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Abstract

Carsim is a program that automatically
converts narratives into 3D scenes. Carsim
considers authentic texts describing road
accidents, generally collected from web
sites of Swedish newspapers or transcribed
from hand-written accounts by victims of
accidents. One of the program’s key fea-
tures is that it animates the generated scene
to visualize events.

To create a consistent animation, Carsim
extracts the participants mentioned in a
text and identifies what they do. In this
paper, we focus on the extraction of tem-
poral relations between actions. We first
describe how we detect time expressions
and events. We then present a machine
learning technique to order the sequence
of events identified in the narratives. We
finally report the results we obtained.

1 Extraction of Temporal Information
and Scene Visualization

Carsim is a program that generates 3D scenes from
narratives describing road accidents (Johansson et
al., 2005; Dupuy et al., 2001). It considers au-
thentic texts, generally collected from web sites
of Swedish newspapers or transcribed from hand-
written accounts by victims of accidents.

One of Carsim’s key features is that it animates
the generated scene to visualize events described
in the narrative. The text below, a newspaper arti-
cle with its translation into English, illustrates the
goals and challenges of it. We bracketed the enti-
ties, time expressions, and events and we anno-
tated them with identifiers, denoted respectively
oi, tj, andek:

En { bussolycka} e1 i södra Afghanistan
krävdee2 { på torsdagen} t1 { 20
dödsoffer} o1 . Ytterligare { 39
personer} o2 skadadese3 i olyckane4.

Busseno3 { var på väg} e5 från Kanda-
har mot huvudstaden Kabul närdeno4

under en omkörninge6 kördee7

av vägbanano5 och voltadee8,
meddeladee9 general Salim Khan,
biträdande polischef i Kandahar.

TT-AFP & Dagens Nyheter, July 8,
2004

{ 20 persons} o1 diede2 in a {bus
accident} e1 in southern Afghanistan
{ on Thursday} t1. In addition, {39
persons} o2 { were injured} e3 in the
accidente4.

The buso3 { was on its way} e5 from
Kandahar to the capital Kabul when
ito4 { drove off} e7 the roado5 while
overtakinge6 and {flipped over} e8,
saide9 General Salim Khan, assistant
head of police in Kandahar.

The text above, our translation.

To create a consistent animation, the program
needs to extract and understand who the partici-
pants are and what they do. In the case of the ac-
cident above, it has to:

1. Detect the involved physical entitieso3, o4,
ando5.

2. Understand that the pronouno4 refers too3.

3. Detect the eventse6, e7, ande8.



4. Link the participants to the events using se-
mantic roles or grammatical functions and in-
fer the unmentioned vehicle that is overtaken.

5. Understand that the order of the events ise6-
e7-e8.

6. Detect the time expressiont1 to anchor tem-
porally the animation.

In this paper, we describe how we address tasks
3, 5, and 6 within the Carsim program, i.e., how
we detect, interpret, and order events and how we
process time expressions.

2 Previous Work

Research on the representation of time, events,
and temporal relations dates back the beginning
of logic. It resulted in an impressive number of
formulations and models. In a review of contem-
porary theories and an attempt to unify them, Ben-
nett and Galton (2004) classified the most influen-
tial formalisms along three lines. A first approach
is to consider events as transitions between states
as in STRIPS (Fikes and Nilsson, 1971). A sec-
ond one is to map events on temporal intervals
and to define relations between pairs of intervals.
Allen’s (1984) 13 temporal relations are a widely
accepted example of this. A third approach is to
reify events, to quantify them existentially, and
to connect them to other objects using predicates
based on action verbs and their modifiers (David-
son, 1967). The sentenceJohn saw Mary in Lon-
don on Tuesdayis then translated into the logical
form: ∃ǫ[Saw(ǫ, j,m)∧Place(ǫ, l)∧T ime(ǫ, t)].

Description of relations between time, events,
and verb tenses has also attracted a considerable
interest, especially in English. Modern work on
temporal event analysis probably started with Re-
ichenbach (1947), who proposed the distinction
between the point of speech, point of reference,
and point of event in utterances. This separation
allows for a systematic description of tenses and
proved to be very powerful.

Many authors proposed general principles to
extract automatically temporal relations between
events. A basic observation is that the tempo-
ral order of events is related to their narrative or-
der. Dowty (1986) investigated it and formulated a
Temporal Discourse Interpretation Principleto in-
terpret the advance of narrative time in a sequence
of sentences. Lascarides and Asher (1993) de-
scribed a complex logical framework to deal with

events in simple past and pluperfect sentences.
Hitzeman et al. (1995) proposed a constraint-
based approach taking into account tense, aspect,
temporal adverbials, and rhetorical structure to an-
alyze a discourse.

Recently, groups have used machine learn-
ing techniques to determine temporal relations.
They trained automatically classifiers on hand-
annotated corpora. Mani et al. (2003) achieved
the best results so far by using decision trees to
order partially events of successive clauses in En-
glish texts. Boguraev and Ando (2005) is another
example of it for English and Li et al. (2004) for
Chinese.

3 Annotating Texts with Temporal
Information

Several schemes have been proposed to anno-
tate temporal information in texts, see Setzer and
Gaizauskas (2002),inter alia. Many of them were
incompatible or incomplete and in an effort to rec-
oncile and unify the field, Ingria and Pustejovsky
(2002) introduced the XML-based Time markup
language (TimeML).

TimeML is a specification language whose
goal is to capture most aspects of temporal rela-
tions between events in discourses. It is based
on Allen’s (1984) relations and a variation of
Vendler’s (1967) classification of verbs. It de-
fines XML elements to annotate time expressions,
events, and “signals”. TheSIGNAL tag marks sec-
tions of text indicating a temporal relation. It
includes function words such aslater and not.
TimeML also features elements to connect entities
using different types of links, most notably tem-
poral links,TLINKs, that describe the temporal re-
lation holding between events or between an event
and a time.

4 A System to Convert Narratives of
Road Accidents into 3D Scenes

4.1 Carsim

Carsim is a text-to-scene converter. From a nar-
rative, it creates a complete and unambiguous 3D
geometric description, which it renders visually.
Carsim considers authentic texts describing road
accidents, generally collected from web sites of
Swedish newspapers or transcribed from hand-
written accounts by victims of accidents. One of
the program’s key features is that it animates the
generated scene to visualize events.



The Carsim architecture is divided into two
parts that communicate using a frame representa-
tion of the text. Carsim’s first part is a linguistic
module that extracts information from the report
and fills the frame slots. The second part is a vir-
tual scene generator that takes the structured rep-
resentation as input, creates the visual entities, and
animates them.

4.2 Knowledge Representation in Carsim

The Carsim language processing module reduces
the text content to a frame representation – a tem-
plate – that outlines what happened and enables a
conversion to a symbolic scene. It contains:

• Objects. They correspond to the physical en-
tities mentioned in the text. They also include
abstract symbols that show in the scene. Each
object has atype, that is selected from a pre-
defined, finite set. An object’s semantics is
a separate geometric entity, where its shape
(and possibly its movement) is determined by
its type.

• Events. They correspond intuitively to an ac-
tivity that goes on during a period in time
and here to the possible object behaviors. We
represent events as entities with a type taken
from a predefined set, where an event’s se-
mantics will be a proposition paired with a
point or interval in time during which the
proposition is true.

• Relations and Quantities. They describe spe-
cific features of objects and events and how
they are related to each other. The most obvi-
ous examples of such information arespatial
information about objects andtemporal in-
formation about events. Other meaningful re-
lations and quantities include physical prop-
erties such as velocity, color, and shape.

5 Time and Event Processing

We designed and implemented a generic com-
ponent to extract temporal information from the
texts. It sits inside the natural language part of
Carsim and proceeds in two steps. The first step
uses a pipeline of finite-state machines and phrase-
structure rules that identifies time expressions, sig-
nals, and events. This step also generates a feature
vector for each element it identifies. Using the
vectors, the second step determines the temporal

relations between the extracted events and orders
them in time. The result is a text annotated using
the TimeML scheme.

We use a set of decision trees and a machine
learning approach to find the relations between
events. As input to the second step, the decision
trees take sequences of events extracted by the
first step and decide the temporal relation, possi-
bly none, between pairs of them. To run the learn-
ing algorithm, we manually annotated a small set
of texts on which we trained the trees.

5.1 Processing Structure

We use phrase-structure rules and finite state ma-
chines to mark up events and time expressions. In
addition to the identification of expressions, we of-
ten need to interpret them, for instance to com-
pute the absolute time an expression refers to. We
therefore augmented the rules with procedural at-
tachments.

We wrote a parser to control the processing flow
where the rules, possibly recursive, apply regular
expressions, call procedures, and create TimeML
entities.

5.2 Detection of Time Expressions

We detect and interpret time expressions with a
two-level structure. The first level processes in-
dividual tokens using a dictionary and regular ex-
pressions. The second level uses the results from
the token level to compute the meaning of multi-
word expressions.

Token-Level Rules. In Swedish, time expres-
sions such asen tisdagseftermiddag‘a Tuesday
afternoon’ use nominal compounds. To decode
them, we automatically generate a comprehensive
dictionary with mappings from strings onto com-
pound time expressions. We decode other types
of expressions such as2005-01-14using regular
expressions

Multiword-Level Rules. We developed a
grammar to interpret the meaning of multiword
time expressions. It includes instructions on how
to combine the values of individual tokens for ex-
pressions such as {vid lunchtid} t1 { en tisdagefter-
middag} t2 ‘{at noon}t1 {a Tuesday afternoon}t2 ’.
The most common case consists in merging the to-
kens’ attributes to form a more specific expression.
However, relative time expressions such asi tors-
dags‘last Tuesday’ are more complex. Our gram-
mar handles the most frequent ones, mainly those



that need the publishing date for their interpreta-
tion.

5.3 Detection of Signals

We detect signals using a lexicon and naïve string
matching. We annotate each signal with a sense
where the possible values are:negation, before, af-

ter, later, when, andcontinuing. TimeML only de-
fines one attribute for theSIGNAL tag, an identifier,
and encodes the sense as an attribute of theLINKs
that refer to it. We found it more appropriate to
store the sense directly in theSIGNAL element, and
so we extended it with a second attribute.

We use the sense information in decision trees
as a feature to determine the order of events. Our
strategy based on string matching results in a lim-
ited overdetection. However, it does not break the
rest of the process.

5.4 Detection of Events

We detect the TimeML events using a part-of-
speech tagger and phrase-structure rules. We con-
sider that all verbs and verb groups are events. We
also included some nouns or compounds, which
are directly relevant to Carsim’s application do-
main, such asbilolycka ‘car accident’ orkrock
‘collision’. We detect these nouns through a set
of six morphemes.

TimeML annotates events with three features:
aspect, tense, and “class”, where the class corre-
sponds to the type of the event. The TimeML spec-
ifications define seven classes. We kept only the
two most frequent ones: states and occurrences.

We determine the features using procedures at-
tached to each grammatical construct we extract.
The grammatical features aspect and tense are
straightforward and a direct output of the phrase-
structure rules. To infer the TimeML class, we use
heuristics such as these ones: predicative clauses
(copulas) are generally states and verbs in preterit
are generally occurrences.

The domain, reports of car accidents, makes
this approach viable. The texts describe sequences
of real events. They are generally simple, to the
point, and void of speculations and hypothetical
scenarios. This makes the task of feature identifi-
cation simpler than it is in more general cases.

In addition to the TimeML features, we extract
the grammatical properties of events. Our hypoth-
esis is that specific sequences of grammatical con-
structs are related to the temporal order of the de-
scribed events. The grammatical properties con-

sist of the part of speech, noun (NOUN) or verb
(VB). Verbs can be finite (FIN) or infinitive (INF).
They can be reduced to a single word or part of a
group (GR). They can be a copula (COP), a modal
(MOD), or a lexical verb. We combine these prop-
erties into eight categories that we use in the fea-
ture vectors of the decision trees (see...EventStruc-

ture in Sect. 6.2).

6 Event Ordering

TimeML defines three different types of links:
subordinate (SLINK), temporal (TLINK), and aspec-
tual (ALINK). Aspectual links connect two event in-
stances, one being aspectual and the other the ar-
gument. As its significance was minor in the visu-
alization of car accidents, we set aside this type of
link.

Subordinate links generally connect signals to
events, for instance to mark polarity by linking a
not to its main verb. We identify these links simul-
taneously with the event detection. We augmented
the phrase-structure rules to handle subordination
cases at the same time they annotate an event. We
restricted the cases to modality and polarity and
we set aside the other ones.

6.1 Generating Temporal Links

To order the events in time and create the tempo-
ral links, we use a set of decision trees. We apply
each tree to sequences of events where it decides
the order between two of the events in each se-
quence. Ife1, ..., en are the events in the sequence
they appear in the text, the trees correspond to the
following functions:

fdt1(ei, ei+1) ⇒ trel(ei, ei+1)

fdt2(ei, ei+1, ei+2) ⇒ trel(ei, ei+1)

fdt3(ei, ei+1, ei+2) ⇒ trel(ei+1, ei+2)

fdt4(ei, ei+1, ei+2) ⇒ trel(ei, ei+2)

fdt5(ei, ei+1, ei+2, ei+3) ⇒ trel(ei, ei+3)

The possible output values of the trees are:si-
multaneous, after, before, is_included, includes,
andnone. These values correspond to the relations
described by Setzer and Gaizauskas (2001).

The first decision tree should capture more gen-
eral relations between two adjacent events with-
out the need of a context. Decision treesdt2 and
dt3 extend the context by one event to the left re-
spectively one event to the right. They should cap-
ture more specific phenomena. However, they are
not always applicable as we never apply a decision



tree when there is a time expression between any
of the events involved. In effect, time expressions
“reanchor” the narrative temporally, and we no-
ticed that the decision trees performed very poorly
across time expressions.

We complemented the decision trees with a
small set of domain-independent heuristic rules
that encode common-sense knowledge. We as-
sume that events in the present tense occur after
events in the past tense and that all mentions of
events such asolycka ‘accident’ refer to the same
event. In addition, the Carsim event interpreter
recognizes some semantically motivated identity
relations.

6.2 Feature Vectors

The decision trees use a set of features correspond-
ing to certain attributes of the considered events,
temporal signals between them, and some other
parameters such as the number of tokens separat-
ing the pair of events to be linked. We list below
the features offdt1 together with their values. The
first event in the pair is denoted by amainEvent pre-
fix and the second one byrelatedEvent:

• mainEventTense: none, past, present, future,
NOT_DETERMINED.

• mainEventAspect: progressive, perfective, per-

fective_progressive, none, NOT_DETERMINED.

• mainEventStructure: NOUN, VB_GR_COP_INF,
VB_GR_COP_FIN, VB_GR_MOD_INF,
VB_GR_MOD_FIN, VB_GR, VB_INF, VB_FIN,
UNKNOWN.

• relatedEventTense: (asmainEventTense)

• relatedEventAspect: (asmainEventAspect)

• relatedEventStructure: (asmainEventStructure)

• temporalSignalInbetween: none, before, after,
later, when, continuing, several.

• tokenDistance: 1, 2 to 3, 4 to 6, 7 to 10, greater

than 10.

• sentenceDistance: 0, 1, 2, 3, 4, greater than 4.

• punctuationSignDistance: 0, 1, 2, 3, 4, 5, greater

than 5.

The four other decision trees consider more
events but use similar features. The values for the
...Distance features are of course greater.

6.3 Temporal Loops

The process described above results in an overgen-
eration of temporal links. As some of them may be
conflicting, a post-processing module reorganizes
them and discards the temporal loops.

The initial step of the loop resolution assigns
each link with a score. This score is created by the
decision trees and is derived from the C4.5 metrics
(Quinlan, 1993). It reflects the accuracy of the leaf
as well as the overall accuracy of the decision tree
in question. The score for links generated from
heuristics is rule dependent.

The loop resolution algorithm begins with an
empty set of orderings. It adds the partial order-
ings to the set if their inclusion doesn’t introduce
a temporal conflict. It first adds the links with the
highest scores, and thus, in each temporal loop, the
ordering with the lowest score is discarded.

7 Experimental Setup and Evaluation

As far as we know, there is no available time-
annotated corpus in Swedish, which makes the
evaluation more difficult. As development and
test sets, we collected approximately 300 reports
of road accidents from various Swedish newspa-
pers. Each report is annotated with its publishing
date. Analyzing the reports is complex because
of their variability in style and length. Their size
ranges from a couple of sentences to more than a
page. The amount of details is overwhelming in
some reports, while in others most of the informa-
tion is implicit. The complexity of the accidents
described ranges from simple accidents with only
one vehicle to multiple collisions with several par-
ticipating vehicles and complex movements.

We manually annotated a subset of our corpus
consisting of 25 texts, 476 events and 1,162 tem-
poral links. We built the trees automatically from
this set using the C4.5 program (Quinlan, 1993).
Our training set is relatively small and the num-
ber of features we use relatively large for the set
size. This can produce a training overfit. However,
C4.5, to some extent, makes provision for this and
prunes the decision trees.

We evaluated three aspects of the temporal in-
formation extraction modules: the detection and
interpretation of time expressions, the detection
and interpretation of events, and the quality of the
final ordering. We report here the detection of
events and the final ordering.



Feature Ncorrect Nerroneous Correct
Tense 179 1 99.4%
Aspect 161 19 89.4%
Class 150 30 83.3%

Table 1: Feature detection for 180 events.

7.1 Event Detection

We evaluated the performance of the event detec-
tion on a test corpus of 40 previously unseen texts.
It should be noted that we used a simplified defi-
nition of what an event is, and that the manual an-
notation and evaluation were both done using the
same definition (i.e. all verbs, verb groups, and a
small number of nouns are events). The system
detected 584 events correctly, overdetected 3, and
missed 26. This gives a recall of 95.7%, a preci-
sion of 99.4%, and anF -measure of 97.5%.

The feature detection is more interesting and
Table 1 shows an evaluation of it. We carried out
this evaluation on the first 20 texts of the test cor-
pus.

7.2 Evaluation of Final Ordering

We evaluated the final ordering with the method
proposed by Setzer and Gaizauskas (2001). Their
scheme is comprehensive and enables to compare
the performance of different systems.

Description of the Evaluation Method. Set-
zer and Gaizauskas carried out an inter-annotator
agreement test for temporal relation markup.
When evaluating the final ordering of a text, they
defined the setE of all the events in the text and
the setT of all the time expressions. They com-
puted the set(E ∪ T )× (E ∪ T ) and they defined
the setsS⊢, I⊢, andB⊢ as the transitive closures
for the relationssimultaneous, includes, andbe-
fore, respectively.

If S⊢

k and S⊢
r represent the setS⊢ for the an-

swer key (“Gold Standard”) and system response,
respectively, the measures of precision and recall
for thesimultaneousrelation are:

R =
|S⊢

k ∩ S⊢
r |

|S⊢

k |
P =

|S⊢

k ∩ S⊢
r |

|S⊢
r |

For an overall measure of recall and precision,
Setzer and Gaizauskas proposed the following for-
mulas:

R =
|S⊢

k ∩ S⊢
r | + |B⊢

k ∩ B⊢
r | + |I⊢k ∩ I⊢r |

|S⊢

k | + |B⊢

k | + |I⊢k |

P =
|S⊢

k ∩ S⊢
r | + |B⊢

k ∩ B⊢
r | + |I⊢k ∩ I⊢r |

|S⊢
r | + |B⊢

r | + |I⊢r |

They used the classical definition of theF -
measure: the harmonic means of precision and re-
call. Note that the precision and recall are com-
puted per text, not for all relations in the test set
simultaneously.

Results. We evaluated the output of the Car-
sim system on 10 previously unseen texts against
our Gold Standard. As a baseline, we used a sim-
ple algorithm that assumes that all events occur in
the order they are introduced in the narrative. For
comparison, we also did an inter-annotator evalu-
ation on the same texts, where we compared the
Gold Standard, annotated by one of us, with the
annotation produced by another member in our
group.

As our system doesn’t support comparisons of
time expressions, we evaluated the relations con-
tained in the setE × E. We only counted the
reflexive simultaneousrelation once per tuples
(ex, ey) and(ey, ex) and we didn’t count relations
(ex, ex).

Table 2 shows our results averaged over the
10 texts. As a reference, we also included Set-
zer and Gaizauskas’ averaged results for inter-
annotator agreement on temporal relations in six
texts. Their results are not directly comparable
however as they did the evaluation over the set
(E ∪ T ) × (E ∪ T ) for English texts of another
type.

Comments. The computation of ratios on the
transitive closure makes Setzer and Gaizauskas’
evaluation method extremely sensitive. Missing a
single link often results in a loss of scores of gener-
ated transitive links and thus has a massive impact
on the final evaluation figures.

As an example, one of our texts contains six
events whose order ise4 < e5 < e6 < e1 < e2 <
e3. The event module automatically detects the
chainse4 < e5 < e6 ande1 < e2 < e3 correctly,
but misses the linke6 < e1. This gives a recall of
6/15 = 0.40. When considering evaluations per-
formed using the method above, it is meaningful
to have this in mind.

8 Carsim Integration

The visualization module considers a subset of the
detected events that it interprets graphically. We



Evaluation Averagenwords Averagenevents Pmean Rmean Fmean

Gold vs. Baseline 98.5 14.3 49.42 29.23 35.91
Gold vs. Automatic " " 54.85 37.72 43.97
Gold vs. Other Annotator " " 85.55 58.02 68.01
Setzer and Gaizauskas 312.2 26.7 67.72 40.07 49.13

Table 2: Evaluation results for final ordering averaged per text (withP , R, andF in %).

call this subset the Carsim events. Once the event
processing has been done, Carsim extracts these
specific events from the full set using a small do-
main ontology and inserts them into the template.
We use the event relations resulting from temporal
information extraction module to order them. For
all pairs of events in the template, Carsim queries
the temporal graph to determine their relation.

Figure 1 shows a part of the template represent-
ing the accident described in Section 1. It lists
the participants, with the unmentioned vehicle in-
ferred to be a car. It also shows the events and
their temporal order. Then, the visualization mod-
ule synthesizes a 3D scene and animates it. Fig-
ure 2 shows four screenshots picturing the events.

Figure 1: Representation of the accident in the ex-
ample text.

9 Conclusion and Perspectives

We have developed a method for detecting time
expressions, events, and for ordering these events
temporally. We have integrated it in a text-to-

scene converter enabling the animation of generic
actions.

The module to detect time expression and inter-
pret events performs significantly better than the
baseline technique used in previous versions of
Carsim. In addition, it should to be easy to sep-
arate it from the Carsim framework and reuse it in
other domains.

The central task, the ordering of all events,
leaves lots of room for improvement. The accu-
racy of the decision trees should improve with a
larger training set. It would result in a better over-
all performance. Switching from decision trees to
other training methods such as Support Vector Ma-
chines or using semantically motivated features, as
suggested by Mani (2003), could also be sources
of improvements.

More fundamentally, the decision tree method
we have presented is not able to take into account
long-distance links. Investigation into new strate-
gies to extract such links directly without the com-
putation of a transitive closure would improve re-
call and, given the evaluation procedure, increase
the performance.
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