al., 2017), which was devoted to UD parsing
from raw text for more than 40 different languages.

Whereas the three first representations are syn-
tactic in nature, there has been some interest in
recent years in so-called semantic dependency rep-
resentations, which necessarily take the form of
unrestricted directed graphs. Figures 1d and 1e,
for example, show DELPH-IN MRS Bi-Lexical
Dependencies (DM; Ivanova et al., 2012) and
Enju Predicate–Argument Structures (PAS; Miyao,
2006), respectively. Both are semantic in the
sense of using dependency labels that correspond to
‘deep’ argument positions of the predicates (rather
than to surface grammatical functions) and in treat-
ing (most) modifiers and determiners as heads—
leading to high degrees of graph reentracies, for
example at the technique node. DM and PAS were
among the target representations in a series of pars-
ing tasks at the 2014 and 2015 SemEval confer-
ences. Finally, the CCD word–word dependencies
in 1f, which are derived from CCGBank (Hock-
enmaier and Steedman, 2007; Oepen et al., 2016),
arguably range somewhere inbetween the primarily
syntactic (CoNLL, SB, and UD) and the more se-
mantic dependency graphs (DM and PAS), as their
dependency labels identify argument positions in
the CCG lexical categories. Among the selection of
dependency representations in Figure 1, DM stands
out in (a) leaving semantically vacuous nodes (the
copula, infinitival particle, and case-marking prepo-
sition) unconnected and (b) its correspondingly
lower edge density. Kuhlmann and Oepen (2016)
quantitatively contrast these and other dependency
representations in terms of a range of formal graph
properties.

3 Methodological Challenges

For extrinsic evaluation to provide useful feedback
to parsing research, it is necessary to try and tease
apart the various contributions to observable end-
to-end results. When evaluated as a component
of a complex downstream application, the parser
proper is but one of many factors that determine
extrinsic evaluation performance. Thus, EPE 2017
seeks to capitalize on an initial selection of down-
stream applications that are understood to depend
centrally on grammatical structure—in that they all
seek to recognize complex and interacting relations
where the component pieces often are syntacticto-
semantic constituents whose interactions are medi-
ated by grammar.

Second, extrinsic evaluation will be most infor-
mative when performed at or near state-of-the-art
performance levels, i.e. reflecting the current best
choice of downstream approaches. The ‘state of the
art’ is, of course, both a moving target and inher-
ently correlated with progress in parser engineering.
However, at implausibly lower performance levels
it could be hard to ascertain, for example, whether
failure of a substantive change in the parser to cause
an observable end-to-end effect renders the revision
irrelevant (to this specific downstream application),
or whether the application merely lacks sensitivity
as a measurement tool. The EPE 2017 downstream
applications all perform at current state-of-the-art
levels,5 and end-to-end results observed in § 8 be-
low compare favorably to published prior art.

Third, the ultimate focus of the EPE 2017 ini-
tiative is to enable comparison across different
syntactico-semantic dependency representations.
In principle, all our downstream systems are based
on machine learning and are automatically re-
trained for each different submission of parser
outputs—i.e. customized to the specifics of each
distinct representation and parser. In preparing the
systems for use in the EPE 2017 context, feature
templates or heuristics that were specialized to one
specific scheme of syntactico-semantic analysis
(e.g. targeting individual PoS tags or dependency
types) have been generalized or removed.6 How-
ever, as all three systems were originally developed
against one specific type of dependency represen-
tation, there is remaining room for hidden ‘bias’
there: Original feature design and selection (based
on experimental results) have quite possibly been
influenced by the linguistic properties of the spe-
cific variant of dependency representation targeted
at the time. Short of manual tuning, error analy-
sis, and optimization for at least each distinct type
of syntactico-semantic dependency representation

5For the Sherlock negation resolution system of Lapponi
et al. (2012, 2017), the subsequent studies by Packard et al.
(2014) and Fancellu et al. (2016) suggest slight performance
advances. However, these systems would not be immediately
suitable for extrinsic parser evaluation across frameworks be-
cause they are highly specialized to one type of semantic
representation, on the one hand, or very constrained in their
utilization of syntactico-semantic analyses, on the other hand.
Moreover, the top-performing submissions to EPE 2017 ap-
pear to again advance the state of the art moderately.

6For two of the downstream systems, we have confirmed
that ‘pseudonymizaton’ of parser outputs by systematic re-
naming of tags and edge labels has no or only neglible effects
on end-to-end results. In future use of the EPE infrastructure,
we plan to make pseudonymizaton an automated part of the
extrinsic evaluation pipeline.

4



submitted to the task, there is no practical way of
fully eliminating such bias. In generalizing their
sytems for EPE 2017, the application developers
have sought to reduce such affinity to individual
dependency schemes, but end-to-end results (see
§ 8) suggest that more work will be required. By
making all three systems (and all submitted parser
outputs, together with end-to-end results) publicly
available, we hope that parser developers will be
enabled to apply more in-depth error analysis and,
ideally, also to adapt and extend the downstream
systems accordingly.

Finally, among the participating parsers there are
multiple dimensions of variation at play, besides
differences in their choices of syntactico-semantic
output representation. One such dimension is the
parser itself, i.e. whether it internally targets tree-
or graph-shaped target representations; whether
it parses directly into bi-lexical dependencies or
into, say, constituent trees that are converted to
dependencies; whether it employs ‘classic’ ma-
chine learning or neural techniques; whether there
is a layer of (typically heuristic) post-processing
and ‘enhancement’ of dependencies after parsing
proper; and of course its overall ‘maturity’ and
level of output accuracy. Submissions to the task
also differ widely in the amount of training data
used in constructing the parser, ranging from a few
hundred thousand to almost two million tokens of
annotated text. Last but not least, the EPE 2017
task opts to break with a long tradition of CoNLL
and SemEval parsing competitions that start from
preprocessed inputs—by assuming parser inputs
where segmentation into sentences and tokens (and
sometimes also PoS tagging and lemmatization)
have been applied beforehand. In contrast, for a
more ‘realistic’ interpretation of the parsing prob-
lem, the EPE 2017 task starts from original docu-
ments of ‘raw’ running text, such that participating
systems will also differ in how they prepare these
inputs prior to parsing.7

4 Related Work

Even though the bulk of work on parser evaluation
focuses on intrinsic output quality metrics, there
have been a few previous studies devoted to ex-
trinsic parser evaluation. Several studies compare

7To enable participation by teams who might not have a
pipeline for English sentence splitting and tokenization readily
available, the task co-organizers also provided a preprocessed
secondary variant of all parser inputs, which about a third of
all submissions used as a matter of convenience.

different parsers using the same syntactic represen-
tation in downstream tasks such as machine trans-
lation (Popel et al., 2011) and sentiment analysis
(Gómez-Rodríguez et al., 2017), but in the follow-
ing we will focus on studies devoted to the com-
parison of different types of syntactico-semantic
representations in downstream evaluation.

Miyao et al. (2008) compare the performance
of constituent-based, dependency-based, and deep
linguistic parsers on the task of identifying protein–
protein interactions (PPI) in biomedical text. The
dependency parsers assign CoNLL-style analyses
and are compared to PTB-style constituent parsers
and to the HPSG-based Enju parser, where the au-
thors find comparable results for all three repsenta-
tions while emphasizing the importance of domain
adaptation for all parsers.

Johansson and Nugues (2008) also contrast
constituent-based PTB and dependency-based
CoNLLrepresentations in the downstream task
of semantic role labeling. They find that the
dependency-based systems perform slightly bet-
ter in the sub-problem of argument classifica-
tion, whereas the constituent-based parsers achieve
slightly higher results in argument identification.

Buyko and Hahn (2010) compare the 2007 and
2008 CoNLL schemes and Stanford Basic De-
pendencies for the task of event extraction from
biomedical text. They find that the more function-
ally oriented CoNLL representations largely out-
perform the content-oriented Stanford scheme for
this task.

In a SemEval 2010 shared task on Parser Eval-
uation Using Textual Entailments (Yuret et al.,
2010), widely different syntactic frameworks—
PTB constituent trees, CCG analyses, and depen-
dency representations—are compared in the down-
stream task of textual entailment recognition. A
small dataset was constructed containing entail-
ments that rely on syntactic information (such as
active vs. passive sentences). The participants were
then required to create their own entailment recog-
nition system, a step which the parser developers
solved with varying degrees of success, where the
two top-performing systems for this task both em-
ployed a CCG parser.

The previous work that perhaps is most simi-
lar to EPE 2017 is that of Elming et al. (2013),
where the focus is on comparison of different types
of dependency representations and their contribu-
tions over several different downstream tasks: nega-

5



tion resolution, semantic role labeling, statistical
machine translation, sentence compression, and
perspective classification. They contrast the per-
formance of the same parser trained on various
dependency conversions of the Penn Treebank: the
Yamada–Matsumoto scheme, the CoNLL 2007 and
2008 target representations,8 and the annotation
scheme used in the English Web Treebank (an ex-
tension of basic Stanford Dependencies). Elming
et al. (2013) find that the choice of dependency
representation has clear effects on the downstream
results and furthermore that these effects vary de-
pending on the task. For negation resolution for in-
stance, the Yamada–Matsumoto scheme performs
best, whereas the Stanford and LTH schemes lead
to superior SRL performance.

5 Shared Task Set-Up

The EPE 2017 task was sponsored jointly by
the Fourth International Conference on Depen-
dency Linguistics (DepLing) and the 15th Interna-
tional Conference on Parsing Technologies (IWPT).
Parser inputs were released in mid-March 2017,
system submissions due in mid-June, and results
presented on September 20, 2017, as part of the
overlapping programme for DepLing and IWPT.
Further details on the task schedule, technical in-
frastructure, and results are available from the task
web site at:☛

✡
✟
✠http://epe.nlpl.eu

The following sections briefly discuss aspects of
the task set-up that are of broader methodological
interest.

Dependency Representations The term (bi-
lexical) dependency representation in the context
of EPE 2017 is interpreted as a graph whose nodes
are anchored in surface lexical units, and whose
edges represent labeled directed relations between
two nodes. Each node corresponds to a sub-string
of the underlying linguistic signal (input string),
identified by character stand-off pointers. Node
labels can comprise a non-recursive attribute–value
matrix (or ‘feature structure’), for example to en-
code lemma and part of speech information. Each
graph can optionally designate one or more ‘top’
nodes, broadly interpreted as the root-level head or

8Specifically, the output from the LTH converter of Johans-
son and Nugues (2007), using its -conll07 and -oldLTH
options, respectively.

highest-scoping predicate (Kuhlmann and Oepen,
2016). This generalized notion of dependency
graphs encompasses both ‘classic’ syntactic depen-
dency trees as well as structures that relax one or
more of the ‘treeness’ assumptions made in much
syntactic dependency parsing work, as is the case,
for example, in various types of semantic depen-
dency graphs (see § 2 above).

Defining nodes in terms of (in principle arbi-
trary) sub-strings of the surface signal makes the
EPE 2017 view on dependency representations in-
dependent of notions of ‘token’ or ‘word’ (which
can receive divergent interpretations in different
types of dependency representations). Furthermore,
the above definition does not exclude overlapping
or ‘empty’ (i.e. zero-span) node sub-strings, as
might characterize more weakly lexicalized depen-
dency graphs like Elementary Dependency Struc-
tures (EDS; Oepen and Lønning, 2006) or even Ab-
stract Meaning Representation (AMR; Banarescu
et al., 2013), if aligned to surface sub-strings. How-
ever, current EPE 2017 downstream systems only
have limited (if any) support for overlapping or
empty dependency nodes and, hence, may not im-
mediately be able to take full advantage of these
more weakly lexicalized types of semantic (depen-
dency) graphs.

EPE 2017 is (regrettably) limited to parsing En-
glish text. For each downstream application, sep-
arate training, development, and evaluation data
has been provided as ‘running’ clean text (i.e. with-
out information about sentence and token bound-
aries). There are no limitations on which parsing
approaches and resources can be put to use, as long
as the output of the parsing system is a dependency
representation in the above sense (and the parser is
wholly independent of the evaluation data).

Interchange Format To generalize over a broad
variety of different dependency representations and
to provide a uniform interface to the various down-
stream applications, EPE 2017 defines its own in-
terchange format for morpho-syntactico-semantic
dependency graphs. Unlike a venerable string of
tabular-separated (CoNLL-like) file formats, the
EPE serialization of dependency representations
is tokenization-agnostic (nodes can correspond
to arbitrary and potentially overlapping or empty
sub-strings of the underlying document), has no
hard-wired assumptions about the range of admis-
sible annotations on nodes, naturally lends itself
to graphs transcending rooted trees (including dif-

6



ferent notions of ‘roots’ or top-level ‘heads’), and
straightforwardly allows framework-specific exten-
sions.

The EPE interchange format serializes a se-
quence of dependency graphs as a stream of
JSON objects, using the newline-separated so-
called JSON Lines convention. Each dependency
graph has the top-level properties id (an integer)
and nodes, with the latter being an (ordered) ar-
ray of node objects. Each node, in turn, bears its
own (unique) id (an integer), form (a string, the
surface form), and start and end character ranges
(integers); all but the id property are optional (e.g.
to be able to represent ‘empty’ or elided nodes).
Furthermore, nodes can have properties and edges,
where the former is a JSON object representing an
(in principle) arbitrary attribute–value matrix, for
example containing properties like pos, lemma, or
more specific morpho-syntactic features.

The encoding of graph structure in the EPE in-
terchange format is by virtue of the edges prop-
erty on nodes, whose value is an array of edge
objects, each with at least the following properties:
label (a string, the dependency type) and target
(an integer, the target node). Thus, edges in the
EPE encoding are directed from the head (or pred-
icate) to the dependent (or argument). Unlike for
nodes, there is no meaningful ordering information
among edges, i.e. the value of the edges property
is interpreted as a multi-set. Conversely, encoding
each edge as its own JSON object makes possible
framework-specific extensions; for example, a fu-
ture UD parser could output an additional boolean
property, to distinguish so-called ‘basic and ‘en-
hanced’ dependencies.

Finally, adopting the terminology of Kuhlmann
and Oepen (2016), the EPE interchange format sup-
ports the optional designation of one or more ‘top’
nodes. In classic syntactic dependency trees, these
would correspond to a (unique and obligatory) root,
while in the SDP semantic dependencies, for ex-
ample, top nodes correspond to a semantic head or
highest-scoping predicate and can have incoming
edges. In the JSON encoding, nodes can bear a
boolean top property (where absence of the prop-
erty is considered equivalent to a false value).

Software Support To lower the barrier to entry,
the EPE infrastructure makes available a software
utility to (a) convert common file formats for de-
pendency representations into the EPE interchange
format and (b) preprocess the ‘raw’ parser inputs

into sentence and token units with PoS tagging and
lemmatization applied.

Format conversion supports the file formats from
the 2007, 2008, 2009, and 2017 CoNLL shared
tasks, from the 2014 and 2015 SDP parsing tasks at
SemEval, as well as from a couple more specialized
parser output format (as specified by participating
teams). Most pre-existing formats fail to record
sub-string character offsets, but these are required
for the generalized interface to EPE 2017 down-
stream applications. Thus, the converter builds on
the robust alignment tool developed by Dridan and
Oepen (2013), essentially recovering token-level
character offsets by post-hoc anchoring against the
original ‘raw’ document.

For optional preprocessing of running text into
pre-segmented parser inputs, the EPE utility im-
plements a ‘baseline’ stack of simple, yet state-
of-the-art preprocessing tools for sentence split-
ting, tokenization, part of speech tagging, and
lemmatization—essentially the same integration
of off-the-shelf components described by Velldal
et al. (2012). Starting with a re-release of the parser
inputs in mid-April 2017, a readily preprocessed
variant of the EPE 2017 document collection has
been available to prospective participants, to fur-
ther lower the barrier to entry in the task, say for
teams who do not readily have the preprocessing
tools for English available.

6 Downstream Applications

For the EPE 2017 task, an initial set of three state-
of-the-art downstream applications is supported.

6.1 Biological Event Extraction

Event extraction refers to the detection of complex
semantic relations. It differs from pairwise relation
extraction in that events (a) have a defined trigger
word (usually a verb), (b) can have 1 to n argu-
ments, and (c) can act as arguments of other events,
leading to complex nested structures.

The Turku Event Extraction System (TEES) is a
machine learning tool developed for the detection
of events in biomedical texts (Björne, 2014). In the
EPE context, the event dataset used for training and
evaluation is the GENIA corpus from the BioNLP
2009 Shared Task, for which TEES was originally
built (Kim et al., 2009). This corpus defines nine
types of biochemical events annotated for over ten
thousand sentences. A typical GENIA annotation
could for example take the form of a nested two-

7



event structure REGULATION(A, BINDING(B, C))
for a sentence like:

Protein A regulates the binding of pro-
teins B and C

Similarly to dependency parses, events can also be
seen as graphs, with triggers and other entities as
the nodes, and event arguments as the edges. The
trigger entity acts as the root node of the subgraph
that is a single event, and as the child node for
argument edges of any nesting events. TEES is
built around the event graph concept, treating event
extraction as a graph prediction task implemented
with consecutive SVM classification steps.

TEES event prediction proceeds in three main
steps. First, entities are detected by classifying
each surface token into one of the entity classes, or
as a negative. Second, event argument edges are
predicted for each valid pair of detected entities. In
the resulting graph there can be only one entity per
word token, but multiple events can be annotated
for a single word. Therefore, the final step con-
sists of unmerging predicted, overlapping events
to produce the final event graph. As an optional
fourth step, binary modifiers (such as negation or
speculation) can be predicted for each event.

TEES relies heavily on dependency parses for
machine learning example generation. The depen-
dency parse graphs and the event annotation graphs
are aligned at the level of word tokens, after which
the prediction of an event graph for a sentence
can be thought of as converting the syntactic depen-
dency parse into the semantic event graph. In entity
detection, features include PoS tags, information
about nearby tokens in the linear order, but also
token and dependency n-grams built for all depen-
dency paths within a limited distance, originating
from the candidate entity token. In edge detection,
the primary features are built from n-grams con-
structed from the shortest path of dependencies.

Annotated event entities may not correlate ex-
actly with the syntactic tokenization, so entities are
aligned with the parses by using a heuristic to find
a single head token for each entity. This means that
in addition to the dependency graph, and PoS and
dependency type labeling, the granularity of the
tokenization can influence TEES performance.

6.2 Opinion Analysis

The opinion analysis system by Johansson and
Moschitti (2013) marks up expressions of opinion

and emotion in running text. It uses the annota-
tion model and the annotated corpus developed in
the MPQA project (Wiebe et al., 2005). The main
component in this annotation scheme is the opin-
ion expression, which can be realized linguistically
in different ways. Examples of opinion expres-
sions are enjoy, criticize, wonderful, or threat to
humanity. Each opinion expression is connected
to an opinion holder, a lingustic expression refer-
ring to the person expressing the opinion or expe-
riencing the emotion. In some cases, this entity is
not explicitly mentioned in the text, for instance
if it is the author of the text. Furthermore, every
non-objective opinion expression is tagged with a
polarity: positive, negative, or neutral.

To exemplify, in the sentence

“The report is full of absurdities,” Xirao-
Nima said.

the expressions full of absurdities and said are opin-
ion expressions with a negative polarity, and Xirao-
Nima the opinion holder of these two expressions.

The system by Johansson and Moschitti (2013)
required a number of modifications in order to
make it more robust to variation in the structure
of the input representation. The original implemen-
tation made strong assumptions that the input con-
forms to the linguistic model of the 2008 CoNLL
shared task (Surdeanu et al., 2008), which rep-
resents sentences using two separate dependency
graphs (syntactic and semantic). For this reason,
feature extraction functions needed to be reengi-
neered so that they do not assume a particular set
of dependency edge labels or part-of-speech tags,
or that the dependency graph has any particular
structure. Most importantly, this relaxation has
an impact on features that represent syntactic rela-
tions via paths in the dependency graph: Since the
graph is not necessarily a tree, the revised model
represents a set of shortest paths instead of a single
unique path.

Evaluation Metrics In the EPE task, we evalu-
ated submissions in three different sub-problems,
corresponding to the metrics of Johansson and Mos-
chitti (2013):

• marking up opinion expressions in the text,
and determining their linguistic subtype; for
instance, in the example the expression full
of absurdities) is an expressive-subjective el-
ement (ESE) and said a direct-subjective ex-
pression (DSE);

8



• determining the opinion holder for every ex-
tracted opinion expression; for instance, that
Xirao-Nima is the holder of the two expres-
sions in the example; and

• determining the polarity of each extracted sub-
jective expression, for instance that the two
expressions in the examples are both negative.

For each of the above, precision and recall mea-
sures were computed. As explained by Wiebe et al.
(2005), the boundaries of opinion expressions can
be hard to define rigorously, which motivates the
use of a ‘softer’ method for computing the preci-
sion and recall: For instance, if a system proposes
just absurdities instead of the correct full of absur-
dities, this is counted as partially correct.

Furthermore, for the detailed analysis we evalu-
ated the opinion holder extractor separately, using
gold-standard opinion expressions. We refer to this
task as in vitro holder extraction. The reason for
investigating holder extraction separately is that
this task is highly dependent on the design of the
dependency representation, and as we will see in
the empirical results this is also the sub-problem
where we see most of the variation in performance.
In vitro holder extraction scores were used for the
overall ranking of submissions when averaging F1

across the three downstream applications.

6.3 Negation Resolution
The negation resolution system (Sherlock; Lapponi
et al., 2012, 2017) determines, for a given sentence,
the scope of negation cues. The system is built on
the annotations of the Conan Doyle negation cor-
pus (CD; Morante and Daelemans, 2012), where
cues can be either full tokens (e.g. not) or subto-
kens (un in unfortunate) and their scopes, i.e. the
(sub-)tokens they affect. Additionally, in-scope
tokens are marked as negated events or states, pro-
vided that the sentence in question is factual and
the events in question did not take place. In the
example

Since {we have been so} �un�{fortunate
as to miss him} [. . . ]

the prefix cue (in angle brackets) negates the propo-
sition we have been so fortunate as to miss him (i.e.
its scope, in braces), and fortunate (underlined) is
its negated event.

Sherlock looks at negation resolution as a classi-
cal sequence labeling problem, using a Conditional
Random Field (CRF) classifier. The token-wise

annotations in CD contain multiple layers of infor-
mation. Tokens may or may not be negation cues
and they can be either in or out of scope; in-scope
tokens may or may not be negated events, and are
associated with each of the cues they are negated
by. Moreover, scopes may be (partially or fully)
overlapping, with cues affecting other cues and
their scopes. Before presenting the CRF with the
annotations, Sherlock flattens the scopes, convert-
ing the CD representation internally by assigning
one of six labels to each token: out-of-scope, cue,
substring cue, in-scope, event, and negation stop
(defined as the first out-of-scope token after a se-
quence of in-scope tokens), respectively.

The feature set of the classifier includes different
combinations of token-level observations, such as
surface forms, part-of-speech tags, lemmas, and
dependency labels. In addition, we extract both
token and dependency distance to the nearest cue,
together with the full shortest dependency path.
After classification, the hierarchical (overlapping)
negation structures are reconstructed using a set
of post-processing heuristics. It is important to
note that one of these heuristics in previous Sher-
lock versions targeted a specific morpho-syntactic
property directly, to help with factuality detection:
When a token classified with as a negated event ap-
peared within a certain range of a token tagged as
a modal (the MD tag), its label was changed from
negated event to in-scope. In order to accommodate
arbitrary PoS tag sets, this step was removed.

Standard evaluation measures for Sherlock in-
clude scope tokens (ST), scope match (SM), event
tokens (ET), and full negation (FN) F1 scores. ST
and ET are token-level scores for in-scope and
negated event tokens, respectively, where a true
positive is a correctly retrieved token instance of the
relevant class. The remaining measures are stricter,
counting true positives as perfectly retrieved full
scopes, either including (FN) or excluding negated
events (SM).

7 Participating Teams

Of the nine participating teams, eight submitted
complete, well-formed entries. In the following,
we list the teams in the order of their overall rank
and briefly characterize their different entries.

The collaborating Paris and Stanford teams
(Schuster et al., 2017) test two different parsing
strategies, treated as separate submissions to the
task: The Stanford–Paris entry is a text-to-tree

9



parser followed by rule-based augmentation result-
ing in a graph representation, whereas the Paris–
Stanford entry is a direct text-to-graph parser. The
team experiments with eight different representa-
tions, of which six are derived from Stanford and
Universal Dependencies, and the remaining two
are the semantically-oriented DM and PAS repre-
sentations. The Szeged team (Szántó and Farkas,
2017) which ranked between the two entries from
Paris and Stanford, tests three different represen-
tations. The first representation builds a graph
from top-k parse trees weighting each edge ac-
cording to its frequency. The second represen-
tation is a combination of dependency and con-
stituency analyses, and the third and final repre-
sentation collapses dependency labels that are not
useful for the downstream tasks. The Universitat
Pompeu Fabra (UPF) team (Mille et al., 2017) sub-
mitted three entries whose representations range in
depth from a surface syntactic tree to a predicate–
argument graph. The surface-syntactic tree is ob-
tained with an off-the-shelf transition-based parser,
while the latter representations are produced us-
ing a series of graph transductions of the surface
syntactic tree. The team from the East China Nor-
mal University (ECNU) (Ji et al., 2017) use a
neural network–based parser trained on the Uni-
versal Dependencies English treebank. The team
tested five versions of their pipeline, varying the
tagging component in the pipeline as well as the
use of pre-trained embeddings. The Peking team
(Chen et al., 2017) experimented with three archi-
tectures: tree approximation, transition-based, and
maximum subgraph parsing.9 The Prague team
(Straka et al., 2017) participated with the UDPipe
neural transition-based parser trained on several
different versions of the Universal Dependencies
English data. Finally, the University of Washington
(UW) team submitted a single run in the DM repre-
sentation, produced using a neural network–based
parser (Peng et al., 2017).

Among them, the eight teams submitted 48 dis-
tinct ‘runs’ (parser outputs for one specific configu-
ration), whose results we summarize in the follow-
ing section.

9Owing to a technical error in the submission from Peking
which was only detected late, the official scores do not include
evaluation results for the transition-based parser. End-to-end
scores on the development segments are, however, available
for all downstream applications, suggesting that the Peking
transition-based parser performs comparably to their other two
parsers.

8 Experimental Results

Table 1 shows a summary of the experimental re-
sults, for each downstream task as well as over-
all average across the three tasks along with rank,
broken down by participating team and individual
runs. Table 1 further includes information on the
type of dependency representation used in the vari-
ous runs for each team, along with information on
training data used to train the parsers and its input
data: raw text (‘txt’) or the supplied segmented and
tokenized version of the data (‘tt’). The system
with the overall best result was the Stanford–Paris
system with an overall score of 60.51, followed
by the Szeged (58.57) and Paris–Stanford (56.81)
teams. The Stanford–Paris system also has the best
results for the event extraction and negation reso-
lution subtasks, whereas the Szeged system is the
top performer in the opinion analysis subtask.

Dependency Schemes As we can see from Ta-
ble 1, the participating systems employ a variety
of different dependency representations. We ob-
serve both syntactic dependency representations
(CoNLL, SSyntS, Stanford, UD) and more abstract,
semantic (to various degrees) dependency represen-
tations (CCD, DM, DSyntS, PAS, PredArg). The
overall best performing team (Stanford–Paris) ex-
periment with both basic Stanford Dependencies,
UD version 1 (basic and enhanced) dependencies,
as well as with various modifications of the latter.
Their overall best result is obtained using UD en-
hanced dependencies. This also gives the overall
best result for negation resolution, while for event
extraction the run employing Stanford Basic De-
pendencies works marginally better. In comparing
the two main UD representation (basic versus en-
hanced), it is clear that the enhanced representation
actually fares better across all three downstream ap-
plications for this system. Note, however, that this
generalization is dependent on the use of a large
training set (WSJ, Brown, and Genia).

As mentioned previously, the syntactic depen-
dency representations can often be subdivided into
function-oriented versus content-oriented represen-
tations, where CoNLL is an example of the former
and Stanford and UD are examples of the latter. In
the shared task, only the Szeged system employed
the CoNLL representation. This system is the top
performing system for opinion analysis, a result
that might in principle indicate a remaining bias
in this downstream system, as it was originally

10



Event Extraction Negation Resolution Opinion Analysis

Team Run Dependencies Train In P R F P R F P R F Avg #

ECNU

0 UD2 UD2 tt 49.48 39.00 43.62 99.17 45.45 62.33 60.27 57.42 58.81 54.92
1 UD2 UD2 tt 50.72 38.97 44.08 99.17 45.45 62.33 62.86 60.04 61.42 55.94
2 UD2 UD2 tt 52.24 40.23 45.46 99.17 45.45 62.33 62.15 59.75 60.93 56.24 5
3 UD2 UD2 tt 54.53 35.58 43.06 99.18 45.83 62.69 62.11 58.17 60.08 55.28
4 UD2 UD2 tt 60.69 35.76 45.00 99.15 43.94 60.89 63.32 61.07 62.17 56.02

Paris
and

Stanford

0 DM WSJ SDP txt 59.11 37.71 46.04 99.12 42.80 59.78 65.04 51.32 57.37 54.40
1 PAS WSJ SDP txt 52.39 40.98 45.99 99.09 41.29 58.29 65.80 52.73 58.54 54.27
2 UD1B WSJ SDP txt 55.79 44.56 49.55 99.04 39.02 55.98 65.87 61.30 63.50 56.34
3 UD1E WSJ SDP txt 57.48 41.64 48.29 99.06 39.77 56.75 66.22 62.43 64.27 56.44
4 UD1Ep WSJ SDP txt 58.55 39.50 47.17 99.03 38.64 55.59 65.10 61.75 63.38 55.38
5 UD1EpD WSJ SDP txt 55.58 43.37 48.72 99.03 38.64 55.59 66.62 62.03 64.24 56.18
6 UD1EpDm WSJ SDP txt 58.11 39.19 46.81 99.06 39.77 56.75 64.21 60.27 62.18 55.25
7 UD1B WSJ, B, G txt 57.69 42.80 49.14 99.05 39.39 56.36 65.78 60.96 63.28 56.26
8 UD1E WSJ, B, G txt 54.90 44.75 49.31 99.07 40.15 57.14 65.59 62.42 63.97 56.81 3
9 UD1Ep WSJ, B, G txt 58.03 43.02 49.41 99.04 39.02 55.98 66.77 61.04 63.78 56.39

10 UD1EpD WSJ, B, G txt 59.88 40.19 48.10 98.97 36.36 53.18 65.86 60.92 63.29 54.86
11 UD1EpDm WSJ, B, G txt 58.92 40.07 47.70 99.06 39.77 56.75 64.90 60.56 62.65 55.70

Peking

0 DM WSJ SDP tt 59.28 34.22 43.39 99.15 43.94 60.89 65.63 53.64 59.03 54.44
1 CCD WSJ SDP tt 58.26 40.07 47.48 99.15 44.32 61.26 66.57 54.55 59.96 56.23 6
2 DM WSJ SDP tt
3 CCD WSJ SDP tt
4 DM WSJ SDP tt 55.42 40.95 47.10 99.10 41.67 58.67 65.74 53.66 59.09 54.95
5 CCD WSJ SDP tt 54.73 42.17 47.64 99.12 42.42 59.41 66.97 54.84 60.30 55.78

Prague

0 UD2 UD2 txt 53.84 36.61 43.58 99.10 41.83 58.83 62.61 57.21 59.79 54.07
1 UD2 UD2 tt 56.35 38.21 45.54 99.16 44.70 61.62 62.31 59.74 61.00 56.05 7
2 UD2 UD2, L, P txt 53.22 37.87 44.25 99.12 42.97 59.95 63.45 54.63 58.71 54.30
3 UD2 UD2 txt 51.91 36.27 42.70 99.12 42.97 59.95 61.26 56.72 58.90 53.85
4 UD1 UD2 txt 51.71 37.12 43.22 98.90 34.22 50.85 61.00 56.25 58.53 50.86

Stanford
and

Paris

0 SB WSJ, B, G txt 56.93 45.03 50.29 99.22 48.48 65.13 67.26 60.54 63.72 59.71
1 UD1B WSJ SDP txt 57.59 40.76 47.73 99.19 46.21 63.05 67.47 61.30 64.24 58.34
2 UD1E WSJ SDP txt 57.24 40.98 47.76 99.20 46.97 63.75 67.69 61.02 64.18 58.57
3 UD1Ep WSJ SDP txt 56.76 42.74 48.76 99.21 47.35 64.10 67.43 61.58 64.37 59.08
4 UD1EpD WSJ SDP txt 58.86 40.51 47.99 99.19 46.21 63.05 66.68 61.95 64.23 58.42
5 UD1B WSJ, B, G txt 58.75 42.21 49.13 99.22 48.11 64.80 68.18 61.56 64.70 59.54
6 UD1E WSJ, B, G txt 58.36 44.09 50.23 99.24 49.62 66.16 68.86 61.81 65.14 60.51 1
7 UD1Ep WSJ, B, G txt 62.30 41.55 49.85 99.20 46.97 63.75 68.44 62.25 65.20 59.60
8 UD1EpD WSJ, B, G txt 57.47 44.47 50.14 99.21 47.73 64.45 67.64 62.57 65.01 59.87
9 UD1EpDm WSJ SDP txt 55.29 43.21 48.51 99.16 44.70 61.62 66.68 61.42 63.94 58.02

10 UD1EpDm WSJ, B, G txt 57.22 42.83 48.99 99.22 48.48 65.13 67.30 62.01 64.55 59.56

Szeged

0 CoNLL WSJ 02–21 tt 60.20 39.69 47.84 99.17 45.08 61.98 66.73 65.04 65.87 58.57 2
1 CoNLL++ WSJ 02–21 tt 59.09 39.53 47.37 99.14 43.56 60.53 67.04 65.63 66.33 58.07
2 CoNLL−− WSJ 02–21 tt 57.93 39.13 46.71 99.15 44.32 61.26 66.05 60.45 63.13 57.03
3 CoNLL++ WSJ 02–21 tt 55.14 40.48 46.69 99.12 42.80 59.78 65.35 61.28 63.25 56.57
4 CoNLL++ WSJ 02–21 tt 55.12 39.41 45.96 99.11 42.05 59.05 63.37 61.66 62.50 55.84

UPF
0 SSyntS WSJ 02–21 txt 53.21 41.36 46.54 99.12 42.80 59.78 66.25 61.19 63.62 56.65 4
1 DSyntS WSJ 02–21 txt 54.06 39.94 45.94 98.15 20.08 33.34 64.65 56.71 60.42 46.57
2 PredArg WSJ 02–21 txt 56.37 39.63 46.54 97.96 18.18 30.67 61.03 51.50 55.86 44.36

UW 0 DM WSJ SDP tt 54.86 35.14 42.84 99.06 39.77 56.75 67.31 54.41 60.18 53.26 8

Table 1: Summary of results. The columns show, left to right: team name, run number enumerating
multiple team submissions, type of dependency representation, training data used for the parser, input
mode (tokenized or running text), precicion, recall, and F1 across the three downstream applications,
average F1 across applications, and finally the overall rank of the best run for each team. The representation
type is indicated by the following codes: UD1 and UD2 (UD version 1 or 2, respectively), B (basic), E
(enhanced), Ep (enhanced plus-plus), D (diathesis), Dm (diathesis minus-minus), SB (Stanford Basic),
DM (DELPH-IN MRS Dependencies), PAS (Enju Predicate–Argument structure). The training data is
indicated using the following codes: UD2 (English Universal Dependency treebank 2.0), B (Brown), G
(Genia), WSJ sections of the PTB, SDP (SDP subset of WSJ sections 00–20), L (LinES), and P (ParTUT).
The best F1 scores for each team for each task are indicated in bold, while the globally best scores are
indicated with bold and italics.

11



developed towards this representation. It is not
possible, however, to perform a fair comparison
of function-oriented and content-oriented represen-
tations, since no systems contrast these in their
individual runs.

The shared task also features parsers that pro-
duce semantic dependency representations (e.g.
DM, PAS, and CCD), more specifically the Paris–
Stanford, Peking, and UW systems and even
though the semantic representations do not lead
to top results in any of the downstream tasks, there
are still some interesting observations to be gleaned
from the results. The Peking system contrasts
the DM and CCD representations and the Paris–
Stanford system submitted runs both using seman-
tic dependencies (DM and PAS), as well as syn-
tactic dependencies (various UD representations).
The UW system submitted only one run of their
system (DM), which ranked eighth overall. The
Paris–Stanford system thus enables comparison of
(one type of) syntactic versus semantic dependency
representations. Here we observe a clear differ-
ence in the three downstream applications: For
the arguably semantic subtask of negation resolu-
tion, the run producing DM dependencies actually
performs better than the other (syntactic and se-
mantic) variants, whereas the UD basic and UD
enhanced representations give superior results for
event extraction and opinion analysis, respectively.
For the negation task, we also observe that the DM
representation outperforms the other semantic rep-
resentation produced by the Paris–Stanford parser.
For the Peking parser, conversely, we find that the
CCD representations perform slightly better across
all three subtasks compared to DM.

Finally, the Szeged submissions fully embrace
the generalized EPE 2017 interface format and
present a range of ‘hybrid’ dependency representa-
tions for end-to-end evaluation, e.g. merging graphs
from multiple parsers and presenting k-best lists
of analyses in one graph. In general, the resulting
graphs are likely denser and one could plausibly
hope to see positive downstream effects, for exam-
ple increased recall while maintaining comparable
precision levels. Among the current set of Szeged
runs, this expectation is not quite met: Their off-
the-shelf baseline system (using CoNLL-style de-
pendencies and the comparatively simple parser of
Bohnet, 2010) achieves the best Szeged results, av-
eraged across the three subtasks, and ranks second
in the overall competition.

Preprocessing Systems also differ in their
choice of preprocessing. Whereas the Stanford–
Paris, Paris–Stanford, Prague, and UPF systems
make use of their own preprocessors, the rest of the
teams rely on the segmented and tokenized versions
of the data supplied by the task organizers. Only
the Prague runs contrast the two different types of
preprocessing. From their results (comparing runs
0 and 1), we observe a clear performance difference
in all three downstream tasks by varying the pre-
processing strategy, where the parser applied to the
supplied preprocessed data (‘tt’) outperforms the
parser that uses the Prague in-house preprocessing
scheme on raw text (‘txt’). We find that the effect
of preprocessing is even stronger than the addition
of more training data (run 2) for this parser.10

Training Data As we see in Table 1, the sys-
tems also make use of different training data for
their parsers. The training data vary along sev-
eral dimensions, most notably size and domain.
The choice of training data is to a certain extent
governed by the availability of data for a certain
type of dependency representation. The parsers
producing semantic dependencies invariably em-
ploy the data sets released with the SemEval tasks
on semantic dependency parsing, which comprise
sections 00–20 of the Wall Street Journal (Oepen
et al., 2014, 2016) and around 800,000 tokens. In
comparison, the parsers that rely only on the En-
glish UD treebanks (ECNU and Prague) train their
systems on a little more than 200,000 tokens. In
order to assess the influence of training data on
results, we focus here on the systems that system-
atically vary the data sets used for the training of
their parsers (Stanford–Paris, Paris–Stanford and
Prague). For both the Stanford–Paris and Prague
parsers, a larger training set has a clear positive
effect on results. The Paris and Stanford systems
employ the largest training set out of all partici-
pating systems: a concatenation of the Wall Street
Journal, Brown, and GENIA data sets, which in to-
tal comprises 1,692,030 tokens. They contrast the
use of this large data set with the use of WSJ data in
isolation, and find that the best performance across
all three subtasks is obtained with the larger data
set. Regarding the influence of domain, we can not
draw any firm conclusions: The GENIA dataset is

10Note however, that the added training data only com-
prises the additional English UD treebanks LinES and Par-
TUT, for an additional 87,630 tokens. The additional data sets
employed by e.g. the Stanford–Paris team are considerably
larger.

12



taken from the biomedical domain, hence could be
seen to provide an element of domain adaptation
for the event extraction subtask. However, even
though the Stanford–Paris team does achieve the
best result for this subtask with the large, aforemen-
tioned training data set, it is not possible to isolate
the effect of the domain from the size of the data
set based on the submitted runs for this parser.

Reflections In general, it is difficult to compare
results across different teams due to the fact that
these vary along several dimensions: the parser
(and its output quality), the representation, input
preprocessing, and the amount and domain of train-
ing data. The top-ranking system clearly has the
advantage of having one of the currently best per-
forming parsers for English, in terms of intrinsic
evaluation (Dozat et al., 2017), in addition to a very
large training set. It is not always straightforward,
however, to correlate published intrinsic evaluation
scores with the EPE 2017 end-to-end results, of-
ten due to divergent experimental settings along
the above dimensions of variation. We see a few
cases where intrinsic performance appears to pat-
tern with extrinsic, end-to-end results. Both the
Paris–Stanford and Peking parsers (albeit possibly
in earlier variants) participated in the 2014 SDP
task (Oepen et al., 2014), where Peking scored
midly better for the DM target representation—
which appears reflected in higher extrinsic scores,
in particular for the negation resolution and opin-
ion analysis subtasks. Conversely, the UW parser
for the DM target representation currently defines
the intrinsic state of the art (Peng et al., 2017),
but its performance in the EPE 2017 context is
not competetive. UW only submitted one parsing
run and did not provide a system description for
the task; seeing as they worked from the prepro-
cessed EPE 2017 inputs, we conjecture that there
may well be a technical mismatch with what their
parser assumes of its input, for example regarding
lemmatization conventions.

9 Conclusion & Outlook

In our view, the EPE 2017 task marks a success-
ful first step towards a flexible and freely available
infrastructure for extrinsic parser evaluation. We
provide all software, data, submissions, and re-
sults for public download, in the hope of continued
community-driven work in this direction. For ex-
ample, the wealth of empirical results available
from the 2017 task calls for additional error analy-

sis, for example a contrastive, quantitative study of
which downstream items are particularly ‘hard’ or
‘easy’ to all or sub-sets of participating parsers. In
a similar spirit, in-depth qualitative error analysis
of individual runs will likely help identify remain-
ing bias in downstream systems for specific types
of dependency representations, e.g. in the form of
suggesting revisions or additions of features for the
various machine learning components. Finally, it
would likely be instructive to quantitatively con-
strast formal graph properties across submissions,
e.g. various indicators of ‘treeness’ and graph ‘den-
sitity’ (Kuhlmann and Oepen, 2016).

Follow-up experimentation should seek to iso-
late some of the interacting factors that make in-
terpretation of EPE 2017 results across teams chal-
lenging, for example by constructing additional
run series like those of the Paris and Stanford
teams, or by contrasting these parsers with addi-
tional baselines—which could include ‘empty’ or
mechanically produced, nearly content-free depen-
dency graphs as well as parsers that intrinsically
have fallen behind the state of the art. Pushing in
a different direction, we hope to start experimenta-
tion with more abstract dependency representations
(e.g. concept graphs like EDS or AMR), where
graph nodes need not correspond (one-to-one) to
surface tokens.

Looking ahead, inclusion of additional down-
stream systems would immediately strengthen the
EPE infrastructure, of course, and it would natu-
rally drive development towards further automation
of the extrinsic evaluation workflow, ideally maybe
through a self-help portal that transparently sub-
mits user-contributed parser outputs for end-to-end
evaluation on a suitable HPC system. The task co-
organizers will jointly continue to try and engage
a larger community of parser developers and push
the EPE infrastructure towards an actively used and
community supported extrinsic benchmark.

Acknowledgments

We are grateful to Emily M. Bender, Gosse Bouma,
Dan Flickinger, and in particular Joakim Nivre for
in-depth discussions of the task design and inter-
pretation of results. The EPE 2017 shared task
was in part funded by the Nordic e-Infrastructure
Collaboration (NeIC) through their support to the
Nordic Language Processing Laboratory (NLPL;
http://www.nlpl.eu); Anders Søgaard has
been instrumental in making extrinsic parser eval-

13



uation a core work package in NLPL. The first
two authors were supported by the Center for Ad-
vanced Study (CAS) at the Norwegian Academy
of Science and Letters. Richard Johansson was
supported by the Swedish Research Council under
grant 2013–4944. We are grateful to our NLPL and
CAS colleagues and to the Nordic tax payers.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally normal-
ized transition-based neural networks. In Proceed-
ings of the 54th Meeting of the Association for Com-
putational Linguistics. Berlin, Germany, page 2442 –
2452.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse. Sofia, Bulgaria, page 178 – 186.

Jari Björne. 2014. Biomedical Event Extraction with
Machine Learning. Ph.D. thesis, University of
Turku.

Ezra Black, Steve Abney, Dan Flickinger, Claudia
Gdaniec, Ralph Grishman, Phil Harrison, Don Hin-
dle, Robert Ingria, Fred Jelinek, Judith Klavans,
Mark Liberman, Mitch Marcus, S. Roukos, Beatrice
Santorini, and Tomek Strzalkowski. 1991. A proce-
dure for quantitatively comparing the syntactic cov-
erage of English grammars. In Proceedings of the
Workshop on Speech and Natural Language. Pacific
Grove, USA, page 306 – 311.

Bernd Bohnet. 2010. Top accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics. Beijing, China, page 89 – 97.

Ekaterina Buyko and Udo Hahn. 2010. Evaluating the
impact of alternative dependency graph encodings
on solving event extraction tasks. In Proceedings of
the 2010 Conference on Empirical Methods in Nat-
ural Language Processing. Cambridge, MA, USA,
page 982 – 992.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. In Proceedings of the 43rd Meeting of
the Association for Computational Linguistics. Ann
Arbor, MI, USA, page 173 – 180.

Yufei Chen, Junjie Cao, Weiwei Sun, and Xiaojun
Wan. 2017. Peking at EPE 2017: A comparison of
tree approximation, transition-based, and maximum
subgraph models for semantic dependency analysis.

In Proceedings of the 2017 Shared Task on Extrin-
sic Parser Evaluation at the Fourth International
Conference on Dependency Linguistics and the 15th
International Conference on Parsing Technologies.
Pisa, Italy, page 60 – 64.

Michael Collins. 1999. Head-driven statistical models
for natural language parsing. PhD thesis, Univer-
sity of Pennsylvania, Philadelphia.

Marie-Catherine de Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Univer-
sal Stanford dependencies. A cross-linguistic typol-
ogy. In Proceedings of the 9th International Confer-
ence on Language Resources and Evaluation. Reyk-
javik, Iceland, page 4585 – 4592.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of the 5th International Conference on
Language Resources and Evaluation. Genoa, Italy,
page 449 – 454.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies
representation. In Proceedings of the COLING
Workshop on Cross-Framework and Cross-Domain
Parser Evaluation. Manchester, UK, page 1 – 8.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the 2017 CoNLL Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies.
Vancouver, Canada, page 20 – 30.

Rebecca Dridan and Stephan Oepen. 2013. Document
parsing. Towards realistic syntactic analysis. In Pro-
ceedings of the 13th International Conference on
Parsing Technologies. Nara, Japan.

Jacob Elming, Anders Johannsen, Sigrid Klerke,
Emanuele Lapponi, Hector Martinez, and Anders
Søgaard. 2013. Down-stream effects of tree-to-
dependency conversions. In Proceedings of Human
Language Technologies: The 2013 Annual Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics. Atlanta, GA,
USA, page 617 – 626.

Federico Fancellu, Adam Lopez, and Bonnie Webber.
2016. Neural networks for negation scope detec-
tion. In Proceedings of the 54th Meeting of the Asso-
ciation for Computational Linguistics. Berlin, Ger-
many, page 495 – 504.

Carlos Gómez-Rodríguez, Iago Alonso-Alonso, and
David Vilares. 2017. How important is syntac-
tic parsing accuracy? an empirical evaluation
on sentiment analysis. CoRR abs/1706.02141.
http://arxiv.org/abs/1706.02141.

14



Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank. A corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Com-
putational Linguistics 33:355 – 396.

Angelina Ivanova, Stephan Oepen, Lilja Øvrelid, and
Dan Flickinger. 2012. Who did what to whom? A
contrastive study of syntacto-semantic dependencies.
In Proceedings of the Sixth Linguistic Annotation
Workshop. Jeju, Republic of Korea, page 2 – 11.

Tao Ji, Yuekun Yao, Qi Zheng, Yuanbin Wu, and Man
Lan. 2017. ECNU at EPE 2017: Universal depen-
dencies representations parser. In Proceedings of the
2017 Shared Task on Extrinsic Parser Evaluation at
the Fourth International Conference on Dependency
Linguistics and the 15th International Conference
on Parsing Technologies. Pisa, Italy, page 40 – 46.

Richard Johansson and Alessandro Moschitti. 2013.
Relational features in fine-grained opinion analysis.
Computational Linguistics 39(3):473 – 509.

Richard Johansson and Pierre Nugues. 2007. Ex-
tended constituent-to-dependency conversion for En-
glish. In Proceedings of the 16th Nordic Conference
of Computational Linguistics. Tartu, Estonia, page
105 – 112.

Richard Johansson and Pierre Nugues. 2008. The ef-
fect of syntactic representation on semantic role la-
beling. In Proceedings of the 22nd International
Conference on Computational Linguistics. Manch-
ester, UK, page 393 – 400.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview
of BioNLP’09 shared task on event extraction. In
Proceedings of the Workshop on Current Trends in
Biomedical Natural Language Processing: Shared
Task. Boulder, CO, USA, page 1 – 9.

Marco Kuhlmann and Stephan Oepen. 2016. Towards
a catalogue of linguistic graph banks. Computa-
tional Linguistics In press.

Emanuele Lapponi, Stephan Oepen, and Lilja Øvrelid.
2017. EPE 2017: The Sherlock negation resolu-
tion downstream application. In Proceedings of the
2017 Shared Task on Extrinsic Parser Evaluation at
the Fourth International Conference on Dependency
Linguistics and the 15th International Conference
on Parsing Technologies. Pisa, Italy, page 25 – 30.

Emanuele Lapponi, Erik Velldal, Lilja Øvrelid, and
Jonathon Read. 2012. UiO2. Sequence-labeling
negation using dependency features. In Proceedings
of the 1st Joint Conference on Lexical and Computa-
tional Semantics. Montréal, Canada, page 319 – 327.

David M. Magerman. 1995. Statistical decision-tree
models for parsing. In Proceedings of the 33th Meet-
ing of the Association for Computational Linguistics.
Cambridge, MA, USA, page 276 – 283.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpora of English. The Penn Treebank. Computa-
tional Linguistics 19:313 – 330.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, and
Oscar Täckström. 2013. Universal dependency an-
notation for multilingual parsing. In Proceedings
of Association for Computational Linguistics (ACL).
pages 92–97.

Simon Mille, Roberto Carlini, Ivan Latorre, and Leo
Wanner. 2017. UPF at EPE 2017: Transduction-
based deep analysis. In Proceedings of the 2017
Shared Task on Extrinsic Parser Evaluation at the
Fourth International Conference on Dependency
Linguistics and the 15th International Conference
on Parsing Technologies. Pisa, Italy, page 76 – 84.

Yusuke Miyao. 2006. From Linguistic Theory to Syn-
tactic Analysis. Corpus-Oriented Grammar Devel-
opment and Feature Forest Model. Doctoral disser-
tation, University of Tokyo, Tokyo, Japan.

Yusuke Miyao, Rune Sætre, Kenji Sagae, Takuya Mat-
suzaki, and Jun’ichi Tsujii. 2008. Task-oriented
evaluation of syntactic parsers and their representa-
tions. In Proceedings of the 46th Meeting of the As-
sociation for Computational Linguistics. Columbus,
OH, USA, page 46 – 54.

Roser Morante and Walter Daelemans. 2012.
ConanDoyle-neg. Annotation of negation in
Conan Doyle stories. In Proceedings of the 8th
International Conference on Language Resources
and Evaluation. Istanbul, Turkey.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1. A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation. Portorož, Slovenia.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajič, Angelina Ivanova, and Zdeňka Urešová. 2016.
Towards comparability of linguistic graph banks for
semantic parsing. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation. Portorož, Slovenia, page 3991 – 3995.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 Task
8. Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation. Dublin, Ireland, page 63 – 72.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceed-
ings of the 5th International Conference on

15



Language Resources and Evaluation. Genoa, Italy,
page 1250 – 1255.

Woodley Packard, Emily M. Bender, Jonathon Read,
Stephan Oepen, and Rebecca Dridan. 2014. Simple
negation scope resolution through deep parsing: A
semantic solution to a semantic problem. In Pro-
ceedings of the 52nd Meeting of the Association for
Computational Linguistics. Baltimore, MD, USA,
page 69 – 78.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the 55th Meeting of the
Association for Computational Linguistics. Vancou-
ver, Canada, page 2037 – 2048.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings
of the 8th International Conference on Language
Resources and Evaluation. Istanbul, Turkey, page
2089 – 2096.

Martin Popel, David Mareček, Nathan Green, and
Zdeněk Žabokrtský. 2011. Influence of parser
choice on dependency-based mt. In Proceedings of
the Sixth Workshop on Statistical Machine Transla-
tion. Stroudsburg, PA, USA, WMT ’11, pages 433–
439.

Rudolf Rosa, Jan Mašek, David Mareček, Martin
Popel, Daniel Zeman, and Zdeněk Žabokrtskỳ. 2014.
HamleDT 2.0. Thirty dependency treebanks Stan-
fordized. In Proceedings of the 9th International
Conference on Language Resources and Evaluation.
Reykjavik, Iceland, page 2334 – 2341.

Sebastian Schuster, Eric De La Clergerie, Marie
Candito, Benoît Sagot, Christopher D. Manning,
and Djamé Seddah. 2017. Paris and Stanford at
EPE 2017: Downstream evaluation of graph-based
dependency representations. In Proceedings of the
2017 Shared Task on Extrinsic Parser Evaluation at
the Fourth International Conference on Dependency
Linguistics and the 15th International Conference
on Parsing Technologies. Pisa, Italy, page 47 – 59.

Milan Straka, Jana Straková, and Jan Hajič. 2017.
Prague at EPE 2017: The UDPipe system. In
Proceedings of the 2017 Shared Task on Extrinsic
Parser Evaluation at the Fourth International Con-
ference on Dependency Linguistics and the 15th
International Conference on Parsing Technologies.
Pisa, Italy, page 65 – 74.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluís Màrquez, and Joakim Nivre. 2008. The
CoNLL 2008 Shared Task on Joint Parsing of Syn-
tactic and Semantic Dependencies. In Proceedings
of the 12th Conference on Natural Language Learn-
ing. Manchester, UK, page 159 – 177.

Zsolt Szántó and Richárd Farkas. 2017. Szeged at
EPE 2017: First experiments in a generalized syn-
tactic parsing framework. In Proceedings of the

2017 Shared Task on Extrinsic Parser Evaluation at
the Fourth International Conference on Dependency
Linguistics and the 15th International Conference
on Parsing Technologies. Pisa, Italy, page 75 – 79.

Erik Velldal, Lilja Øvrelid, Jonathon Read, and
Stephan Oepen. 2012. Speculation and negation:
Rules, rankers, and the role of syntax. Computa-
tional Linguistics 38(2):369 – 410.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language Resources and Evalua-
tion 39(2-3):165 – 210.

Deniz Yuret, Aydin Han, and Zehra Turgut. 2010.
Semeval-2010 task 12: Parser evaluation using tex-
tual entailments. In Proceedings of the 5th Interna-
tional Workshop on Semantic Evaluation. Strouds-
burg, PA, USA, SemEval ’10, page 51 – 56.

Daniel Zeman. 2008. Reusable tagset conversion us-
ing tagset drivers. In Proceedings of the 6th Interna-
tional Conference on Language Resources and Eval-
uation. Marrakech, Morocco, page 213 – 218.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
jic, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Hajic jr.,
Jaroslava Hlavacova, Václava Kettnerová, Zdenka
Uresova, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria
dePaiva, Kira Droganova, Héctor Martínez Alonso,
Çağrı Çöltekin, Umut Sulubacak, Hans Uszkoreit,
Vivien Macketanz, Aljoscha Burchardt, Kim Harris,
Katrin Marheinecke, Georg Rehm, Tolga Kayadelen,
Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily
Pitler, Saran Lertpradit, Michael Mandl, Jesse Kirch-
ner, Hector Fernandez Alcalde, Jana Strnadová,
Esha Banerjee, Ruli Manurung, Antonio Stella, At-
suko Shimada, Sookyoung Kwak, Gustavo Men-
donca, Tatiana Lando, Rattima Nitisaroj, and Josie
Li. 2017. Conll 2017 shared task: Multilingual pars-
ing from raw text to universal dependencies. In Pro-
ceedings of the CoNLL 2017 Shared Task: Multi-
lingual Parsing from Raw Text to Universal Depen-
dencies. Association for Computational Linguistics,
Vancouver, Canada, pages 1–19.

16


