
CP/M-68K TM
Operating System

System Guide

Copyright (C) 1983
Digital Research

P.O. Box 579
167 Central Avenue

Pacific Grove, CA 93950
(408)-649-3896

TWX 910 360 5001

All Rights Reserved

COPYRIGHT
Copyright (D 1983 by Digital Research. All rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language
or computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written permission of Digital
Research, Post Office Box 579, Pacific Grove, California, 93950.

DISCLAIMER
Digital Research makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or fitness for any particular
purpose. Further, Digital Research reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of Digital Research to notify
any person of such revision or changes.

TRADEMARKS
CP/M and CP/M-86 are registered trademarks of Digital Research. CP/M-80, CP/M-68K, DDT,
and MP/M are trademarks of Digital Research. Motorola MC68000 is a registered trademark of
Motorola, Incorporated. EXORmacs, EXORterm, and MACSbug are trademarks of Motorola,
Inc. VAX/VMS is a trademark of Digital Equipment Corporation. UNIX is a trademark of Bell
Laboratories. TI Silent 700 Terminal is a registered trademark of Texas Instruments,
Incorporated.

The CP/M-68K Operating System System Guide was prepared using the Digital Research TEX
Text Formatter and printed in the United States of America.

First Edition: January 1983

Foreword

CP/M-68K" is a single-user general purpose operating system. it is designed for use with
any disk-based computer using a Motorola, MC68000 or compatible processor. CP/M-68K is
modular in design, and can be modified to suit the needs of a particular installation.

The hardware interface for a particular hardware environment is supported by the OEM or
CP/M-68K distributor. Digital Research supports the user interface to CP/M-68K as documented
in the CP/M-68K Operating System User's Guide. Digital Research does not support any
additions or modifications made to CP/M-68K by the OEM or distributor.
Purpose and Audience

This manual is intended to provide the information needed by a systems programmer in
adapting CP/M-68K to a particular hardware environment. A substantial degree of programming
expertise is assumed on the part of the reader, and it is not expected that typical users of
CP/M-68K will need or want to read this manual.
Prerequisites and Related Publications

In addition to this manual, the reader should be familiar with the architecture of the
Motorola MC68000 as described in the Motorola 16-Bit Microprocessor User's Manual (third
edition), the CP/M-68K User's and Programmer's Guides, and, of course, the details of the
hardware environment where CP/M-68K is to be implemented.
How This Book is Organized

Section 1 presents an overview of CP/M-68K and describes its major components.
Section 2 discusses the adaptation of CP/M-68K for your specific hardware system. Section 3
discusses bootstrap procedures and related information. Section 4 describes each BIOS function
including entry parameters and return values. Section 5 describes the process of creating a
BIOS for a custom hardware interface. Section 6 discusses how to get CP/M working for the first
time on a new hardware environment. Section 7 describes a procedure for causing a command to
be automatically executed on cold boot. Section 8 describes the PUTBOOT utility, which is
useful in generating a bootable disk.

Appendix A describes the contents of the CP/M-68K distribution disks. Appendixes B,
C, and D are listings of various BIOSes. Appendix E contains a listing of the PUTBOOT utility
program. Appendix F describes the Motorola S-record representation for programs.

Table of Contents
1 System Overview

 1.1 Introduction 1
 1.2 CP/M-68K Organization 3
 1.3 Memory Layout 3
 1.4 Console Command Processor 4
 1.5 Basic Disk Operating System (BDOS) 5
 1.6 Basic I/O System (BIOS) 5
 1.7 I/O Devices 5
 1.7.1 Character Devices 5
 1.7.2 Character Devices 5
 1.8 System Generation and Cold Start Operation 6

2 System Generation
 2.1 Overview 7
 2.2 Creating CPM.SYS 7
 2.3 Relocating Utilities 8

3 Bootstrap Procedures
 3.1 Bootstrapping overview 9
 3.2 Creating the Cold Boot Loader 10
 3.2.1 Writing a Loader BIOS 10
 3.2.2 Building CPMLDR.SYS 11

4 BIOS Functions
 4.1 Introduction 13

Table of Contents
(continued)

5 Creating a BIOS
 5.1 Overview 39
 5.2 Disk Definition Tables 39
 5.2.1 Disk Parameter Header 40
 5.2.2 Sector Translate Table 41
 5.2.3 Disk Parameter Block 42

5.3 Disk Blocking Guide 45
 5.3.1 A Simple Approach 46
 5.3.2 Some Refinements 46
 5.3.3 Track Buffering 47
 5.3.4 LRU Replacement 47
 5.3.5 The New Block Flag 48

6 Installing and Adapting the Distributed BIOS and CP/M-68K
 6.1 Overview 49
 6.2 Booting on an EXORmacs 49
 6.3 Bringing up CP/M-68K Using S-record Files 50

7 Cold Boot Automatic Command Execution
7.1 Overview 51
7.2 Setting up Cold Boot Automatic Command Execution 51

8 The PUTBOOT Utility
8.1 PUTBOOT Operation 53
8.2 Invoking PUTBOOT 53

Appendixes
A Contents of Distribution Disks 55
B Sample BIOS Written in Assembly Language 59
C Sample Loader BIOS Written in Assembly Language 67
D EXORmacs BIOS Written in C 73
B PUTBOOT Utility Assembly Language Source 101
F The Motorola S-record Format 107

F.1 S-record Format 107
F.2 S-record Types 108

G CP/M-68K Error Messages 109

Tables and Figures

Tables
 1-1. CP/M-68K Terms 1
 4-1. BIOS Register Usage 14
 4-2. BIOS Functions 14
 4-3. CP/M-68K Logical Device Characteristics 33
 4-4. I/O Byte Field Definitions 34
 5-1. Disk Parameter Header Elements 40
 5-2. Disk Parameter Block Fields 42
 5-3. BSH and BLM Values 44
 5-4. EXM Values 45
 A-1. Distribution Disk Contents 55
 F-1. S-Record Field Contents 107
 F-2. S-Record Types 109
 G-1. CP/M-68K Error Messages 109

Figures
1-1. CP/M-68K Interfaces 3
1-2. Typical CP/M-68K Memory Layout 4
4-1. Memory Region Table Format 32
4-2. I/O Byte Fields 34
5-1. Disk Parameter Header 40
5-2. Sample Sector Translate Table 42
5-3. Disk Parameter Block 42
F-1. S-Reference Fields 107

Section 1
System Overview

1.1 Introduction
CP/M-68K is a single-user, general purpose operating system for microcomputers based

on the Motorola MC68000 or equivalent microprocessor chip. It is designed to be adaptable to
almost any hardware environment, and can be readily customized for particular hardware systems.

CP/M-68K is equivalent to other CP/M systems with changes dictated by the 68000
architecture. In particular, CP/M-68K supports the very large address space of the 68000 family.
The CP/M-68K file system is upwardly compatible with CP/M-80 version 2.2 and CP/M-86
Version 1.1. The CP/M-68K file structure allows files of up to 32 megabytes per file.
CP/M-68K supports from one to sixteen disk drives with as many as 512 megabytes per drive.

The entire CP/M-68K operating system resides in memory at all times, and is not reloaded
at a warm start. CP/M-68K can be configured to reside in any portion of memory above the
68000 exception vector area (OH to 3FFH). The remainder of the address space is available for
applications programs, and is called the transient program area, TPA.

Several terms used throughout this manual are defined in Table 1-1.
Table 1-1. CP/M-68K Terms

Term Meaning
 nibble 4-bit half-byte
 byte 8-bit value
 word 16-bit value
 longword 32-bit value
 address 32-bit identifier of a storage location
 offset a value defining an address in storage; a fixed displacement

from some other address

1

Table 1-1. (continued)
Term Meaning
text segment program section containing machine instructions
data segment program section containing initialized data
block storage program section containing uninitialized data
segment (bss)
absolute describes a program which must reside at a fixed memory

address.
relocatable describes a program which includes relocation information

so it can be loaded into memory at any address

The CP/M-68K programming model is described in detail in the CP/M-68K Operating
System Programmer's Guide. To summarize that model briefly, CP/M-68K supports four
segments within a program: text, data, block storage segment (bss) , and stack. When a program
is loaded, CP/M-68K allocates space for all four segments in the TPA, and loads the text and data
segments. A transient program may manage free memory using values stored by CP/M-68K in its
base page.

1.1 Introduction CP/M-68K System Guide

2

USER
^
|
\/

User Interface
(CCP)

^
|
\/

Programming Interface
(BDOS)

^
|
\/

Hardware Interface
(BIOS)

^
|
\/

HARDWARE ENVIRONMENT

Figure 1-1. CP/M-68K Interfaces

1.2 CP/M-68K Organization
CP/M-68K comprises three system modules: the Console Command Processor (CCP) the

Basic Disk Operating System (BDOS) and the Basic Input/Output System (BIOS). These
modules are linked together to form the operating system. They are discussed individually in this
section.

1.3 Memory Layout
The CP/M-68K operating system can reside anywhere in memory except in the interrupt

vector area (0H to 3FFH) . The location of CP/M-68K is defined during system generation.
Usually, the CP/M-68K operating system is placed at the top end (high address) of available
memory, and the TPA runs from 400H to the base of the operating system. It is possible,
however, to have other organizations for memory. For example, CP/M-68K could go in the low
part of memory with the TPA above it. CP/M-68K could even be placed in the middle of
available memory.

1.1 Introduction CP/M-68K System Guide

3

However, because the TPA must be one contiguous piece, part of memory would be
unavailable for transient programs in this case. Usually this is wasteful, but such an organization
might be useful if an area of memory is to be used for a bit-mapped graphics device, for example,
or if there are ROM-resident routines. The BIOS and specialized application programs might
know this memory exists, but it is not part of the TPA.

Top of Memory -------|
|

CCP & BDOS & BIOS CP/M-68K - |
|

User Stack ------------------|
|

Free Memory |
|

bss TPA |--------|
| |

Data | |
| user pgm

Text | |
00500H | |

Base Page | |
00400H | |

Interrupt Vectors -----------------|---------|
00000H

Figure 1-2. Typical CP/M-68K Memory Layout

1.4 Console Command Processor (CCP)
The Console Command Processor, (CCP) provides the user interface to CP/M-68K. It

uses the BDOS to read user commands and load programs, and provides several built-in user
commands. It also provides parsing of command lines entered at the console.

1.3 Memory Layout CP/M-68K System Guide

4

1.5 Basic Disk Operating System (BDOS)
The Basic Disk Operating System (BDOS) provides operating system services to

applications programs and to the CCP. These include character I/O, disk file I/O (the BDOS disk
I/O operations comprise the CP/M-68K file system), program loading, and others.

1.6 Basic I/O System (BIOS)
The Basic Input Output System (BIOS) is the interface between CP/M-68K and its

hardware environment. All physical input and output is done by the BIOS. It includes all physical
device drivers, tables defining disk characteristics, and other hardware specific functions and
tables. The CCP and BOOS do not change for different hardware environments because all
hardware dependencies have been concentrated in the BIOS. Each hardware configuration needs
its own BIOS. Section 4 describes the BIOS functions in detail. Section 5 discusses how to write
a custom BIOS. Sample BIOSes are presented in the appendixes.

1.7 I/O Devices
CP/M-68K recognizes two basic types of I/O devices: character devices and disk drives.

Character devices are serial devices that handle one character at a time. Disk devices handle data
in units of 128 bytes, called sectors, and provide a large number of sectors which can be accessed
in random, nonsequential, order. In fact, real systems might have devices with characteristics
different from these. It is the BIOS's responsibility to resolve differences between the logical
device models and the actual physical devices.

1.7.1 Character Devices
Character devices are input output devices which accept or supply streams of ASCII

characters to the computer. Typical character devices are consoles, printers, and modems. In
CP/M-68K operations on character devices are done one character at a time. A character input
device sends ASCII CTRL-Z (lAH) to indicate end-of- file.

1.7.2 Character Devices
Disk devices are used for file storage. They are organized into sectors and tracks. Each

sector contains 128 bytes of data. (If sector sizes other than 128 bytes are used on the actual disk,
then the BIOS must do a logical-to-physical mapping to simulate 128- byte sectors to the rest of
the system.) All disk I/O in CP/M-68K is done in one-sector units. A track is a group of sectors.
The number of sectors on a track is a constant depending on the particular device. (The
characteristics of a disk device are specified in the Disk Parameter Block for that device. See
Section 5.) To locate a particular sector, the disk, track number, and sector number must all be
specified.

1.5 Basic Disk Operating System CP/M-68K System Guide

5

1.8 System Generation and Cold Start Operation
Generating a CP/M-68K system is done by linking together the CCP, BDOS, and BIOS to

create a file called CPM.SYS, which is the operating system. Section 2 discusses how to create
CPM.SYS. CPM.SYS is brought into memory by a bootstrap loader which will typically reside
on the first two tracks of a system disk. (The term system disk as used here simply means a disk
with the file CPM.SYS and a bootstrap loader.) Creation of a bootstrap loader is discussed in
Section 3.

End of Section 1

1.8 System Generation CP/M-68K System Guide

6

Section 2
System Generation

2.1 Overview
This section describes how to build a custom version of CP/M- 68K by combining your

BIOS with the CCP and BDOS supplied by Digital Research to obtain a CP/M-68K operating
system suitable for your specific hardware system. Section 5 describes how to create a BIOS.

In this section, we assume that you have access to an already configured and executable
CP/M-68K system. If you do not, you should first read Section 6, which discusses how you can
make your first CP/M-68K system work.

A CP/M-68K operating system is generated by using the linker, L068, to link together the
system modules (CCP, BDOS, and BIOS) . Then the RELOC utility is used to bind the system to
an absolute memory location. The resulting file is the configured operating system. It is named
CPM.SYS.

2.2 Creating CPM.SYS
The CCP and BDOS for CP/M-68K are distributed in a library file named CPMLIB. You

must link your BIOS with CPMLIB using the following command:
A>LO68 -R -UCPM -0 CPM.REL CPMLIB BIOS.0

where BIOS.0 is the compiled or assembled BIOS. This creates CPM.REL, which is a relocatable
version of your system. The cold boot loader, however, can load only an absolute version of the
system, so you must now create CPM.SYS, an absolute version of your system. If you want
your system to reside at the top of memory, first find the size of the system with the following
command:

A>SIZE68 CPM.REL
This gives you the total size of the system in both decimal and hex byte counts. Subtract

this number from the highest memory address in your system and add one to get the highest
possible address at which CPM.REL can be relocated. Assuming that the result is aaaaaa, type
this command:

A>RELOC -Baaaaaa CPH.REL CPK.SYS
The result is the CPM.SYS file, relocated to load at memory address aaaaaa. If you want

CPM.SYS to reside at some other memory address, such as immediately above the exception
vector area, you can use RELOC to place the system at that address.

7

When you perform the relocation, verify that the resulting system does not overlap the
TPA as defined in the BIOS. The boundaries of the system are determined by taking the
relocation address of CPM.SYS as the base, and adding the size of the system (use SIZE68 on
CPM.SYS) to get the upper bound. This address range must not overlap the TPA that the BIOS
defines in the Memory Region Table.

2.3 Relocating Utilities
Once you have built CPM.SYS, it is advisable to relocate the operating system utilities for

your TPA using the RELOC utility. RELOC is described in the CP/M-68K Operating System
Programmer's Guide. This results in the utilities being absolute, rather than relocatable, but they
will occupy half the disk space and load into memory twice as fast in their new form. You should
also keep the relocatable versions backed up in case you ever need to use them in a different TPA.

End of Section 2

2 . 2Creating CPM.SYS CP/M-68K System Guide

8

Section 3
Bootstrap Procedures

3.1 Bootstrapping Overview
Bootstrap loading is the process of bringing the CP/M-68K operating system into memory

and passing control to it. Bootstrap loading is necessarily hardware dependent, and it is not
possible to discuss all possible variations in this manual. However, the manual presents a model
of bootstrapping that is applicable to most systems.

The model of bootstrapping which we present assumes that the CP/M-68K operating
system is to be loaded into memory from a disk in which the first few tracks (typically the first
two) are reserved for the operating system and bootstrap routines, while the remainder of the disk
contains the file structure, consisting of a directory and disk files. (The topic of disk organization
and parameters is discussed in Section 5.) In our model, the CP/M-68K operating system
resides in a disk file named CPM.SYS (described in Section 2), and the system tracks contain a
bootstrap loader program (CPMLDR.SYS) which knows how to read CPM.SYS into memory
and transfer control to it.

Most systems have a boot procedure similar to the following:
1) When you press reset, or execute a boot command from a monitor ROM, the hardware
 loads one or more sectors beginning at track 0, sector 1, into memory at a
 predetermined address, and then jumps to that address.
2) The code that came from track 0, sector 1, and is now executing, is typically a small
 bootstrap routine that loads the rest of the sectors on the system tracks (containing
 CPMLDR) into another predetermined address in memory, and then jumps to that
 address. Note that if your hardware is smart enough, steps 1 and 2 can be combined
 into one step.
3) The code loaded in step 2, which is now executing, is the CP/M Cold Boot Loader,
 CPMLDR, which is an abbreviated version of CP/M-68K itself. CPMLDR now finds
 the file CPM.SYS, loads it, and jumps to it. A copy of CPM.SYS is now in memory,
 executing. This completes the bootstrapping process.

In order to create a CP/M-68K diskette that can be booted, you need to know how to

create CPM.SYS (see Section 2.2), how to create the Cold Boot Loader, CPMLDR, and how to
put CPMLDR onto your system tracks. You must also understand your hardware enough to be
able to design a method for bringing CPMLDR into memory and executing it.

9

3.2 Creating the Cold Boot Loader
CPMLDR is a miniature version of CP/M-68K. It contains stripped versions of the BOOS

and BIOS, with only those functions which are needed to open the CPM.SYS file and read it into
memory. CPMLDR will exist in at least two forms; one form is the information in the system
tracks, the other is a file named CPMLDR.SYS which is created by the linker. The term
CPMLDR is used to refer to either of these forms, but CPMLDR.SYS only refers to the file.

CPMLDR.SYS is generated using a procedure similar to that used in generating
CPM.SYS. That is, a loader BIOS is linked with a loader system library, named LDRLIB, to
produce CPMLDR.SYS. Additional modules may be linked in as required by your hardware. The
resulting file is then loaded onto the system tracks using a utility program named PUTBOOT.

3.2.1 Writing a Loader BIOS
The loader BIOS is very similar to your ordinary BIOS; it just has fewer functions, and the

entry convention is slightly different. The differences are itemized below.
1) Only one disk needs to be supported. The loader system selects only drive A. If you
 want to boot from a drive other than A, your loader BIOS should be written to select
 that other drive when it receives a request to select drive A.
2) The loader BIOS is not called through a trap; the loader BDOS calls an entry point
 named _bios instead. The parameters are still passed in registers, just as in the normal
 BIOS. Thus, your Function 0 does not need to initialize a trap, the code that in a
 normal BIOS would be the Trap 3 handler should have the label _bios, and you exit
 from your loader BIOS with an RTS instruction instead of an RTE.
3) Only the following BIOS functions need to be implemented:
 0 (Init) Called just once, should initialize hardware as necessary, no return value
 necessary. Note that Function 0 is called via _bios with the function number equal to 0.
 You do not need a separate _init entry point.
 4 (Conout) Used to print error messages during boot. If you do not want error
 messages, this function should just be an rts.

 9 (Seldsk) Called just once, to select drive A.
 10 (Settrk)

3.2 Creating the Cold Boot Loader CP/M-68K System Guide

10

 11 (Setsec)
 12 (Setdma)
 13 (Read)
 16 (Sectran)
 18 (Get MRT) Not used now, but may be used in future releases.
 22 (Set exception)
4) You do not need to include an allocation vector or a check vector, and the Disk
 Parameter Header values that point to these can be anything. However, you still need
 a Disk Parameter Header, Disk Parameter Block, and directory buffer.
It is possible to use the same source code for both your normal BIOS and your loader

BIOS if you use conditional compilation or assembly to distinguish the two. We have done this in
our example BIOS for the EXORmacs"

3.2.2 Building CPMLDR.SYS
Once you have written and compiled (or assembled) a loader BIOS, you can build

CPMLDR.SYS in a manner very similar to building CPM.SYS. There is one additional
complication here: the result of this step is placed on the system tracks. So, if you need a small
prebooter to bring in the bulk of CPMLDR, the prebooter must also be included in the link you
are about to do. The details of what must be done are hardware dependent, but the following
example should help to clarify the concepts involved.

Suppose that your hardware reads track 0, sector 1, into memory at location 400H when
reset is pressed, then jump to 400H. Then your boot disk must have a small program in that sector
that can load the rest of the system tracks into memory and execute the code that they contain.
Suppose that you have written such a program, assembled it, and the assembler output is in
BOOT.O. Also assume that your loader BIOS object code is in the file LDRBIOS.O. Then the
following command links together the code that must go on the system tracks.

A>lo68 -s -T400 -uldr -o cpmldr.sys boot.o ldrlib ldrbios.o
Once you have created CPMLDR.SYS in this way, you can use the PUTBOOT utility to

place it on the system tracks. PUTBOOT is described in Section 8. The command to place
CPMLDR on the system tracks of drive A is:

A>putboot cpmldr.sys a

3.2 Creating the Cold Boot Loader CP/M-68K System Guide

11

PUTBOOT leads the file CPMLDR.SYS, strips off the 28-byte command file header, and
puts the result on the specified drive. You can now boot from this disk, assuming that CPM.SYS
is on the disk.

End of Section 3

3.2 Creating the Cold Boot Loader CP/M-68K System Guide

12

Section 4
BIOS Functions

4..l Introduction
All CP/M-68K hardware dependencies are concentrated in subroutines that are

collectively referred to as the Basic I/O System (BIOS) . A CP/M-68K system implementor can
tailor CP/M-68K to fit nearly any 68000 operating environment. This section describes each
BIOS function: its calling conventions, parameters, and the actions it must perform. The
discussion of Disk Definition Tables is treated separately in Section 5.

When the BDOS calls a BIOS function, it places the function number in register DO.W,
and function parameters in registers Dl and D2. It then executes a TRAP 3 instruction. DO.W is
always needed to specify the function, but each function has its own requirements for other
parameters, which are described in the section describing the particular function. The BIOS
returns results, if any, in register D0. The size of the result depends on the particular function.
Note: the BIOS does not need to preserve the contents of registers. That is, any register contents
which were valid on entry to the BIOS may be destroyed by the BIOS on exit. The BDOS does
not depend on the BIOS to preserve the contents of data or address registers. Of course, if the
BIOS uses interrupts to service I/O, the interrupt handlers will need to preserve registers.

Usually, user applications do not need to make direct use of BIOS functions. However,
when access to the BIOS is required by user software, it should use the BDOS Direct BIOS
Function, Call 50, instead of calling the BIOS with a TRAP 3 instruction. This rule ensures that
applications remain compatible with future systems.

The Disk Parameter Header (DPH) and Disk Parameter Block (DPB) formats have
changed slightly from previous CP/M versions to accommodate the 68000's 32-bit addresses. The
formats are described in Section 5.

13

Table 4-1. BIOS Register Usage
Entry Parameters:

 D0.W = function code
 D1.x = first parameter
 D2.x = second parameter

Return Values:
 D0.B = byte values (8 bits)
 D0.W = word values (16 bits)
 D0.L = longword values (32 bits)

The decimal BIOS function numbers and the functions they correspond to are listed in
Table 4-2.

Table 4-2. BIOS Functions
 Number Function
 0 Initialization (called for cold boot)
 1 Warm Boot (called for warm start)
 2 Console Status (check for console character ready)
 3 Read Console Character In
 4 Write Console Character Out
 5 List (write listing character out)
 6 Auxiliary Output (write character to auxiliary output device)
 7 Auxiliary Input (read from auxiliary input)
 8 Home (move to track 00)
 9 Select Disk Drive
 10 Set Track Number
 11 Set Sector Number
 12 Set DMA Address
 13 Read Selected Sector
 14 Write Selected Sector
 15 Return List Status
 16 Sector Translate
 18 Get Memory Region Table Address
 19 Get I/O Mapping Byte
 20 Set I/O Mapping Byte
 21 Flush Buffers
 22 Set Exception Handler Address

4.1 Introduction CP/M-68K System Guide

14

FUNCTION 0: INITIALIZATION
 Entry Parameters:
 Register D0.W: 00H
 Returned Value:
 Register D0.W: User/Disk Numbers

This routine is entered on cold boot and must initialize the BIOS. Function 0 is unique, in
that it is not entered with a TRAP 3 instruction. Instead, the BIOS has a global label, -init, which
is the entry to this routine. On cold boot, Function 0 is called by a jsr init. When initialization is
done, exit is through an rts instruction. Function 0 is responsible for initializing hardware if
necessary, initializing BIOS internal variables (such as IOBYTE) as needed, setting up register D0
as described below, setting the Trap 3 vector to point to the main BIOS entry point, and then
exiting with an rts.

Function 0 returns a longword value. The CCP uses this value to set the initial user
number and the initial default disk drive. The least significant byte of DO is the disk number (0 for
drive A, 1 for drive B, and so on). The next most significant byte is the user number. The
high-order bytes should be zero.

The entry point to this function must be named init and must be declared global. This
function is called only once from the system at system initialization.

Following is an example of skeletal code:
.globl _init ;bios init entry point

 _init:
 * do any initialization here
 move.1 # traphndl,$8c ;set trap 3 handler
 clr.1 d0 ;login drive A, user 0
 rts

Function 0: Initialization CP/M-68K System Guide

15

FUNCTION 1: WARM BOOT
 Entry Parameters:
 Register D0.W: 01H
 Returned Value: None

This function is called whenever a program terminates. Some reinitialization of the
hardware or software might occur. When this function completes, it jumps directly to the entry
point of the CCP, named _ccp. Note that -ccp must be declared as a global.

Following is an example of skeletal code for this BIOS function:
.globl -ccp
wboot:
* do any reinitialization here if necessary

jmp -ccp

Function 1: Warm Boot CP/M-68K System Guide

16

FUNCTION 2: CONSOLE STATUS
 Entry Parameters:
 Register D0.W: 02H
 Returned Value:
 Register D0.W: 00FFH if ready
 Register D0.W: 0000H if not ready

This function returns the status of the currently assigned console device. It returns 00FFH
in register D0 when a character is ready to be read, or 0000H in register D0 when no console
characters are ready.

Function 2: Console Status CP/M-68K System Guide

17

FUNCTION 3: READ CONSOLE CHARACTER
 Entry Parameters:
 Register D0.W: 03H
 Returned Value:
 Register D0.W: Character

This function reads the next console character into register D0.W. If no console character
is ready, it waits until a character is typed before returning.

Function 3: Read Console Character CP/M-68K System Guide

18

FUNCTION 4: WRITE CONSOLE CHARACTER
 Entry Parameters:
 Register D0.W: 04H
 Register Dl.W: Character
 Returned Value: None

This function sends the character from register Dl to the console output device. The
character is in ASCII. You might want to include a delay or filler characters for a line-feed or
carriage return, if your console device requires some time interval at the end of the line (such as a
TI Silent 700 Terminal). You can also filter out control characters which have undesirable effects
on the console device.

Function 4: Write Console Character CP/M-68K System Guide

19

FUNCTION 5: LIST CHARACTER OUTPUT
 Entry Parameters:
 Register D0.W: 05H
 Register Dl.W: Character
 Returned Value: None

This function sends an ASCII character from register Dl to the currently assigned listing
device. If your list device requires some communication protocol, it must be handled here.

Function 5: List Character Output CP/M-68K System Guide

20

FUNCTION 6: AUXILIARY OUTPUT
 Entry Parameters:
 Register D0.W: 06H
 Register DI.W: Character
 Returned Value:
 Register D0.W: Character

This function sends an ASCII character from register Dl to the currently assigned auxiliary
output device.

Function 6: Auxiliary Output CP/M-68K System Guide

21

FUNCTION 7: AUXILIARY INPUT
 Entry Parameters,
 Register D0.W: 07H
 Returned Value:
 Register D0.W: Character

This function reads the next character from the currently assigned auxiliary input device
into register D0. It reports an end-of-file condition by returning an ASCII CTRL-Z (lAH).

Function 7: Auxiliary Input CP/M-68K System Guide

22

FUNCTION 8: HOME
 Entry Parameters:
 Register D0.W: 08H
 Returned Value: None

This function returns the disk head of the currently selected disk to the track 00 position.
If your controller does not have a special feature for finding track 00, you can translate the call to
a SETTRK function with a parameter of 0.

Function 8: Home CP/M-68K System Guide

23

FUNCTION 9: SELECT DISK DRIVE

 Entry Parameters:
 Register D0.W: 09H
 Register DI.B: Disk Drive
 Register D2.B: Logged in Flag
 Returned Value:
 Register D0.L: Address of Selected
 Drivels DPH

This function selects the disk drive specified in register D1 for further operations.
Register D1 contains 0 for drive A, 1 for drive B, up to 15 for drive P.

On each disk select, this function returns the address of the selected drive's Disk
Parameter Header in register D0.L. See Section 5 for a discussion of the Disk Parameter Header.

If there is an attempt to select a nonexistent drive, this function returns 00000000H in
register D0.L as an error indicator. Although the function must return the header address on each
call, it may be advisable to postpone the actual physical disk select operation until an I/0 function
(seek, read, or write) is performed. Disk select operations can occur without a subsequent disk
operation. Thus, doing a physical select each time this function is called may be wasteful of time.

On entry to the Select Disk Drive function, if the least significant bit in register D2 is zero,
the disk is not currently logged in. If the disk drive is capable of handling varying media (such as
single and double-sided disks, single- and double-density, and so on), the BIOS should check the
type of media currently installed and set up the Disk Parameter Block accordingly at this time.

Function 9: Select Disk Drive CP/M-68K System Guide

24

FUNCTION 10: SET TRACK NUMBER
 Entry Parameters:
 Register D0.W: 0AH
 Register DI.W: Disk track number
 Returned Value: None

This function specifies in register D0.W the disk track number for use in subsequent disk
accesses. The track number remains valid until either another Function 10 or a Function 8
(Home) is performed.

You can choose to physically seek to the selected track at this time, or delay the physical
seek until the next read or write actually occurs.

The track number can range from 0 to the maximum track number supported by the
physical drive. However, the maximum track number is limited to 65535 by the fact that it is
being passed as a 16-bit quantity. Standard floppy disks have tracks numbered from 0 to 76.

Function 10: Set Track Number CP/M-68K System Guide

25

FUNCTION 11: SET SECTOR NUMBER
 Entry Parameters:
 Register D0.W: 0BH
 Register Dl.W: S sector Number
 Returned Value: None

This function specifies in register Dl.W the sector number for subsequent disk accesses.
This number remains in effect until either another Function 11 is performed.

The function selects actual (unskewed) sector numbers. if skewing is appropriate, it will
have previously been done by a call to Function 16. You can send this information to the
controller at this point or delay sector selection until a read or write operation occurs.

Function 11: Set Sector Number CP/M-68K System Guide

26

FUNCTION 12: SET DMA ADDRESS
 Entry Parameters:
 Register D0.W: 0CH
 Register Dl.L: DMA Address
 Returned Value: None

This function contains the DMA (disk memory access) address in register DI for
subsequent read or write operations. Note that the controller need not actually support DMA
(direct memory access). The BIOS will use the 128-byte area starting at the selected DMA
address for the memory buffer during the following read or write operations. This function can be
called with either an even or an odd address for a DMA buffer.

Function 12: Set DMA Address CP/M-68K System Guide

27

FUNCTION 13: READ SECTOR
 Entry Parameters:
 Register D0.W: 0DH
 Returned Value:
 Register D0.W: 0 if no error
 Register D0.W: 1 if physical error

After the drive has been selected, the track has been set, the sector has been set, and the
DMA address has been specified, the read function uses these parameters to read one sector and
returns the error code in register D0.

Currently, CP/M-68K responds only to a zero or nonzero return code value. Thus, if the
value in register D0 is zero, CP/M-68K assumes that the disk operation completed properly. If an
error occurs however, the BIOS should attempt at least ten retries to see if the error is
recoverable.

Function 1.3: Read Sector CP/M-68K System Guide

28

FUNCTION 14: WRITE SECTOR
 Entry Parameters:
 Register D0.W: 0EH
 Register Dl.W: 0=normal write
 1=write to a directory sector
 2=write to first sector of new block
 Returned Value:
 Register D0.W: 0=no error
 1=physical error

This function is used to write 128 bytes of data from the currently selected DMA buffer
to the currently selected sector, track, and disk. The value in register DI.W indicates whether the
write is an ordinary write operation or whether the there are special considerations.

If register D1.W=0, this is an ordinary write operation. if D1.W=1, this is a write to a
directory sector, and the write should be physically completed immediately. If DI.W=2, this is a
write to the first sector of a newly allocated block of the disk. The significance of this value is
discussed in Section 5 under Disk Buffering.

Function 14: Write Sector CP/M-68K System Guide

29

FUNCTION 15: RETURN LIST STATUS
 Entry Parameters:
 Register D0.W: 0FH
 Returned Value:
 Register D0: 00FFH=device ready
 Register D0: 0000H=device not ready

This function returns the status of the list device. Register D0 contains either 0000H
when the list device is not ready to accept a character or 00FFH when a character can be sent to
the list device.

Function 15: Return List Status CP/M-68K System Guide

30

FUNCTION 16: SECTOR TRANSLATE
 Entry Parameters:
 Register D0.W: 10H
 Register D1.W: Logical Sector Number
 Register D2.L: Address of Translate Table
 Returned Value:
 Register D0.W: Physical Sector Number

This function performs logical-to-physical sector translation, as discussed in Section 5.2.2.
The Sector Translate function receives a logical sector number from register Dl.W. The logical
sector number can range from 0 to the number of sectors per track-1. Sector Translate also
receives the address of the translate table in register D2.L. The logical sector number is used as
an index into the translate table. The resulting physical sector number is returned in D0.W.

If register D2.L = 00000000H, implying that there is no translate table, register D1 is
copied to register D0 before returning. Note that other algorithms are possible; in particular, is is
common to increment the logical sector number in order to convert the logical range of 0 to n-1
into the physical range of 1 to n. Sector Translate is always called by the BIOS, whether the
translate table address in the Disk Parameter Header is zero or nonzero.

Function 16: Sector Translate CP/M-68K System Guide

31

FUNCTION 18: GET ADDRESS OF MEMORY
REGION TABLE

 Entry Parameters:
 Register D0.W: 12H
 Returned Value:
 Register D0.L: Memory Region
 Table Address

This function returns the address of the Memory Region Table (MRT) in register D0. For
compatibility with other CP/M systems, CP/M-68K maintains a Memory Region Table. However,
it contains only one region, the Transient Program Area (TPA) . The f or mat of the MRT is
shown below:

 Count =l (16 bits)
 Base address of first region (32 bits)
 Length of first region (32 bits)

Figure 4-1. Memory Region Table Format

The memory region table must begin on an even address, and must be implemented.

Function 18: Get Address of MRT CP/M-68K System Guide

32

FUNCTION 19: GET I/O BYTE
 Entry Parameters:
 Register D0.W: 13H
 Returned Value:
 Register D0.W: I/O Byte Current
 Value

This function returns the current value of the Logical, to physical input/output device byte
(I/O byte) in register DO.W. This 8-bit value associates physical devices with CP/M-68K's four
logical devices as noted below. Note that even though this is a byte value, we are using word
references. The upper byte should be zero.

Peripheral devices other than disks are seen by CP/M-68K as logical devices, and are
assigned to physical devices within the BDOS. Device characteristics are defined in Table 4-3
below.

Table 4-3. CP/M-68K Logical Device Characteristics
 Device Name Characteristics
 CONSOLE The interactive console that you use to communicate

with the system is accessed through functions 2, 3
and 4. Typically, the console is a CRT or other
terminal device.

 LIST The listing device is a hard-copy device, usually a
printer.

 AUXILIARY OUTPUT An optional serial output device.
 AUXILIARY INPUT An optional serial input device.

Note that a single peripheral can be assigned as the LIST, AUXILIARY INPUT, and
AUXILIARY OUTPUT device simultaneously. if no peripheral device is assigned as the LIST,
AUXILIARY INPUT, or AUXILIARY OUTPUT device, your BIOS should give an appropriate
error message so that the system does not hang if the device is accessed by PIP or some other
transient program. Alternatively, the AUXILIARY OUTPUT and LIST functions can simply do
nothing except return to the caller, and the AUXILIARY INPUT function can return with a 1AH
(CTRL-Z) in register D0.W to indicate immediate end-of- file.

Function 19: Get I/O Byte CP/M-68K System Guide

33

The I/O byte is split into four 2-bit fields called CONSOLE, AUXILIARY INPUT,
AUXILIARY OUTPUT, and LIST, as shown in Figure 4-2.
 most significant least significant
 AUXILIARY AUXILIARY
 I/O Byte LIST OUTPUT INPUT CONSOLE
 bits 7, 6 5,4 3,2 1,0

Figure 4-3. I/O Byte
The value in each field can be in the range 0-3, defining the assigned source or destination

of each logical device. The values which can be assigned to each field are given in Table 4-4.
Table 4-4. I/O Byte Field Definitions

CONSOLE field (bits 1,0)
Bit Definition
0 console is assigned to the console printer (TTY:)
1 console is assigned to the CRT device (CRT;)
2 batch mode: use the AUXILIARY INPUT as the CONSOLE input, and the LIST
 device as the CONSOLE output (BAT:)
3 user defined console device (UC1:)

AUXILIARY INPUT field (bits 3,2)
Bit Definition
0 AUXILIARY INPUT is the Teletype device (TTY:)
1 AUXILIARY INPUT is the high-speed reader device (PTR:)
2 user defined reader #1 (URI:)
3 user defined reader #2 (UR2:)

Function 19: Get I/O Byte CP/M-68K System Guide

34

Table 4-4. (continued)
AUXILIARY OUTPUT field (bits 5,4)

Bit Definition
0 AUXILIARY OUTPUT is the Teletype device (TTY:)
1 AUXILIARY OUTPUT is the high-speed punch device (PTP:)
2 user defined punch #1 (UP1:)
3 user defined punch #2 (UP2:)

LIST field (bits 7,6)
Bit Definition
0 LIST is the Teletype device (TTY:)
1 LIST is the CRT device (CRT:)
2 LIST is the line printer device (LPT:)
3 user defined list device (UL1:)

Note that the implementation of the I/O byte is optional, and affects only the organization
of your BIOS. No CP/M-68K utilities use the I/O byte except for PIP, which allows access to the
physical devices, and STAT, which allows logical-physical assignments to be made and displayed.
It is a good idea to first implement and test your BIOS without the IOBYTE functions, then add
the I/O byte function.

Function 19: Get I/O Byte CP/M-68K System Guide

35

FUNCTION 20: SET I/O BYTE
 Entry Parameters:
 Register D0.W: 14H
 Register D1.W: Desired
 Returned Value: None

This function uses the value in register D1 to set the value of the I/O byte that is stored in
the BIOS. See Table 4-4 for the I/O byte field definitions Note that even though this is a byte
value, we are using word references. The upper byte should be zero.

Function 20: Set I/O Byte CP/M-68K System Guide

36

 FUNCTION 21 FLUSH BUFFERS
 Entry Parameters:
 Register D0.W: 15H
 Returned Value:
 Register D0.W: 0000H=successful write
 Register D0.W: FFFFH=unsuccessful write

This function forces the contents of any disk buffers that have been modified to be written.
That is, after this function has been performed, all disk writes have been physically completed.
After the buffers are written, this function returns a zero in register D0.W. However, if the buffers
cannot be written or an error occurs, the function returns a value of FFFFH in register D0.W.

Function 2-1: Flush Buffers CP/M-68K System Guide

37

FUNCTION 22: SET EXCEPTION HANDLE ADDRESS
 Entry Parameters:
 Register D0.W: 16H
 Register Dl.W: Exception Vector Number
 Register D2.L: Exception Vector Address
 Returned Value:
 Register D0.L: Previous Vector Contents

This function sets the exception vector indicated in register Dl-W to the value specified in
register D2.L. The previous vector value is returned in register DO.L. Unlike the BDOS Set
Exception Vector Function (61), this BIOS function sets any exception vector. Note that register
Dl.W contains the exception vector number. Thus, to set exception #2, bus error, this register
contains a 2, and the vector value goes to memory locations 08H to OBH.

End of Section 4

Function 22: Set Exception Address CP/M-68K System Guide

38

Section 5
Creating a BIOS

5.1 Overview
The BIOS provides a standard interface to the physical input/output devices in your

system. The BIOS interface is defined by the functions described in Section 4. Those
functions, taken together, constitute a model of the hardware environment. Each BIOS is
responsible for mapping that model onto the real hardware.

In addition, the BIOS contains disk definition tables which define the characteristics of the
disk devices which are present, and provides some storage for use by the BOOS in maintaining
disk directory information.

Section 4 describes the functions which must be performed by the BIOS, and the external
interface to those functions. This Section contains additional information describing the structure
and significance of the disk definition tables and information about sector blocking and
deblocking. Careful choices of disk parameters and disk buffering methods are necessary if you
are to achieve the best possible performance from CP/M-68K. Therefore, this section should be
read thoroughly before writing a custom BIOS.

CP/M-68K, as distributed by Digital Research, is configured to run on the Motorola
EXORmacs development system with Universal Disk . The sample BIOS in Appendix D is the
BIOS used in the distributed system, and is written in C language. A sample BIOS for an
Empirical Research Group (ERG) 68000 based microcomputer with Tarbell floppy disk controller
is also included in Appendix B, and is written in assembly language. These examples should assist
the reader in understanding how to construct his own BIOS.

5.2 Disk Definition Tables
As in other CP/M systems, CP/M-68K uses a set of tables to define disk device

characteristics. This section describes each of these tables and discusses choices of certain
parameters.

39

5.2.1 Disk Parameter Header
Each disk drive has an associated 26-byte Disk Parameter Header (DPH) which both

contains information about the disk drive and provides a scratchpad area for certain BDOS
operations. Each drive must, have its own unique DPH. The format of a Disk Parameter
Header is shown in Figure 5-1.

XLT 0000 0000 0000 DIRBUF DPB CSV ALV
32b 16b 16b 16b 32b 32b 32b 32b

Figure 5-1. Disk Parameter Header

Each element of the DPH is either a word (16-bit) or longword (32-bit) value. The
meanings of the Disk Parameter Header (DPH) elements are given in Table 5-1.

Table 5-1. Disk Parameter Header Elements
Element Description
XLT Address of the logical-to-physical sector translation table, if used for this

particular drive, or the value 0 if there is no translation table for this drive
(i.e, the physical and logical sector numbers are the same) . Disk drives
with identical sector translation may share the same translate table. The
sector translation table is described in Section 5.2.2.

0000 Three scratchpad words for use within the BDOS.
DIRBUF Address of a 128-byte scratchpad area for directory operations within

BDOS. All DPHs address the same scratchpad area.
DPB Address of a disk parameter block for this drive. Drives with identical disk

characteristics may address the same disk parameter block.

5.2 Disk Definition Tables CP/M-68K System Guide

40

Table 5-1. (continued)
Element Description
CSV Address of a checksum vector. The BDOS uses this area to maintain a

vector of directory checksums for the disk. These checksums are used in
detecting when the disk in a drive has been changed. If the disk is not
removable, then it is not necessary to have a checksum vector. Each DPH
must point to a unique checksum vector. The checksum vector should
contain 1 byte for every four directory entries (or 128 bytes of directory).
In other words: length (CSV) = (DRM+l) / 4. (DRM is discussed in
Section 5.2.3.)

ALV Address of a scratchpad area used by the BDOS to keep disk storage
allocation information. The area must be different for each DPH. There
must be 1 bit for each allocation block on the drive, requiring the
following: length (ALV) =- (DSM/8) + 1. (DSM is discussed below.)

5.2.2 Sector Translate Table
Sector translation in CP/M-68K is a method of logically renumbering the sectors on each

disk track to improve disk I/O performance. A frequent situation is that a program needs to
access disk sectors sequentially. However, in reading sectors sequentially, most programs lose a
full disk revolution between sectors because there is not enough time between adjacent sectors to
begin a new disk operation. To alleviate this problem, the traditional CP/M solution is to create a
logical sector numbering scheme in which logically sequential sectors are physically separated.
Thus, between two logically contiguous sectors, there is a several sector rotational delay.
The sector translate table defines the logical-to-physical mapping in use for a particular drive, if a
mapping is used.

Sector translate tables are used only within the BIOS. Thus the table may have any
convenient format. (Although the BDOS is aware of the sector translate table, its only interaction
with the table is to get the address of the sector translate table from the DPH and to pass that
address to the Sector Translate Function of the BIOS.) The most common form for a sector
translate table is an n-byte (or n-word) array of physical sector numbers, where n is the number of
sectors per disk track. Indexing into the table with the logical sector number yields the
corresponding physical sector number.

5.2 Disk Definition Tables CP/M-68K System Guide

41

Although you may choose any convenient logical-to-physical mapping, there is a nearly
universal mapping used in the CP/M community for single-sided, single-density, 8-inch diskettes.
That mapping is shown in Figure 5-2. Because your choice of mapping affects diskette
compatibility between different systems, the mapping of Figure 5-2 is strongly recommended.
 Logical Sector 0 1 2 3 4 5 6 7 8 9 10 11 12
 Physical Sector 1 7 13 19 25 5 11 17 23 3 9 15 21
 Logical Sector 13 14 15 16 l7 18 19 20 21 22 23 24 25
 Physical Sector 2 8 14 20 26 6 12 18 24 4 10 16 22

Figure 5-2. Sample Sector Translate Table

5.2.3 Disk Parameter Block
A Disk Parameter Block (DPB) defines several characteristics associated with a particular

disk drive. Among them are the size of the drive, the number of sectors per track, the amount of
directory space, and others.

A Disk Parameter Block can be used in one or more DPH's if the disks are identical in
definition. A discussion of the fields of the DPB follows the format description. The format of
the DPB is shown in Figure 5-3.

SPT BSH BLM EXM 0 DSM DRM Reserved CKS OFF
 16b 8b 8b 8b 8b 16b 16b 16b 16b 6b

Figure 5-3. Disk Parameter Block

Each field is a word (16 bit) or a byte (8 bit) value. The description of each field is
given in Table 5-2.

Table 5-2. Disk Parameter Block Fields
Field Definition
SPT Number of 128-byte logical sectors per track.
BSH The block shift factor, determined by the data block allocation size, as

shown in Table 5-3.

5.2 Disk Definition Tables CP/M-68K System Guide

42

Table 5-2. (continued)
Field Definition
BLM The block mask which is determined by the data block allocation size, as

shown in Table 5-3.
EXM The extent mask, determined by the data block allocation size and the

number of disk blocks, as shown in Table 5-4.
0 Reserved byte.
DSM Determines the total storage capacity of the disk drive and is the number

of the last block, counting from 0. That is, the disk contains DSM+1
blocks.

DRM Determines the total number of directory entries which can be stored on
this drive. DRM is the number of the last directory entry, counting from 0.
That is, the disk contains DRM+L directory entries. Each directory entry
requires 32 bytes, and for maximum efficiency, the value of DRM should
be chosen so that the directory entries exactly fill an integral number of
allocation units.

CKS The size of the directory check vector, which is zero if the disk is
permanently mounted, or length (CSV) = (DRM) / 4 + I for removable
media.

OFF The number of reserved tracks at the beginning of a logical disk. This is
the number of the track on which the directory begins.

To choose appropriate values for the Disk Parameter Block elements, you must
understand how disk space is organized in CP/M-68K. A CP/M-68K disk has two major areas:
the boot or system tracks, and the file system tracks. The boot tracks are usually used to hold a
machine-dependent bootstrap loader for the operating system. They consist of tracks 0 to 0FF-1.
Zero is a legal value for 0FF, and in that case, there are no boot tracks. The usual value of 0FF
for 8-inch floppy disks is two.

The tracks after the boot tracks (beginning with track number 0FF) are used for the disk
directory and disk files. Disk space in this area is grouped into units called allocation units or
blocks. The block size for a particular disk is a constant, called BLS. BLS may take on any one
of these values: 1024, 2048, 4096, 8192, or 16384 bytes. No other values for BLS are allowed.
(Note that BLS does not appear explicitly in any BIOS table. However, it determines the values
of a number of other parameters.) The DSM field in the Disk Parameter Block is one less than the
number of

5.2 Disk Definition Tables CP/M-68K System Guide

43

blocks on the disk. Space is allocated to a file or to the directory in whole blocks. No fraction of a
block can be allocated. block size

The choice of BLS is very important, because it effects the efficiency of disk space
utilization, and because for any disk size there is a minimum value of BLS that allows the entire
disk to be used. Each block on the disk has a block number ranging from 0 to DSM. The largest
block number allowed is 32767. Therefore, the largest number of bytes that can be addressed in
the file system space is 32768 * BLS. Because the largest allowable value for BLS is 16384, the
biggest disk that can be accessed by CP/M-68K is 16384*32768 = 512 Mbytes.

Each directory entry may contain either 8 block numbers (if DSM >= 256) or 16 block
numbers (if DSM < 256). Each file needs enough directory entries to hold the block numbers of
all blocks allocated to the f i le. Thus a large value for BLS implies that fewer directory entries are
needed. Since fewer directory entries are used, the directory search time is decreased.

The disadvantage of a large value for BLS is that since files are allocated BLS bytes at a
time, there is potentially a large unused portion of a block at the end of the file. If there are many
small files on a disk, the waste can be very significant.

The BSH and BLM parameters in the DPB are functions of BLS. Once you have chosen
BLS, you should use Table 5-3 to determine BSH and BIM. The EXM parameter of the DPB is
a function of BLS and DSM. You should use Table 5-4 to find the value of EXM for your disk.

Table 5-3. BSH and BLM Values
 BLS BSH BLM
 1024 3 7
 2048 4 15
 4096 5 31
 8192 6 63
 16384 7 127

5.2 Disk Definition Tables CP/M-68K System Guide

44

Table 5-4. EXM Values
 BLS DSM <= 255 DSM > 255
 1024 0 N/A
 2048 1 0
 4096 3 1
 8192 7 3
 16384 15 7

The DRM entry in the DPB is one less than the total number of directory entries. DRM
should be chosen large enough so that you do not run out of directory entries before running out
of disk space. It is not possible to give an exact rule for determining DRM, since the number of
directory entries needed will depend on the number and sizes of the files present on the disk.

The CKS entry in the DPB is the number of bytes in the CSV (checksum vector) which
was pointed to by the DPH. If the disk is not removable, a checksum vector is not needed, and
this value may be zero.

5.3 Disk Blocking
When the BDOS does a disk read or write operation using the BIOS, the unit of

information read or written is a 128-byte sector. This may or may not correspond to the actual
physical sector size of the disk. If not, the BIOS must implement a method of representing the
128-byte sectors used by CP/M-68K on the actual device. Usually if the physical sectors are not
128 bytes long, they will be some multiple of 128 bytes. Thus, one physical sector can hold
some integer number of 128-byte CP/M sectors. In this case, any disk I/O will actually consist of
transferring several CP/M sectors at once.

It might also be desirable to do disk I/O in units of several 128-byte sectors in order to
increase disk throughput by decreasing rotational latency. (Rotational latency is the average
time it takes for the desired position on a disk to rotate around to the read/write head. Generally
this averages 1/2 disk revolution per transfer.) Since a great deal of disk I/O is sequential,
rotational latency can be greatly reduced by reading several sectors at a time, and saving them
for future use.

In both the cases above, the point of interest is that physical I/O occurs in units larger
than the expected sector size of 128 bytes. Some of the problems in doing disk I/O in this manner
are discussed below.

5.2 Disk Definition Tables CP/M-68K System Guide

45

5.3.1 A Simple Approach
This section presents a simple approach to handling a physical sector size larger than the

logical sector size. The method discussed in this section is not recommended for use in a real
BIOS. Rather, it is given as a starting point for refinements discussed in the following sections.
Its simplicity also makes it a logical choice for a first BIOS on new hardware. However, the disk
throughput that you can achieve with this method is poor, and the refinements discussed later give
dramatic improvements.

Probably the easiest method for handling a physical sector size which is a multiple of 128
bytes is to have a single buffer the size of the physical sector internal to the BIOS. Then, when a
disk read is to be done, the physical sector containing the desired 128-byte logical sector is read
into the buffer, and the appropriate 128 bytes are copied to the DMA address. Writing is a little
more complicated. You only want to put data into a 128-byte portion of the physical sector, but
you can only write a whole physical sector. Therefore, you must first read the physical sector into
the BIOS's buffer; copy the 128 bytes of output data into the proper 128-byte piece of the
physical sector in the buffer; and finally write the entire physical sector back to disk.
Note: this operation involves two rotational latency delays in addition to the time needed to
copy the 128 bytes of data. In fact, the second rotational wait is probably nearly a full disk
revolution, since the copying is usually much faster than a disk revolution.

5.3.2 Some Refinements
There are some easy things that can be done to the algorithm of Section 5.2.1 to improve

its performance. The first is based on the fact that disk accesses are usually done sequentially.
Thus, if data from a certain physical sector is needed, it is likely that another piece of that sector
will be needed on the next disk operation. To take advantage of this fact, the BIOS can keep
information with its physical sector buffer as to which disk, track, and physical sector (if any) is
represented in the buffer. Then, when reading, the BIOS need only do physical disk reads when
the information needed is not in the buffer.

On writes, the BIOS still needs to preread the physical sector for the same reasons
discussed in Section 5.2.1, but once the physical sector is in the buffer, subsequent writes into that
physical sector do not require additional prereads. An additional saving of disk accesses can be
gained by not writing the sector to the disk until absolutely necessary. The conditions under
which the physical sector must be written are discussed in Section 5.3.4.

5.3 Disk Blocking CP/M-68K System Guide

46

5.3.3 Track Buffering
Track buffering is a special case of disk buffering where the I/O is done a full track at a

time. When sufficient memory for several full track buffers is available, this method is quite good.
The method is essentially the same as discussed in Section 5.3.2, but there are some interesting
features. First, transferring an entire track is much more efficient than transferring a single sector.
The rotational latency is incurred only once for the entire track, whereas if the track is transferred
one sector at a time, the rotational latency occurs once per sector. On a typical diskette with 26
sectors per track, rotating at 6 revolutions per second, the difference in rotational latency per
track is about 2 seconds versus a twelfth of a second. Of course, in applications where the disk is
accessed purely randomly, there is no advantage because there is a low probability that more than
one sector will be used from a given track. However, such applications are extremely rare.

5.3.4 LRU Replacement
With any method of disk buffering using more than one buffer, it is necessary to have

some algorithm for managing the buffers. That is, when should buffers be filled, and when should
they be written back to disk. The first question is simple, a buffer should be filled when there is a
request for a disk sector that is not presently in memory. The second issue, when to write a buffer
back to disk, is more complicated.

Generally, it is desirable to defer writing a buffer until it becomes necessary. Thus, several
transfers can be done to a buffer for the cost of only one disk access, two accesses if the buffer
had to be preread. However, there are several reasons why buffers must be written. The
following list describes the reasons:

1) A BIOS Write operation with mode=l (write to directory sector) . To maintain the
 integrity of CP/M-68K's file system, it is very important that directory information on
 the disk is kept up to date. Therefore, all directory writes should be performed
 immediately.
2) A BIOS Flush Buffers operation. This BIOS function is explicitly intended to force all
 disk buffers to be written. After performing a Flush Buffers, it is safe to remove a disk
 from its drive.
3) A disk buffer is needed, but all buffers are full. Therefore some buffer must be
 emptied to make it available for reuse.
4) A Warm Boot occurs. This is similar to number 2 above.

5.3 Disk Blocking CP/M-68K System Guide

47

Case three above is the only one in which the BIOS writer has any discretion as to which
buffer should be written. Probably the best strategy is to write out the buffer which has been least
recently used. The fact that an area of disk has not been accessed for some time is a fairly good
indication that it will not be needed again soon.

5.3.5 The New Block Flag
As explained in Section 5.2.2, the BDOS allocates disk space to files in blocks of BLS

bytes. When such a block is first allocated to a file, the information previously in that block need
not be preserved. To enable the BIOS to take advantage of this fact, the BDOS uses a special
parameter in calling the BIOS Write Function. If register Dl.W contains the value 2 on a BIOS
Write call, then the write being done is to the first sector of a newly allocated disk block.
Therefore, the BIOS need not preread any sector of that block. If the BIOS does disk buffering in
units of BLS bytes, it can simply mark any free buffer as corresponding to the disk address
specified in this write, because the contents of the newly allocated block are not important. If the
BIOS uses a buffer size other than BLS, then the algorithm for taking full advantage of this
information is more complicated.

This information is extremely valuable in reducing disk delays. Consider the case where
one file is read sequentially and copied to a newly created file. Without the information about
newly allocated disk blocks, every physical write would require a preread. With the information,
no physical write requires a preread. Thus, the number of physical disk operations is reduced by
one third. 0

End of Section 5

5.3 Disk Blocking CP/M-68K System Guide

48

Section 6
Installing and Adapting

the Distributed BIOS and CP/M-68K
6.1 Overview

The process of bringing up your first running CP/M-68K system is either trivial or
involved, depending on your hardware environment. Digital Research supplies CP/M-68K in a
form suitable for booting on a Motorola EXORmacs development system. If you have an
EXORmacs, you can read Section 6.1 which tells how to load the distributed system. Similarly,
you can buy or lease some other machine which already runs CP/M-68K. If you do not have an
EXORmacs, you can use the S-record files supplied with your distribution disks to bring up your
first CP/M-68K system. This process is discussed in Section 6.2.

6.2 Booting on an EXORmacs
The CP/M-68K disk set distributed by Digital Research includes disks boot and run

CP/M-68K on the Motorola EXORmacs. You can use the distribution system boot disk without
modification if you have a Motorola EXORmacs system and the following configuration:

1) 128K memory (minimum)
2) a Universal Disk Controller (UDC) or Floppy Disk Controller (FDC)
3) a single-density, IBM 3740 compatible floppy disk drive
4) an EXORter Hi
To load CP/M-68K, do the following:
1) Place the disk in the first floppy drive (#FD04 with the UDC or #FDOO with the
 FDC).
2) Press SYSTEM RESET (front panel) and RETURN (this brings in MACSbugT.M.) .
3) Type "BO 4" if you are using the UDC, "BO 0" if you are using the FDC, and
 RETURN. CP/M-68K boots and begins running.

49

6.3 Bringing Up CP/M-68K Using the S-record Files
The CP/M-68K distribution disks contain two copies of the CP/M- 68K operating system

in Motorola S-record form, for use in getting your first CP/M-68K system running. S-records
(described in detail in Appendix F) are a simple ASCII representation for absolute programs. The
two S-record systems contain the CCP and BDOS, but no BIOS. One of the S-record systems
resides at locations 400H and up, the other is configured to occupy the top of a 128K memory
space. (The exact bounds of the S-record systems may vary from release to release. There will be
release notes and/or a file named README describing the exact characteristics of the S-record
systems distributed on your disks.) To bring up CP/M-68K using the S-record files, you need:

1) some method of down-loading absolute data into your target system
2) a computer capable of reading the distribution disks (a CP/M-based computer that
 supports standard CP/M 8-inch diskettes)
3) a BIOS for your target computer

Given the above items, you (--an use the following procedure to bring a working version

of CP/M-68K into your target system:
1) You must patch one location in the S-record system to link it to your BIOS's init entry
 point. This location will be specified in release notes and/or in a README file on your

 distribution disks. The patch simply consists of inserting the address of the init entry
 in your BIOS at one long word location in the -record system. This patching can be
 done either before or after down-loading the system, whichever is more convenient.
2) Your BIOS needs the address of the cop entry point in the S-record system. This can
 be obtained from the release notes and/or the README file.
3) Down-load the S-record system into the memory of your target computer.
4) Down-load your BIOS into the memory of your target computer.
5) Begin executing instructions at the first location of the down-loaded S-record system.
Now that you have a working version of CP/M-68K, you can use the tools provided with

the distribution system for further development.

End of Section 6

6.3 CP/M-68K with S-record Files CP/M-68K System Guide

50

Section 7
Cold Boot Automatic Command Execution

7.1 Overview
The Cold Boot Automatic Command Execution feature of CP/M-68K allows you to

configure CP/M-68K so that the CCP will automatically execute a predetermined command line
on cold boot. This feature can be used to start up turn-key systems, or to perform other desired
operations.

7.2 Setting up Cold Boot Automatic Command Execution
The CBACE feature uses two global symbols: autost, and _usercmd. These are both

defined in the CCP, which uses them on cold boot to determine whether this feature is enabled. If
you want to have a CCP command automatically executed on cold boot, you should include code
in your BIOS's _init routine (which is called at cold boot) to do the following:

1) The byte at _autost must be set to the value 01H.
2) The command line to be executed must be placed in memory at _usercmd and
 subsequent locations. The command must be terminated with a NULL (OOH) byte,
 and may not exceed 128 bytes in length. All alphabetic characters in the command line
 should be upper-case.
Once you write a BIOS that performs these two functions, you can build it into a

CPM.SYS file as described in Section 2. This system, when booted, will execute the command
you have built into it.

End of Section 7

51

52

Section 8
The PUTBOOT Utility

8.1 PUTBOOT Operation
The PUTBOOT utility is used to copy information (usually a bootstrap loader system)

onto the system tracks of a disk. Although PUTBOOT can copy any file to the system tracks,
usually the file being written is a program (the bootstrap system).

8.2 Invoking PUTBOOT
Invoke PUTBOOT with a command of the form:
PUTBOOT [-H] <filename> <drive>

where
o -H is an optional flag discussed below;
o <filename> is the name of the tile to be written to the system tracks;

 o <drive> is the drive specifier for the drive to which <filename> is to be written (letter in
 the range A-P.)
PUTBOOT writes the specified file to the system tracks of the specified drive. Sector

skewing is not used; the file is written to the system tracks in physical sector number order.
Because the file that is written is normally in command file format, PUTBOOT contains

special logic to strip off the first 28 bytes of the file whenever the file begins with the number
601AH, the magic number used in command files. If, by chance, the file to be written begins with
601AH, but should not have its first 28 bytes discarded, the -H flag should be specified in the
PUTBOOT command line. This flag tells PUTBOOT to write the file verbatim to the system
tracks.

PUTBOOT uses BDOS calls to read <filename> , and used BIOS calls to write
<filename> to the system tracks. It refers to the OFF and SPT parameters in the Disk Parameter
Block to determine how large the system track space is. The source and command files for
PUTBOOT are supplied on the distribution disks for CP/M-68K.

End of Section 8

53

54

Appendix A
Contents of Distribution Disks

This appendix briefly describes the contents of the disks that contain CP/M-68K as
distributed by Digital Research.

Table A-1. Distribution Disk Contents
 File Contents

AR68.REL Relocatable version of the archiver/librarian.
AS68INIT Initialization file for assembler--see AS68 documentation in the

CP/M-68K Operating System Programer's Guide.
AS68.REL Relocatable version of the assembler.
ASM.SUB Submit file to assemble an assembly program with file type S, put

the object code in filename.0, and a listing file in filename.PRN.
BIOS.0 Object file of BIOS for EXORmacs.
BIOS.C C language source for the EXORmacs BIOS as distributed with

CP/M-68K.
BIOSA.0 Object file for assembly portion of EXORmacs BIOS.
BIOSA.S Source for the assembly language portion of the EXORmacs BIOS

as distributed with CP/M-68K.
BIOSTYPS.H Include file for use with BIOS.C.
BOOTER.0 object for EXORmacs bootstrap.
BOOTER.S Assembly boot code for the EXORmacs.
C.SUB Submit file to do a C compilation. Invokes all three passes of the C

compiler as well as the assembler. You can compile a C program
with the line: A>C filename.

C068.REL Relocatable version of the C parser.
C168.REL Relocatable version of the C code generator.

55

Table A-1. (continued)
 File Contents

CLIB The C run-time library.
CLINK.SUB Submit file for linking C object programs with the C run-time

library.
CP68.REL Relocatable version of the C preprocessor.
CPM.H Include file with C definitions for CP/M-68K. See the C

Programminq Guide for CP/M-68K for details.
CPM.REL Relocatable version of CPM.SYS.
CPM.SYS CP/M-68K operating system file for the EXORmacs.
CPMLIB Library of object files for CP/M-68K. See Section 2.
CPMLDR.SYS The bootstrap loader for the EXORmacs. A copy of this was

written to the system tracks using PUTBOOT.
CTYPE.H Same as above.
DDT.REL Relocatable version of the preloader for DDT. (Loads DDT1 into

the high end of the TPA.)
DDT1.68K This is the real DDT that gets loaded into the top of the TPA. It is

relocatable even though the file type is .68K, because it must be
relocated to the top of the TPA each time it is used.

DUMP.REL Relocatable version of the DUMP utility.
ED.REL Relocatable version of the ED utility.
ELDBIOS.S Assembly language source for the ERG sample loader BIOS.
ERGBIOS.S Assembly language source for the ERG sample BIOS.
ERRNO.H Same as above.
FORMAT.REL Relocatable disk formatter for the Motorola EXORmacs.

Appendix - A Contents of Distribution Disks CP/M-68K System Guide

56

Table A-1. (continued)
File Contents

FORMAT.S Assembly language source for the FORMAT utility.
INIT.REL Relocatable version of the INIT utility.
INIT.S Assembly language source for the INIT utility.
LCPM.SUB Submit file to create CPM.REL for EXORmacs.
LDBIOS.0 Object file of loader BIOS for EXORmacs.
LDBIOSA.0 Object file for assembly portion of EXORmacs loader BIOS.
LDBIOSA.S Source for the assembly language portion of the EXORmacs loader

BIOS as distributed with CP/M-68K.
LDRLIB Library of object files for creating a Bootstrap Loader. See

Section 3.
L068.REL Relocatable version of the linker.
LOADBIOS.H Include file for use with BIOS.C, to make it into a loader BIOS.
LOADBIOS.SUB Submit file to create loader BIOS for EXORmacs.
MAKELDR.SUB Submit file to create CPMLDR.SYS on EXORmacs.
NORMBIOS.H Include file for use with BIOS.C, to make it into a normal. BIOS
NORMBIOS.SUB Submit file to create normal BIOS for EXORmacs.
NM68.REL Relocatable version of the symbol table dump utility.
PIP.REL Relocatable version of the PIP utility.
PORTAB.H Same as above.
PUTBOOT.REL Relocatable version of the PUTBOOT utility.

Appendix - A Contents of Distribution Disks CP/M-68K System Guide

57

Table A-1. (continued)
 File Contents

PUTBOOT.S Assembly language source for the PUTBOOT utility.
README.TXT ASCII file containing information relevant to this shipment of

CP/M-68K. This file might not be present.
RELCPM.SUB Submit file to relocate CPM.REL into CPM.SYS.
RELOC.REL Relocatable version of the command file relocation utility.
RELOCX.SUB b This file is included on each disk that contains REL command files.

(x is the number of the distribution disk containing the files) . It is a
submit file which will relocate the REL files for the target system.

S.0 Startup routine for use with C programs-- must be first object file
linked.

SENDC68.REL Relocatable version of the S-record creation utility.
SETJMP.H Same as above.
SIGNAL.H Same as above.
SIZE68.REL Relocatable version of the SIZE68 utility.
SR128K.SYS S-record version of CP/M-68K. This version has no BIOS, and is

provided for use in porting CP/M-68K to new hardware.
SR40O.SYS S-record version of CP/M-68K. This version has no BIOS, and is

provided for use in porting CP/M-68K to new hardware.
STAT.REL Relocatable version of the STAT utility.
STDIO.H Include file with standard I/O definitions for use with C programs.

See the C Programming Guide for CP/M-68K for details.

End of Appendix A

Appendix - A Contents of Distribution Disks CP/M-68K System Guide

58

Appendix B
Sample BIOS Written in Assembly Language

 1 ***
 2 * *
 3 * CP/M-68K BIOS *
 4 * Basic Input/Output Subsystem *
 5 * For ERG 68000 with Tarbell floppy disk controller *
 6 * *
 7 ***
 8
 9 .globl _init * bios initialization entry point
 10 .globl _ccp * ccp entry point
 11
 12 00000000 23FC0000000E0000008C _init: move.l #traphndl,$8c * set up trap #3 handler
 13 0000000A 4280 clr.l d0 * log on disk A, user 0
 14 0000000C 4E75 rts
 15
 16 traphndl:
 17 0000000E 0C400017 cmpi #nfuncs,d0
 18 00000012 6408 bcc trapng
 19 00000014 E548 lsl #2,d0 * multiply bios function by 4
 20 00000016 207B0006 movea.l 6(pc,d0),a0 * get handler address
 21 0000001A 4E90 jsr (a0) * call handler
 22 trapng:
 23 0000001C 4E73 rte
 24
 25 biosbase:
 26 0000001E 00000000 .dc.l _init
 27 00000022 0000007A .dc.l wboot
 28 00000026 00000080 .dc.l constat
 29 0000002A 00000094 .dc.l conin
 30 0000002E 000000A8 .dc.l conout
 31 00000032 000000BC .dc.l lstout
 32 00000036 000000BE .dc.l pun
 33 0000003A 000000C0 .dc.l rdr
 34 0000003E 000000C8 .dc.l home
 35 00000042 000000D0 .dc.l seldsk
 36 00000046 000000F8 .dc.l settrk
 37 0000004A 00000100 .dc.l setsec
 38 0000004E 00000114 .dc.l setdma
 39 00000052 0000011C .dc.l read
 40 00000056 0000015E .dc.l write
 41 0000005A 000000C2 .dc.l listst

Listing B-1. Sample Assembly Language BIOS

59

 42 0000005E 00000108 .dc.l sectran
 43 00000062 00000114 .dc.l setdma
 44 00000066 0000029C .dc.l getseg
 45 0000006A 000002A4 .dc.l getiob
 46 0000006E 000002A6 .dc.l setiob
 47 00000072 00000298 .dc.l flush
 48 00000076 000002A8 .dc.l setexc
 49
 50 nfuncs=(*-biosbase)/4
 51
 52 0000007A 4EF900000000 wboot: jmp _ccp
 53
 54 00000080 103900FFFF01 constat: move.b $ffff01,d0 * get status byte
 55 00000086 02400002 andi.w #2,d0 * data available bit on?
 56 0000008A 6704 beq noton * branch if not
 57 0000008C 7001 moveq.l #$1,d0 * set result to true
 58 0000008E 4E75 rts
 59
 60 00000090 4280 noton: clr.l d0 * set result to false
 61 00000092 4E75 rts
 62
 63 00000094 61EA conin: bsr constat * see if key pressed
 64 00000096 4A40 tst d0
 65 00000098 67FA beq conin * wait until key pressed
 66 0000009A 103900FFFF00 move.b $ffff00,d0 * get key
 67 000000A0 C0BC0000007F and.l #$7f,d0 * clear all but low 7 bits
 68 000000A6 4E75 rts
 69
 70 000000A8 103900FFFF01conout: move.b $ffff01,d0 * get status
 71 000000AE C03C0001 and.b #$1,d0 * check for transmitter buffer empty
 72 000000B2 67F4 beq conout * wait until our port has aged...
 73 000000B4 13C100FFFF00 move.b d1,$ffff00 * and output it
 74 000000BA 4E75 rts * and exit
 75
 76 000000BC 4E75 lstout: rts
 77
 78 000000BE 4E75 pun: rts
 79
 80 000000C0 4E75 rdr: rts
 81
 82 000000C2 103C00FF listst: move.b #$ff,d0
 83 000000C6 4E75 rts
 84
 85 *
 86 * Disk Handlers for Tarbell 1793 floppy disk controller
 87 *
 88 maxdsk = 2 * this BIOS supports 2 floppy drives
 89 dphlen = 26 * length of disk parameter header
 90
 91 iobase = $00fffff8 * Tarbell floppy disk port base address
 92 dcmd = iobase * output port for command

Listing B-1. (continued)

Appendix - B Sample Assembly Language BIOS CP/M-68K System Guide

60

 93 dstat = iobase * input status port
 94 dtrk = iobase+1 * disk track port
 95 dsect = iobase+2 * disk sector port
 96 ddata = iobase+3 * disk data port
 97 dwait = iobase+4 * input port to wait for op finished
 98 dcntrl = iobase+4 * output control port for drive selection
 99
 100
 101 000000C8 423900000002 home: clr.b track
 102 000000CE 4E75 rts
 103
 104 seldsk:
 105 * select disk given by register d1.b
 106 000000D0 7000 moveq #0,d0
 107 000000D2 B23C0002 cmp.b #maxdsk,d1 * valid drive number?
 108 000000D6 6A1E bpl selrtn * if no, return 0 in d0
 109 000000D8 13C100000000 move.b d1,seldrv * else, save drive number
 110 000000DE E909 lsl.b #4,d1
 111 000000E0 13C10000000A move.b d1,selcode * select code is 00 for drv 0, $10 for drv 1
 112 000000E6 103900000000 move.b seldrv,d0
 113 000000EC C0FC001A mulu #dphlen,d0
 114 000000F0 D0BC00000016 add.l #dph0,d0 * point d0 at correct dph
 115 000000F6 4E75 selrtn: rts
 116
 117 000000F8 13C100000002 settrk: move.b d1,track
 118 000000FE 4E75 rts
 119
 120 00000100 13C10000000 setsec: move.b d1,sector
 121 00000106 4E75 rts
 122
 123 sectran:
 124 * translate sector in d1 with translate table pointed to by d2
 125 * result in d0
 126 00000108 2042 movea.l d2,a0
 127 0000010A 48C1 ext.l d1
 128 0000010C 10301000 move.b #0(a0,d1),d0
 129 00000110 48C0 ext.l d0
 130 00000112 4E75 rts
 131
 132 setdma:
 133 00000114 23C100000006 move.l d1,dma
 134 0000011A 4E75 rts
 135
 136 read:
 137 * Read one sector from requested disk, track, sector to dma address
 138 * Retry if necessary, return in d0 00 if ok, else non-zero
 139 0000011C 13FC000A0000000B move.b #10,errcnt * set up retry counter
 140 rretry:
 141 00000124 61000076 bsr setup
 142 00000128 00430088 ori #$88,d3 * OR read command with head load bit
 143 0000012C 13C300FFFFF8 move.b d3,dcmd * output it to FDC

Listing B-1. (continued)

Appendix - B Sample Assembly Language BIOS CP/M-68K System Guide

61

 144 00000132 0839000700FFFFFC rloop: btst #7,dwait
 145 0000013A 6708 beq rdone * if end of read, exit
 146 0000013C 10F900FFFFFB move.b ddata,(a0)+ * else, move next byte of data
 147 00000142 60EE bra rloop
 148 rdone:
 149 00000144 61000146 bsr rstatus * get FDC status
 150 00000148 6604 bne rerror
 151 0000014A 4280 clr.l d0
 152 0000014C 4E75 rts
 153 0000014E 610000B0 rerror: bsr errchk * go to error handler
 154 00000152 53390000000B subq.b #1,errcnt
 155 00000158 66CA bne rretry
 156 0000015A 70FF move.l #$ffffffff,d0
 157 0000015C 4E75 rts
 158
 159 write:
 160 * Write one sector to requested disk, track, sector from dma address
 161 * Retry if necessary, return in d0 00 if ok, else non-zero
 162 0000015E 13FC000A0000000B move.b #10,errcnt * set up retry counter
 163 wretry:
 164 00000166 6134 bsr setup
 165 00000168 004300A8 ori #$a8,d3 * OR write command with head load bit
 166 0000016C 13C300FFFFF8 move.b d3,dcmd * output it to FDC
 167 00000172 0839000700FFFFFC wloop: btst #7,dwait
 168 0000017A 6708 beq wdone * if end of read, exit
 169 0000017C 13D800FFFFFB move.b (a0)+,ddata * else, move next byte of data
 170 00000182 60EE bra wloop
 171 wdone:
 172 00000184 61000106 bsr rstatus * get FDC status
 173 00000188 6604 bne werror
 174 0000018A 4280 clr.l d0
 175 0000018C 4E75 rts
 176 0000018E 6170 werror: bsr errchk * go to error handler
 177 00000190 53390000000B subq.b #1,errcnt
 178 00000196 66CE bne wretry
 179 00000198 70FF move.l #$ffffffff,d0
 180 0000019A 4E75 rts
 181
 182 setup:
 183 * common read and write setup code
 184 * select disk, set track, set sector were all deferred until now
 185 0000019C 13FC00D000FFFFF8 move.b #$d0,dcmd * clear controller, get status
 186 000001A4 163900000001 move.b curdrv,d3
 187 000001AA B63900000000 cmp.b seldrv,d3
 188 000001B0 661A bne newdrive * if drive not selected, do it
 189 000001B2 163900000002 move.b track,d3
 190 000001B8 B63900000003 cmp.b oldtrk,d3
 191 000001BE 6620 bne newtrk * if not on right track, do it
 192 000001C0 4283 clr.l d3 * if head already loaded, no head load delay
 193 000001C2 0839000500FFFFF8 btst #5,dstat * if head unloaded, treat as new disk
 194 000001CA 6618 bne sexit

Listing B-1. (continued)

Appendix - B Sample Assembly Language BIOS CP/M-68K System Guide

62

 195 newdrive:
 196 000001CC 13F90000000A00FFFFFC move.b selcode,dcntrl * select the drive
 197 000001D6 13F90000000000000001 move.b seldrv,curdrv
 198 newtrk:
 199 000001E0 6126 bsr chkseek * seek to correct track if required
 200 000001E2 7604 moveq #4,d3 * force head load delay
 201 sexit:
 202 000001E4 13F90000000400FFFFFA move.b sector,dsect * set up sector number
 203 000001EE 13F90000000200FFFFF9 move.b track,dtrk * set up track number
 204 000001F8 207900000006 move.l dma,a0 * dma address to a0
 205 000001FE 4E75 rts
 206
 207 errchk:
 208 00000200 08070004 btst.b #4,d7
 209 00000204 6602 bne chkseek * if record not found error, reseek
 210 00000206 4E75 rts
 211
 212 chkseek:
 213 * check for correct track, seek if necessary
 214 00000208 615C bsr readid * find out what track we're on
 215 0000020A 671E beq chks1 * if read id ok, skip restore code
 216 restore:
 217 * home the drive and reseek to correct track
 218 0000020C 13FC000B00FFFFF8 move.b #$0B,dcmd * restore command to command port
 219 rstwait:
 220 00000214 0839000700FFFFFC btst #7,dwait
 221 0000021C 66F6 bne rstwait * loop until restore completed
 222 0000021E 0839000200FFFFF8 btst #2,dstat
 223 00000226 67E4 beq restore * if not at track 0, try again
 224 00000228 4283 clr.l d3 * track number returned in d3 from readid
 225 chks1:
 226 0000022A 13C300FFFFF9 move.b d3,dtrk * update track register in FDC
 227 00000230 13F90000000200000003 move.b track,oldtrk * update oldtrk
 228 0000023A B63900000002 cmp.b track,d3 * are we at right track?
 229 00000240 6722 beq chkdone * if yes, exit
 230 00000242 13F90000000200FFFFFB move.b track,ddata * else, put desired track in data reg of FDC
 231 0000024C 13FC001800FFFFF8 move.b #$18,dcmd * and issue a seek command
 232 00000254 0839000700FFFFFC chks2: btst #7,dwait
 233 0000025C 66F6 bne chks2 * loop until seek complete
 234 0000025E 163900FFFFF8 move.b dstat,d3 * read status to clear FDC
 235 chkdone:
 236 00000264 4E75 rts
 237
 238 readid:
 239 * read track id, return track number in d3
 240 00000266 13FC00C400FFFFF8 move.b #$c4,dcmd * issue read id command
 241 0000026E 1E3900FFFFFC move.b dwait,d7 * wait for intrq
 242 00000274 163900FFFFFB move.b ddata,d3 * track byte to d3
 243 rid2:
 244 0000027A 0839000700FFFFFC btst #7,dwait
 245 00000282 6708 beq rstatus * wait for intrq

Listing B-1. (continued)

Appendix - B Sample Assembly Language BIOS CP/M-68K System Guide

63

 246 00000284 1E3900FFFFFB move.b ddata,d7 * read another byte
 247 0000028A 60EE bra rid2 * and loop
 248 rstatus:
 249 0000028C 1E3900FFFFF8 move.b dstat,d7
 250 00000292 0207009D andi.b #$9d,d7 * set condition codes
 251 00000296 4E75 rts
 252
 253
 254 flush:
 255 00000298 4280 clr.l d0 * return successful
 256 0000029A 4E75 rts
 257
 258 getseg:
 259 0000029C 203C0000000C move.l #memrgn,d0 * return address of mem region table
 260 000002A2 4E75 rts
 261
 262 getiob:
 263 000002A4 4E75 rts
 264
 265 setiob:
 266 000002A6 4E75 rts
 267
 268 setexc:
 269 000002A8 0281000000FF andi.l #$ff,d1 * do only for exceptions 0 - 255
 270 000002AE E549 lsl #2,d1 * multiply exception nmbr by 4
 271 000002B0 2041 movea.l d1,a0
 272 000002B2 2010 move.l (a0),d0 * return old vector value
 273 000002B4 2082 move.l d2,(a0) * insert new vector
 274 000002B6 4E75 noset: rts
 275
 276
 277 00000000 .data
 278
 279 00000000 FF seldrv: .dc.b $ff * drive requested by seldsk
 280 00000001 FF curdrv: .dc.b $ff * currently selected drive
 281
 282 00000002 00 track: .dc.b 0 * track requested by settrk
 283 00000003 00 oldtrk: .dc.b 0 * track we were on
 284
 285 00000004 0000 sector: .dc.w 0
 286 00000006 00000000 dma: .dc.l 0
 287 0000000A 00 selcode: .dc.b 0 * drive select code
 288
 289 0000000B 0A errcnt: .dc.b 10 * retry counter
 290
 291 0000000C 0001 memrgn:.dc.w 1 * 1 memory region
 292 0000000E 00000800 .dc.l $800 * starts at 800 hex
 293 00000012 00017800 .dc.l $17800 * goes until 18000 hex
 294
 295
 296 * disk parameter headers

Listing B-1. (continued)

Appendix - B Sample Assembly Language BIOS CP/M-68K System Guide

64

 297
 298 00000016 0000005A dph0: .dc.l xlt
 299 0000001A 0000 .dc.w 0 * dummy
 300 0000001C 0000 .dc.w 0
 301 0000001E 0000 .dc.w 0
 302 00000020 00000000 .dc.l dirbuf * ptr to directory buffer
 303 00000024 0000004A .dc.l dpb * ptr to disk parameter block
 304 00000028 00000080 .dc.l ckv0 * ptr to check vector
 305 0000002C 000000A0 .dc.l alv0 * ptr to allocation vector
 306
 307 00000030 0000005A dph1: .dc.l xlt
 308 00000034 0000 .dc.w 0 * dummy
 309 00000036 0000 .dc.w 0
 310 00000038 0000 .dc.w 0
 311 0000003A 00000000 .dc.l dirbuf * ptr to directory buffer
 312 0000003E 0000004A .dc.l dpb * ptr to disk parameter block
 313 00000042 00000090 .dc.l ckv1 * ptr to check vector
 314 00000046 000000C0 .dc.l alv1 * ptr to allocation vector
 315
 316 * disk parameter block
 317
 318 0000004A 001A dpb: .dc.w 26 * sectors per track
 319 0000004C 03 .dc.b 3 * block shift
 320 0000004D 07 .dc.b 7 * block mask
 321 0000004E 00 .dc.b 0 * extent mask
 322 0000004F 00 .dc.b 0 * dummy fill
 323 00000050 00F2 .dc.w 242 * disk size
 324 00000052 003F .dc.w 63 * 64 directory entries
 325 00000054 C000 .dc.w $c000 * directory mask
 326 00000056 0010 .dc.w 16 * directory check size
 327 00000058 0002 .dc.w 2 * track offset
 328
 329 * sector translate table
 330
 331 0000005A 01070D13 xlt: .dc.b 1, 7,13,19
 332 0000005E 19050B11 .dc.b 25, 5,11,17
 333 00000062 1703090F .dc.b 23, 3, 9,15
 334 00000066 1502080E .dc.b 21, 2, 8,14
 335 0000006A 141A060C .dc.b 20,26, 6,12
 336 0000006E 1218040A .dc.b 18,24, 4,10
 337 00000072 1016 .dc.b 16,22
 338
 339
 340 00000000 .bss
 341
 342 00000000 dirbuf: .ds.b 128 * directory buffer
 343
 344 00000080 ckv0: .ds.b 16 * check vector
 345 00000090 ckv1: .ds.b 16
 346
 347 000000A0 alv0: .ds.b 32 * allocation vector

Listing B-1. (continued)

Appendix - B Sample Assembly Language BIOS CP/M-68K System Guide

65

 348 000000C0 alv1: .ds.b 32
 349
 350 000000E0 .end
S y m b o l T a b l e
_ccp ******** EXT _init 00000000 TEXT alv0 000000A0 BSS alv1 000000C0 BSS
biosbase 0000001E TEXT chkdone 00000264 TEXT chks1 0000022A TEXT chks2 00000254 TEXT
chkseek 00000208 TEXT ckv0 00000080 BSS ckv1 00000090 BSS conin 00000094 TEXT
conout 000000A8 TEXT constat 00000080 TEXT curdrv 00000001 DATA dcmd 00FFFFF8 ABS
dcntrl 00FFFFFC ABS ddata 00FFFFFB ABS dirbuf 00000000 BSS dma 00000006 DATA
dpb 0000004A DATA dph0 00000016 DATA dph1 00000030 DATA dphlen 0000001A ABS
dsect 00FFFFFA ABS dstat 00FFFFF8 ABS dtrk 00FFFFF9 ABS dwait 00FFFFFC ABS
errchk 00000200 TEXT errcnt 0000000B DATA flush 00000298 TEXT getiob 000002A4 TEXT
getseg 0000029C TEXT home 000000C8 TEXT iobase 00FFFFF8 ABS listst 000000C2 TEXT
lstout 000000BC TEXT maxdsk 00000002 ABS memrgn 0000000C DATA newdrive 000001CC TEXT
newtrk 000001E0 TEXT nfuncs 00000017 ABS noset 000002B6 TEXT noton 00000090 TEXT
oldtrk 00000003 DATA pun 000000BE TEXT rdone 00000144 TEXT rdr 000000C0 TEXT
read 0000011C TEXT readid 00000266 TEXT rerror 0000014E TEXT restore 0000020C TEXT
rid2 0000027A TEXT rloop 00000132 TEXT rretry 00000124 TEXT rstatus 0000028C TEXT
rstwait 00000214 TEXT sector 00000004 DATA sectran 00000108 TEXT selcode 0000000A DATA
seldrv 00000000 DATA seldsk 000000D0 TEXT selrtn 000000F6 TEXT setdma 00000114 TEXT
setexc 000002A8 TEXT setiob 000002A6 TEXT setsec 00000100 TEXT settrk 000000F8 TEXT
setup 0000019C TEXT sexit 000001E4 TEXT track 00000002 DATA traphndl 0000000E TEXT
trapng 0000001C TEXT wboot 0000007A TEXT wdone 00000184 TEXT werror 0000018E TEXT
wloop 00000172 TEXT wretry 00000166 TEXT write 0000015E TEXT xlt 0000005A DATA

Listing B-1. (continued)
End of Appendix B

Appendix - B Sample Assembly Language BIOS CP/M-68K System Guide

66

Appendix C
Sample Loader BI0S Written in Assembly Language

C P / M 6 8 0 0 0 A s s e m b l e r Revision 02.01 Page 1
Source File: eldbios.s
 1 ***
 2 * *
 3 * CP/M-68K Loader BIOS *
 4 * Basic Input/Output Subsystem *
 5 * For ERG 68000 with Tarbell floppy disk controller *
 6 * *
 7 ***
 8
 9
 10 .globl _bios * declare external entry point
 11
 12
 13 _bios:
 14 00000000 0C400017 cmpi #nfuncs,d0
 15 00000004 6C08 bge nogood
 16 00000006 E548 lsl #2,d0 * multiply bios function by 4
 17 00000008 207B0006 movea.l 6(pc,d0),a0 * get handler address
 18 0000000C 4E90 jsr (a0) * call handler
 19 nogood:
 20 0000000E 4E75 rts
 21
 22 biosbase:
 23 00000010 0000000E .dc.l nogood
 24 00000014 0000000E .dc.l nogood
 25 00000018 0000006C .dc.l constat
 26 0000001C 00000080 .dc.l conin
 27 00000020 00000094 .dc.l conout
 28 00000024 0000000E .dc.l nogood
 29 00000028 0000000E .dc.l nogood
 30 0000002C 0000000E .dc.l nogood
 31 00000030 000000A8 .dc.l home
 32 00000034 000000B0 .dc.l seldsk
 33 00000038 000000C4 .dc.l settrk
 34 0000003C 000000CC .dc.l setsec
 35 00000040 000000E0 .dc.l setdma
 36 00000044 000000E8 .dc.l read
 37 00000048 0000000E .dc.l nogood
 38 0000004C 0000000E .dc.l nogood
 39 00000050 000000D4 .dc.l sectran
 40 00000054 000000E0 .dc.l setdma
 41 00000058 0000000E .dc.l nogood
 42 0000005C 0000000E .dc.l nogood

Listing C-1. Sample BIOS Loader

67

 43 00000060 0000000E .dc.l nogood
 44 00000064 0000000E .dc.l nogood
 45 00000068 00000222 .dc.l setexc
 46
 47 nfuncs=(*-biosbase)/4
 48
 49
 50 0000006C 103900FFFF01 constat: move.b $ffff01,d0 * get status byte
 51 00000072 02400002 andi.w #2,d0 * data available bit on?
 52 00000076 6704 beq noton * branch if not
 53 00000078 7001 moveq.l #$1,d0 * set result to true
 54 0000007A 4E75 rts
 55
 56 0000007C 4280 noton: clr.l d0 * set result to false
 57 0000007E 4E75 rts
 58
 59 00000080 61EA conin: bsr constat * see if key pressed
 60 00000082 4A40 tst d0
 61 00000084 67FA beq conin * wait until key pressed
 62 00000086 103900FFFF00 move.b $ffff00,d0 * get key
 63 0000008C C0BC0000007F and.l #$7f,d0 * clear all but low 7 bits
 64 00000092 4E75 rts
 65
 66 00000094 103900FFFF01conout: move.b $ffff01,d0 * get status
 67 0000009A C03C0001 and.b #$1,d0 * check for transmitter buffer empty
 68 0000009E 67F4 beq conout * wait until our port has aged...
 69 000000A0 13C100FFFF00 move.b d1,$ffff00 * and output it
 70 000000A6 4E75 rts * and exit
 71
 72
 73 *
 74 * Disk Handlers for Tarbell 1793 floppy disk controller
 75 *
 76 maxdsk = 2 * this BIOS supports 2 floppy drives
 77 dphlen = 26 * length of disk parameter header
 78
 79 iobase = $00fffff8 * Tarbell floppy disk port base address
 80 dcmd = iobase * output port for command
 81 dstat = iobase * input status port
 82 dtrk = iobase+1 * disk track port
 83 dsect = iobase+2 * disk sector port
 84 ddata = iobase+3 * disk data port
 85 dwait = iobase+4 * input port to wait for op finished
 86 dcntrl = iobase+4 * output control port for drive selection
 87
 88
 89 000000A8 423900000002 home: clr.b track
 90 000000AE 4E75 rts
 91
 92 seldsk:
 93 * select disk A
 94 000000B0 423900000000 clr.b seldrv * select drive
Listing C-1. (continued)

Appendix - C Sample Loader BIOS CP/M-68K System Guide

68

 95 000000B6 42390000000A clr.b selcode * select code is 00 for drv 0, $10 for drv 1
 96 000000BC 203C0000000C move.l #dph0,d0
 97 000000C2 4E75 selrtn: rts
 98
 99 000000C4 13C100000002 settrk: move.b d1,track
 100 000000CA 4E75 rts
 101
 102 000000CC 13C100000004 setsec: move.b d1,sector
 103 000000D2 4E75 rts
 104
 105 sectran:
 106 * translate sector in d1 with translate table pointed to by d2
 107 * result in d0
 108 000000D4 2042 movea.l d2,a0
 109 000000D6 48C1 ext.l d1
 110 000000D8 10301000 move.b #0(a0,d1),d0
 111 000000DC 48C0 ext.l d0
 112 000000DE 4E75 rts
 113
 114 setdma:
 115 000000E0 23C100000006 move.l d1,dma
 116 000000E6 4E75 rts
 117
 118 read:
 119 * Read one sector from requested disk, track, sector to dma address
 120 * Retry if necessary, return in d0 00 if ok, else non-zero
 121 000000E8 13FC000A0000000B move.b #10,errcnt * set up retry counter
 122 rretry:
 123 000000F0 6134 bsr setup
 124 000000F2 00430088 ori #$88,d3 * OR read command with head load bit
 125 000000F6 13C300FFFFF8 move.b d3,dcmd * output it to FDC
 126 000000FC 0839000700FFFFFC rloop: btst #7,dwait
 127 00000104 6708 beq rdone * if end of read, exit
 128 00000106 10F900FFFFFB move.b ddata,(a0)+ * else, move next byte of data
 129 0000010C 60EE bra rloop
 130 rdone:
 131 0000010E 61000106 bsr rstatus * get FDC status
 132 00000112 6604 bne rerror
 133 00000114 4280 clr.l d0
 134 00000116 4E75 rts
 135 00000118 6170 rerror: bsr errchk * go to error handler
 136 0000011A 53390000000B subq.b #1,errcnt
 137 00000120 66CE bne rretry
 138 00000122 70FF move.l #$ffffffff,d0
 139 00000124 4E75 rts
 140
 141
 142 setup:
 143 * common read and write setup code
 144 * select disk, set track, set sector were all deferred until now
 145 00000126 13FC00D000FFFFF8 move.b #$d0,dcmd * clear controller, get status
 146 0000012E 163900000001 move.b curdrv,d3
Listing C-1. (continued)

Appendix - C Sample Loader BIOS CP/M-68K System Guide

69

 147 00000134 B63900000000 cmp.b seldrv,d3
 148 0000013A 661A bne newdrive * if drive not selected, do it
 149 0000013C 163900000002 move.b track,d3
 150 00000142 B63900000003 cmp.b oldtrk,d3
 151 00000148 6620 bne newtrk * if not on right track, do it
 152 0000014A 4283 clr.l d3 * if head already loaded, no head load delay
 153 0000014C 0839000500FFFFF8 btst #5,dstat * if head unloaded, treat as new disk
 154 00000154 6618 bne sexit
 155 newdrive:
 156 00000156 13F90000000A00FFFFFC move.b selcode,dcntrl * select the drive
 157 00000160 13F90000000000000001 move.b seldrv,curdrv
 158 newtrk:
 159 0000016A 6126 bsr chkseek * seek to correct track if required
 160 0000016C 7604 moveq #4,d3 * force head load delay
 161 sexit:
 162 0000016E 13F90000000400FFFFFA move.b sector,dsect * set up sector number
 163 00000178 13F90000000200FFFFF9 move.b track,dtrk * set up track number
 164 00000182 207900000006 move.l dma,a0 * dma address to a0
 165 00000188 4E75 rts
 166
 167 errchk:
 168 0000018A 08070004 btst.b #4,d7
 169 0000018E 6602 bne chkseek * if record not found error, reseek
 170 00000190 4E75 rts
 171
 172 chkseek:
 173 * check for correct track, seek if necessary
 174 00000192 615C bsr readid * find out what track we're on
 175 00000194 671E beq chks1 * if read id ok, skip restore code
 176 restore:
 177 * home the drive and reseek to correct track
 178 00000196 13FC000B00FFFFF8 move.b #$0B,dcmd * restore command to command port
 179 rstwait:
 180 0000019E 0839000700FFFFFC btst #7,dwait
 181 000001A6 66F6 bne rstwait * loop until restore completed
 182 000001A8 0839000200FFFFF8 btst #2,dstat
 183 000001B0 67E4 beq restore * if not at track 0, try again
 184 000001B2 4283 clr.l d3 * track number returned in d3 from readid
 185 chks1:
 186 000001B4 13C300FFFFF9 move.b d3,dtrk * update track register in FDC
 187 000001BA 13F90000000200000003 move.b track,oldtrk * update oldtrk
 188 000001C4 B63900000002 cmp.b track,d3 * are we at right track?
 189 000001CA 6722 beq chkdone * if yes, exit
 190 000001CC 13F90000000200FFFFFB move.b track,ddata * else, put desired track in data reg of FDC
 191 000001D6 13FC001800FFFFF8 move.b #$18,dcmd * and issue a seek command
 192 000001DE 0839000700FFFFFC chks2: btst #7,dwait
 193 000001E6 66F6 bne chks2 * loop until seek complete
 194 000001E8 163900FFFFF8 move.b dstat,d3 * read status to clear FDC
 195 chkdone:
 196 000001EE 4E75 rts
 197
 198 readid:
Listing C-1. (continued)

Appendix - C Sample Loader BIOS CP/M-68K System Guide

70

 199 * read track id, return track number in d3
 200 000001F0 13FC00C400FFFFF8 move.b #$c4,dcmd * issue read id command
 201 000001F8 1E3900FFFFFC move.b dwait,d7 * wait for intrq
 202 000001FE 163900FFFFFB move.b ddata,d3 * track byte to d3
 203 rid2:
 204 00000204 0839000700FFFFFC btst #7,dwait
 205 0000020C 6708 beq rstatus * wait for intrq
 206 0000020E 1E3900FFFFFB move.b ddata,d7 * read another byte
 207 00000214 60EE bra rid2 * and loop
 208 rstatus:
 209 00000216 1E3900FFFFF8 move.b dstat,d7
 210 0000021C 0207009D andi.b #$9d,d7 * set condition codes
 211 00000220 4E75 rts
 212
 213
 214 setexc:
 215 00000222 0281000000FF andi.l #$ff,d1 * do only for exceptions 0 - 255
 216 00000228 E549 lsl #2,d1 * multiply exception number by 4
 217 0000022A 2041 movea.l d1,a0
 218 0000022C 2010 move.l (a0),d0 * return old vector value
 219 0000022E 2082 move.l d2,(a0) * insert new vector
 220 00000230 4E75 rts
 221
 222
 223 00000000 .data
 224
 225 00000000 FF seldrv: .dc.b $ff * drive requested by seldsk
 226 00000001 FF curdrv: .dc.b $ff * currently selected drive
 227
 228 00000002 00 track: .dc.b 0 * track requested by settrk
 229 00000003 00 oldtrk: .dc.b 0 * track we were on
 230
 231 00000004 0000 sector: .dc.w 0
 232 00000006 00000000 dma: .dc.l 0
 233 0000000A 00 selcode: .dc.b 0 * drive select code
 234
 235 0000000B 0A errcnt: .dc.b 10 * retry counter
 236
 237
 238 * disk parameter headers
 239
 240 0000000C 00000036 dph0: .dc.l xlt
 241 00000010 0000 .dc.w 0 * dummy
 242 00000012 0000 .dc.w 0
 243 00000014 0000 .dc.w 0
 244 00000016 00000000 .dc.l dirbuf * ptr to directory buffer
 245 0000001A 00000026 .dc.l dpb * ptr to disk parameter block
 246 0000001E 00000000 .dc.l 0 * ptr to check vector
 247 00000022 00000000 .dc.l 0 * ptr to allocation vector
 248
 249
 250 * disk parameter block

Listing C-1. (continued)

Appendix - C Sample Loader BIOS CP/M-68K System Guide

71

 251
 252 00000026 001A dpb: .dc.w 26 * sectors per track
 253 00000028 03 .dc.b 3 * block shift
 254 00000029 07 .dc.b 7 * block mask
 255 0000002A 00 .dc.b 0 * extent mask
 256 0000002B 00 .dc.b 0 * dummy fill
 257 0000002C 00F2 .dc.w 242 * disk size
 258 0000002E 003F .dc.w 63 * 64 directory entries
 259 00000030 C000 .dc.w $c000 * directory mask
 260 00000032 0010 .dc.w 16 * directory check size
 261 00000034 0002 .dc.w 2 * track offset
 262
 263 * sector translate table
 264
 265 00000036 01070D13 xlt: .dc.b 1, 7,13,19
 266 0000003A 19050B11 .dc.b 25, 5,11,17
 267 0000003E 1703090F .dc.b 23, 3, 9,15
 268 00000042 1502080E .dc.b 21, 2, 8,14
 269 00000046 141A060C .dc.b 20,26, 6,12
 270 0000004A 1218040A .dc.b 18,24, 4,10
 271 0000004E 1016 .dc.b 16,22
 272
 273
 274 00000000 .bss
 275
 276 00000000 dirbuf: .ds.b 128 * directory buffer
 277
 278
 279 00000080 .end
S y m b o l T a b l e
_bios 00000000 TEXT biosbase 00000010 TEXT chkdone 000001EE TEXT chks1 000001B4 TEXT
chks2 000001DE TEXT chkseek 00000192 TEXT conin 00000080 TEXT conout 00000094 TEXT
constat 0000006C TEXT curdrv 00000001 DATA dcmd 00FFFFF8 ABS dcntrl 00FFFFFC ABS
ddata 00FFFFFB ABS dirbuf 00000000 BSS dma 00000006 DATA dpb 00000026 DATA
dph0 0000000C DATA dphlen 0000001A ABS dsect 00FFFFFA ABS dstat 00FFFFF8 ABS
dtrk 00FFFFF9 ABS dwait 00FFFFFC ABS errchk 0000018A TEXT errcnt 0000000B DATA
home 000000A8 TEXT iobase 00FFFFF8 ABS maxdsk 00000002 ABS newdrive 00000156 TEXT
newtrk 0000016A TEXT nfuncs 00000017 ABS nogood 0000000E TEXT noton 0000007C TEXT
oldtrk 00000003 DATA rdone 0000010E TEXT read 000000E8 TEXT readid 000001F0 TEXT
rerror 00000118 TEXT restore 00000196 TEXT rid2 00000204 TEXT rloop 000000FC TEXT
rretry 000000F0 TEXT rstatus 00000216 TEXT rstwait 0000019E TEXT sector 00000004 DATA
sectran 000000D4 TEXT selcode 0000000A DATA seldrv 00000000 DATA seldsk 000000B0 TEXT
selrtn 000000C2 TEXT setdma 000000E0 TEXT setexc 00000222 TEXT setsec 000000CC TEXT
settrk 000000C4 TEXT setup 00000126 TEXT sexit 0000016E TEXT track 00000002 DATA
xlt 00000036 DATA

Listing C-1. (continued)
End of Appendix C

Appendix - C Sample Loader BIOS CP/M-68K System Guide

72

Appendix D
EXORmacs BIOS Written in C

This Appendix contains several files in addition to the C BIOSproper. First, the C BIOS
includes conditional compilation to make it into either a loader BIOS or a normal BIOS,
and there is an include file for each possibility. One of these include files should be
renamed BIOSTYPE.H before compiling the BIOS. The choice of which file is used as
BIOSTYPE.H determines whether a normal or loader BIOS is compiled. Both the normal and
the loader BIOSes need assembly language interfaces, and they are not the same. Both
assembly interface modules are given. Finally, there is an include file that defines some standard
variable types.

Listing D-1. EXORmacs BIOS.C File

/*==*/
/*/--*/
/*| |*/
/*| CP/M-68K(tm) BIOS for the EXORMACS |*/
/*| Copyright 1983, Digital Research. |*/
/*| |*/
/*| Modified 9/ 7/82 wbt |*/
/*| 10/ 5/82 wbt |*/
/*| 12/15/82 wbt |*/
/*| 12/22/82 wbt |*/
/*| 1/28/83 wbt |*/
/*| 2/05/84 sw V1.2 |*/
/*| |*/
/*\---/*/
/*==*/
#include "biostype.h" /* defines LOADER : 0-> normal bios, 1->loader bios */

/* also defines CTLTYPE 0 -> Universal Disk Cntrlr */
/* 1 -> Floppy Disk Controller */
/* MEMDSK: 0 -> no memory disk */
/* 4 -> 384K memory disk */

#include "biostyps.h" /* defines portable variable types */
char copyright[] = "Copyright 1983, Digital Research";
struct memb { BYTE byte; }; /* use for peeking and poking memory */
struct memw { WORD word; };
struct meml { LONG lword;};

/**/
/* I/O Device Definitions */
/**/

73

/**/
/* Define the two serial ports on the DEBUG board */
/**/
/* Port Addresses */
#define PORT1 0xFFEE011 /* console port */
#define PORT2 0xFFEE015 /* debug port */
/* Port Offsets */
#define PORTCTRL 0 /* Control Register */
#define PORTSTAT 0 /* Status Register */
#define PORTRDR 2 /* Read Data Register */
#define PORTTDR 2 /* Write Data Register */
/* Port Control Functions */
#define PORTRSET 3 /* Port Reset */
#define PORTINIT 0x11 /* Port Initialize */
/* Port Status Values */
#define PORTRDRF 1 /* Read Data Register Full */
#define PORTTDRE 2 /* Write Data Register Empty */

/**/
/* Define Disk I/O Addresses and Related Constants */
/**/
#define DSKIPC 0xFF0000 /* IPC Base Address */
#define DSKINTV 0x3FC /* Address of Disk Interrupt Vector */
#define INTTOIPC 0xD /* offsets in mem mapped io area */
#define RSTTOIPC 0xF
#define MSGTOIPC 0x101
#define ACKTOIPC 0x103
#define PKTTOIPC 0x105
#define MSGFMIPC 0x181
#define ACKFMIPC 0x183
#define PKTFMIPC 0x185
#define DSKREAD 0x10 /* disk commands */
#define DSKWRITE 0x20
/* Some characters used in disk controller packets */
#define STX 0x02
#define ETX 0x03
#define ACK 0x06
#define NAK 0x15

Apendix - D EXORmacs BIOS CP/M-68K System Guide

74

#define PKTSTX 0x0 /* offsets within a disk packet */
#define PKTID 0x1
#define PKTSZ 0x2
#define PKTDEV 0x3
#define PKTCHCOM 0x4
#define PKTSTCOM 0x5
#define PKTSTVAL 0x6
#define PKTSTPRM 0x8
#define STPKTSZ 0xf

/**/
/* BIOS Table Definitions */
/**/
/* Disk Parameter Block Structure */
struct dpb
{

WORD spt;
BYTE bsh;
BYTE blm;
BYTE exm;
BYTE dpbjunk;
WORD dsm;
WORD drm;
BYTE al0;
BYTE al1;
WORD cks;
WORD off;

};

/* Disk Parameter Header Structure */
struct dph
{

BYTE *xltp;
WORD dphscr[3];
BYTE *dirbufp;

struct dpb *dpbp;
BYTE *csvp;
BYTE *alvp;

};

/**/
/* Directory Buffer for use by the BDOS */
/**/
BYTE dirbuf[128];
#if ! LOADER

Apendix - D EXORmacs BIOS CP/M-68K System Guide

75

/**/
/* CSV's */
/**/
BYTE csv0[16];
BYTE csv1[16];
#if ! CTLTYPE
BYTE csv2[256];
BYTE csv3[256];
#endif
#if MEMDSK
BYTE csv4[16];
#endif
/**/
/* ALV's */
/**/
BYTE alv0[32]; /* (dsm0 / 8) + 1 */
BYTE alv1[32]; /* (dsm1 / 8) + 1 */
#if ! CTLTYPE
BYTE alv2[412]; /* (dsm2 / 8) + 1 */
BYTE alv3[412]; /* (dsm2 / 8) + 1 */
#endif
#if MEMDSK
BYTE alv4[48]; /* (dsm4 / 8) + 1 */
#endif
#endif
/**/
/* Disk Parameter Blocks */
/**/
/* The following dpb definitions express the intent of the writer, */
/* unfortunately, due to a compiler bug, these lines cannot be used. */
/* Therefore, the obscure code following them has been inserted. */
/*sw With release 1.2, the structure init bug disappeared, so... */
/************* spt, bsh, blm, exm, jnk, dsm, drm, al0, al1, cks, off */
struct dpb dpb0 = { 26, 3, 7, 0, 0, 242, 63, 0, 0, 16, 2};
#if ! CTLTYPE
struct dpb dpb2 = { 32, 5, 31, 1, 0, 3288, 1023, 0, 0, 256, 4};
#endif

Apendix - D EXORmacs BIOS CP/M-68K System Guide

76

#if MEMDSK
struct dpb dpb3 = { 32, 4, 15, 0, 0, 191, 63, 0, 0, 0, 0};
#endif
/**/
/* Sector Translate Table for Floppy Disks */
/**/
BYTE xlt[26] = { 1, 7, 13, 19, 25, 5, 11, 17, 23, 3, 9, 15, 21,

 2, 8, 14, 20, 26, 6, 12, 18, 24, 4, 10, 16, 22 };

/**/
/* Disk Parameter Headers */
/* */
/* Four disks are defined : dsk a: diskno=0, (Motorola's #fd04) */
/* if CTLTYPE = 0 : dsk b: diskno=1, (Motorola's #fd05) */
/* : dsk c: diskno=2, (Motorola's #hd00) */
/* : dsk d: diskno=3, (Motorola's #hd01) */
/* */
/* Two disks are defined : dsk a: diskno=0, (Motorola's #fd00) */
/* if CTLTYPE = 1 : dsk b: diskno=1, (Motorola's #fd01) */
/* */
/**/
#if ! LOADER
/* Disk Parameter Headers */
struct dph dphtab[] =

{ {&xlt, 0, 0, 0, &dirbuf, &dpb0, &csv0, &alv0}, /*dsk a*/
 {&xlt, 0, 0, 0, &dirbuf, &dpb0, &csv1, &alv1}, /*dsk b*/

#if ! CTLTYPE
 { 0L, 0, 0, 0, &dirbuf, &dpb2, &csv2, &alv2}, /*dsk c*/
 { 0L, 0, 0, 0, &dirbuf, &dpb2, &csv3, &alv3}, /*dsk d*/

#endif
#if MEMDSK

 { 0L, 0, 0, 0, &dirbuf, &dpb3, &csv4, &alv4} /*dsk e*/
};

#endif
#else
#if ! CTLTYPE
struct dph dphtab[4] =
#else
struct dph dphtab[2] =
#endif

{ {&xlt, 0, 0, 0, &dirbuf, &dpb0, 0L, 0L}, /*dsk a*/
 {&xlt, 0, 0, 0, &dirbuf, &dpb0, 0L, 0L}, /*dsk b*/

#if ! CTLTYPE
 { 0L, 0, 0, 0, &dirbuf, &dpb2, 0L, 0L}, /*dsk c*/
 { 0L, 0, 0, 0, &dirbuf, &dpb2, 0L, 0L}, /*dsk d*/

Apendix - D EXORmacs BIOS CP/M-68K System Guide

77

#endif
};

#endif
/**/
/* Memory Region Table */
/**/
CP/M-68K System Guide D EXORmacs BIOS
 Listing D-1. (continued)

struct mrt { WORD count;
LONG tpalow;
LONG tpalen;

 }
memtab; /* Initialized in BIOSA.S */

#if MEMDSK
BYTE *memdsk; /* Initialized in BIOSA.S */
#endif
#if ! LOADER
/**/
/* IOBYTE */
/**/
WORD iobyte; /* The I/O Byte is defined, but not used */
#endif

/**/
/* Currently Selected Disk Stuff */
/**/
WORD settrk, setsec, setdsk; /* Currently set track, sector, disk */
BYTE *setdma; /* Currently set dma address */

/**/
/* Track Buffering Definitions and Variables */
/**/
#if ! LOADER
#define NUMTB3 /* Number of track buffers -- must be at least 3 */

 /* for the algorithms in this BIOS to work properly */
/* Define the track buffer structure */

Apendix - D EXORmacs BIOS CP/M-68K System Guide

78

struct tbstr {
struct tbstr *nextbuf; /* form linked list for LRU */

BYTE buf[32*128]; /* big enough for 1/4 hd trk */
WORD dsk; /* disk for this buffer */
WORD trk; /* track for this buffer */
BYTE valid; /* buffer valid flag */
BYTE dirty; /* true if a BIOS write has */

 /* put data in this buffer, */
 /* but the buffer hasn't been */
 /* flushed yet. */

};
struct tbstr *firstbuf; /* head of linked list of track buffers */
struct tbstr *lastbuf; /* tail of ditto */
struct tbstr tbuf[NUMTB];/* array of track buffers */
#else
/* the loader bios uses only 1 track buffer */
BYTE buf1trk[32*128]; /* big enough for 1/4 hd trk */
BYTE bufvalid;
WORD buftrk;
#endif

/**/
/* Disk I/O Packets for the UDC and other Disk I/O Variables */
/**/
/* Home disk packet */
struct hmpkst {

BYTE a1;
BYTE a2;
BYTE a3;
BYTE dskno;
BYTE com1;
BYTE com2;
BYTE a6;
BYTE a7;

 }
hmpack = { 2,0, 7,0, 0,0, 3,0 }; /*sw Init by bytes now... */

/* hmpack = { 512, 1792, 0, 768 };*/ /* kludge init by words */

/* Read/write disk packet */
struct rwpkst {

BYTE stxchr;
BYTE pktid;
BYTE pktsize;

Apendix - D EXORmacs BIOS CP/M-68K System Guide

79

BYTE dskno;
BYTE chcmd;
BYTE devcmd;
WORD numblks;
WORD blksize;
LONG iobf;
WORD cksum;
LONG lsect;
BYTE etxchr;
BYTE rwpad;

 };
 struct rwpkst rwpack = { 2,0, 21,0, 16,1, 13, 256, 0L, 0, 0L, 3,0 };
/*struct rwpkst rwpack = { 512, 5376, 4097, 13, 256, 0, 0, 0, 0, 0, 768 };*/
#if ! LOADER
/* format disk packet */
struct fmtpkst {

BYTE fmtstx;
BYTE fmtid;
BYTE fmtsize;
BYTE fmtdskno;
BYTE fmtchcmd;
BYTE fmtdvcmd;
BYTE fmtetx;
BYTE fmtpad;

 };
/*struct fmtpkst fmtpack = { 512, 1792, 0x4002, 0x0300 };*/
 struct fmtpkst fmtpack = { 2,0, 7,0, 64,2, 3,0 };
#endif
/**/
/* Define the number of disks supported and other disk stuff */
/**/
#if ! CTLTYPE
#define NUMDSKS 4 /* number of disks defined */
#else
#define NUMDSKS 2
#endif
#if MEMDSK
#define NUMDSKS 5
#endif
#define MAXDSK (NUMDSKS-1) /* maximum disk number */
#if ! CTLTYPE
BYTE cnvdsk[NUMDSKS] = { 4, 5, 0, 1 }; /* convert CP/M dsk# to EXORmacs */
BYTE rcnvdsk[6] = { 2, 3, 0, 0, 0, 1 }; /* and vice versa */
#else
BYTE cnvdsk[NUMDSKS] = { 0, 1 };

Apendix - D EXORmacs BIOS CP/M-68K System Guide

80

BYTE rcnvdsk[2] = { 0, 1 };
#endif
/* defines for IPC and disk states */
#define IDLE 0
#define ACTIVE 1
WORD ipcstate; /* current IPC state */
WORD actvdsk; /* disk number of currently active disk, if any */
LONG intcount; /* count of interrupts needing to be processed */
struct dskst {

WORD state; /* from defines above */
BYTE ready; /* 0 => not ready */
BYTE change; /* 0 => no change */

 }
dskstate[NUMDSKS];

/**/
/* Generic Serial Port I/O Procedures */
/**/
/**/
/* Port initialization */
/**/
portinit(port)
REG BYTE *port;
{
 (port + PORTCTRL) = PORTRSET; / reset the port */
 *(port + PORTCTRL) = PORTINIT;
}

/**/
/* Generic serial port status input status */
/**/

portstat(port)
REG BYTE *port;
{
 if (*(port + PORTSTAT) & PORTRDRF) return(0xff); /* input ready */

else return(0x00); /* not ready */
}

/**/
/* Generic serial port input */
/**/

Apendix - D EXORmacs BIOS CP/M-68K System Guide

81

BYTE portin(port)
REG BYTE *port;
{
 while (! portstat(port)) ; /* wait for input */
 return (*(port + PORTRDR)); /* got some, return it */
}

/**/
/* Generic serial port output */
/**/
portout(port, ch)
REG BYTE *port;
REG BYTE ch;
{
 while (! (*(port + PORTSTAT) & PORTTDRE)) ; /* wait for ok to send */
 (port + PORTTDR) = ch; / then send character */
}

/**/
/* Error procedure for BIOS */
/**/
#if ! LOADER
bioserr(errmsg)
REG BYTE *errmsg;
{
 printstr("\n\rBIOS ERROR -- ");
 printstr(errmsg);
 printstr(".\n\r");
}
printstr(s) /* used by bioserr */
REG BYTE *s;
{
 while (*s) {portout(PORT1,*s); s += 1; };
}
#else
bioserr() /* minimal error procedure for loader BIOS */
{

l : goto l;
}
#endif
/**/
/* Disk I/O Procedures */
/**/

Apendix - D EXORmacs BIOS CP/M-68K System Guide

82

EXTERN dskia(); /* external interrupt handler -- calls dskic */
EXTERN setimask(); /* use to set interrupt mask -- returns old mask */
dskic()
{

/* Disk Interrupt Handler -- C Language Portion */
REG BYTE workbyte;
BYTE stpkt[STPKTSZ];
workbyte = (DSKIPC + ACKFMIPC)->byte;
if ((workbyte == ACK) || (workbyte == NAK))

 {
if (ipcstate == ACTIVE) intcount += 1;
else (DSKIPC + ACKFMIPC)->byte = 0; /* ??? */

}
workbyte = (DSKIPC + MSGFMIPC)->byte;
if (workbyte & 0x80)
{

getstpkt(stpkt);
if (stpkt[PKTID] == 0xFF)
{

/* unsolicited */
unsolst(stpkt);
sendack();

}
else
{

/* solicited */
if (ipcstate == ACTIVE) intcount += 1;
else sendack();

}
}

} /* end of dskic */
/**/
/* Read status packet from IPC */
/**/
getstpkt(stpktp)
REG BYTE *stpktp;
{

REG BYTE *p, *q;
REG WORD i;
p = stpktp;
q = (DSKIPC + PKTFMIPC);

Apendix - D EXORmacs BIOS CP/M-68K System Guide

83

for (i = STPKTSZ; i; i -= 1)
{

*p = *q;
 p += 1;
 q += 2;

}
}
/**/
/* Handle Unsolicited Status from IPC */
/**/
unsolst(stpktp)
REG BYTE *stpktp;
{

REG WORD dev;
REG WORD ready;
REG struct dskst *dsp;
dev = rcnvdsk[(stpktp+PKTDEV)->byte];
ready = ((stpktp+PKTSTPRM)->byte & 0x80) == 0x0;
dsp = & dskstate[dev];
if ((ready && !(dsp->ready)) ||
 (!ready) && (dsp->ready)) dsp->change = 1;
dsp->ready = ready;

#if ! LOADER
if (! ready) setinvld(dev); /* Disk is not ready, mark buffers */

#endif
}

#if ! LOADER
/**/
/* Mark all buffers for a disk as not valid */
/**/
setinvld(dsk)
REG WORD dsk;
{

REG struct tbstr *tbp;
tbp = firstbuf;
while (tbp)
{

if (tbp->dsk == dsk) tbp->valid = 0;
tbp = tbp->nextbuf;

}
}
#endif

Apendix - D EXORmacs BIOS CP/M-68K System Guide

84

/**/
/* Wait for an ACK from the IPC */
/**/
waitack()
{

REG WORD imsave;
REG BYTE work;
while (1)
{
 while (! intcount) ; /* wait */

imsave = setimask(7);
intcount -= 1;
work = (DSKIPC + ACKFMIPC)->byte;
if ((work == ACK) || (work == NAK))

 {
(DSKIPC + ACKFMIPC)->byte = 0;
setimask(imsave);
return(work == ACK);

}
setimask(imsave);

}
}

/**/
/* Acknowledge a message from the IPC */
/**/
sendack()
{

(DSKIPC + MSGFMIPC)->byte = 0; /* clear message flag */
(DSKIPC + ACKTOIPC)->byte = ACK; /* send ACK */
(DSKIPC + INTTOIPC)->byte = 0;/* interrupt IPC */

}

/**/
/* Send a packet to the IPC */
/**/
sendpkt(pktadr, pktsize)
REG BYTE *pktadr;
REG WORD pktsize;
{

REG BYTE *iopackp;
REG WORD imsave;
while ((DSKIPC+MSGTOIPC)->byte); /* wait til ready */
(DSKIPC+ACKFMIPC)->byte = 0;
(DSKIPC+MSGFMIPC)->byte = 0;

Apendix - D EXORmacs BIOS CP/M-68K System Guide

85

iopackp = (DSKIPC+PKTTOIPC);
do {*iopackp = *pktadr++; iopackp += 2; pktsize -= 1;} while(pktsize);
(DSKIPC+MSGTOIPC)->byte = 0x80;
imsave = setimask(7);
dskstate[actvdsk].state = ACTIVE;
ipcstate = ACTIVE;
intcount = 0L;
(DSKIPC+INTTOIPC)->byte = 0;
setimask(imsave);
waitack();

}
/**/
/* Wait for a Disk Operation to Finish */
/**/
WORD dskwait(dsk, stcom, stval)
REG WORD dsk;
BYTE stcom;
WORD stval;
{

REG WORD imsave;
BYTE stpkt[STPKTSZ];
imsave = setimask(7);
while ((! intcount) &&

dskstate[dsk].ready && (! dskstate[dsk].change))
{

setimask(imsave); imsave = setimask(7);
}
if (intcount)
{

intcount -= 1;
if (((DSKIPC + MSGFMIPC)->byte & 0x80) == 0x80)
{

getstpkt(stpkt);
setimask(imsave);
if ((stpkt[PKTSTCOM] == stcom) &&
 ((stpkt+PKTSTVAL)->word == stval)) return (1);
else return (0);

}
}
setimask(imsave);
return(0);

}
/**/
/* Do a Disk Read or Write */
/**/
dskxfer(dsk, trk, bufp, cmd)
REG WORD dsk, trk, cmd;
REG BYTE *bufp;
{

Apendix - D EXORmacs BIOS CP/M-68K System Guide

86

/* build packet */
REG WORD sectcnt;
REG WORD result;

#if CTLTYPE
LONG bytecnt; /* only needed for FDC */
WORD cheksum;

#endif
rwpack.dskno = cnvdsk[dsk];
rwpack.iobf = bufp;
sectcnt = (dphtab[dsk].dpbp)->spt;
rwpack.lsect = trk * (sectcnt >> 1);
rwpack.chcmd = cmd;
rwpack.numblks = (sectcnt >> 1);

#if CTLTYPE
 cheksum = 0; /* FDC needs checksum */

bytecnt = ((LONG)sectcnt) << 7;
while (bytecnt--) cheksum += (~(*bufp++)) & 0xff;
rwpack.cksum = cheksum;

#endif
actvdsk = dsk;
dskstate[dsk].change = 0;
sendpkt(&rwpack, 21);
result = dskwait(dsk, 0x70, 0x0);
sendack();
dskstate[dsk].state = IDLE;
ipcstate = IDLE;
return(result);

}

#if ! LOADER
/**/
/* Write one disk buffer */
/**/
flush1(tbp)
struct tbstr *tbp;
{

REG WORD ok;
if (tbp->valid && tbp->dirty)

ok = dskxfer(tbp->dsk, tbp->trk, tbp->buf, DSKWRITE);
else ok = 1;
tbp->dirty = 0; /* even if error, mark not dirty */
tbp->valid &= ok; /* otherwise system has trouble */

/* continuing. */
return(ok);

Apendix - D EXORmacs BIOS CP/M-68K System Guide

87

}
/**/
/* Write all disk buffers */
/**/
flush()
{

REG struct tbstr *tbp;
REG WORD ok;
ok = 1;
tbp = firstbuf;
while (tbp)
{

if (! flush1(tbp)) ok = 0;
tbp = tbp->nextbuf;

}
return(ok);

}

/**/
/* Fill the indicated disk buffer with the current track and sector */
/**/
fill(tbp)
REG struct tbstr *tbp;
{

REG WORD ok;
if (tbp->valid && tbp->dirty) ok = flush1(tbp);
else ok = 1;
if (ok) ok = dskxfer(setdsk, settrk, tbp->buf, DSKREAD);
tbp->valid = ok;
tbp->dirty = 0;
tbp->trk = settrk;
tbp->dsk = setdsk;
return(ok);

}

/**/
/* Return the address of a track buffer structure containing the */
/* currently set track of the currently set disk. */
/**/
struct tbstr *gettrk()
{

REG struct tbstr *tbp;

Apendix - D EXORmacs BIOS CP/M-68K System Guide

88

REG struct tbstr *ltbp;
 REG struct tbstr *mtbp;

REG WORD imsave;
/* Check for disk on-line -- if not, return error */
imsave = setimask(7);
if (! dskstate[setdsk].ready)
{

setimask(imsave);
tbp = 0L;
return (tbp);

}
/* Search through buffers to see if the required stuff */
/* is already in a buffer */

 tbp = firstbuf;
ltbp = 0;
mtbp = 0;
while (tbp)
{

if ((tbp->valid) && (tbp->dsk == setdsk)
 && (tbp->trk == settrk))
{

if (ltbp) /* found it -- rearrange LRU links */
{

ltbp->nextbuf = tbp->nextbuf;
tbp->nextbuf = firstbuf;
firstbuf = tbp;

}
setimask(imsave);
return (tbp);

}
else
{

mtbp = ltbp; /* move along to next buffer */
ltbp = tbp;
tbp = tbp->nextbuf;

}
}
/* The stuff we need is not in a buffer, we must make a buffer */
/* available, and fill it with the desired track */
if (mtbp) mtbp->nextbuf = 0; /* detach lru buffer */
ltbp->nextbuf = firstbuf;
firstbuf = ltbp;
setimask(imsave);
if (flush1(ltbp) && fill(ltbp)) mtbp = ltbp; /* success */
else mtbp = 0L ; /* failure */
return (mtbp);

}

Apendix - D EXORmacs BIOS CP/M-68K System Guide

89

/**/
/* Bios READ Function -- read one sector */
/**/
read()
{

REG BYTE *p;
REG BYTE *q;
REG WORD i;
REG struct tbstr *tbp;

#if MEMDSK
 if(setdsk != MEMDSK)
 {
#endif

tbp = gettrk(); /* locate track buffer with sector */
if (! tbp) return(1); /* failure */

 CP/M-68K System Guide D EXORmacs BIOS
 Listing D-1. (continued)

/* locate sector in buffer and copy contents to user area */
p = (tbp->buf) + (setsec << 7); /* multiply by shifting */

#if MEMDSK
 }
 else

p = memdsk + (((LONG)(settrk) << 12L) + ((LONG)setsec << 7L));
#endif

q = setdma;
i = 128;
do {*q++ = *p++; i -= 1;} while (i); /* this generates good code */
return(0);

}

/**/
/* BIOS WRITE Function -- write one sector */
/**/
write(mode)
BYTE mode;
{

REG BYTE *p;
REG BYTE *q;
REG WORD i;
REG struct tbstr *tbp;
/* locate track buffer containing sector to be written */

#if MEMDSK
 if(setdsk != MEMDSK)
 {

Apendix - D EXORmacs BIOS CP/M-68K System Guide

90

#endif
tbp = gettrk();
if (! tbp) return (1); /* failure */
/* locate desired sector and do copy the data from the user area */
p = (tbp->buf) + (setsec << 7); /* multiply by shifting */

#if MEMDSK
 } else
 {

p = memdsk + (((LONG)(settrk) << 12L) + ((LONG)setsec << 7L));
q = setdma;
i = 128;
do {*p++ = *q++; i -= 1;} while (i); /* this generates good code */
return(0);

 }
#endif

q = setdma;
i = 128;
do {*p++ = *q++; i -= 1;} while (i); /* this generates good code */
tbp->dirty = 1; /* the buffer is now "dirty" */
/* The track must be written if this is a directory write */
if (mode == 1){if (flush1(tbp)) return(0); else return(1);}
else return(0);

}
#else
/**/
/* Read and Write functions for the Loader BIOS */
/**/
read()
{

REG BYTE *p;
REG BYTE *q;
REG WORD i;
if (((! bufvalid) || (buftrk != settrk)) &&
 (! dskxfer(setdsk, settrk, buf1trk, DSKREAD))) {return(1);}
bufvalid = 1;
buftrk = settrk;
p = buf1trk + (setsec << 7);
q = setdma;
i = 128;
do { *q++ = *p++; i-=1; } while(i);
return(0);

}
#endif

Apendix - D EXORmacs BIOS CP/M-68K System Guide

91

/**/
/* BIOS Sector Translate Function */
/**/
WORD sectran(s, xp)
REG WORD s;
REG BYTE *xp;
{

if (xp) return (WORD)xp[s];
else return (s+1);

}

/**/
/* BIOS Set Exception Vector Function */
/**/
LONG setxvect(vnum, vval)
WORD vnum;
LONG vval;
{

REG LONG oldval;
REG BYTE *vloc;

CP/M-68K System Guide D EXORmacs BIOS
 Listing D-1. (continued)

vloc = ((long)vnum) << 2;
oldval = vloc->lword;
vloc->lword = vval;
return(oldval);

}

/**/
/* BIOS Select Disk Function */
/**/
LONG slctdsk(dsk, logged)
REG BYTE dsk;
 BYTE logged;
{

REG struct dph *dphp;
REG BYTE st1, st2;
BYTE stpkt[STPKTSZ];
setdsk = dsk; /* Record the selected disk number */

#if ! LOADER

Apendix - D EXORmacs BIOS CP/M-68K System Guide

92

/* Special Code to disable drive C. On the EXORmacs, drive C */
/* is the non-removable hard disk. Including this code lets */
/* you save your non-removable disk for non-CP/M use. */
if ((dsk > MAXDSK) || (dsk == 2))
{

printstr("\n\rBIOS ERROR -- DISK ");
portout(PORT1, 'A'+dsk);
printstr(" NOT SUPPORTED\n\r");
return(0L);

}
#endif

dphp = &dphtab[dsk];
#if MEMDSK

if (setdsk == MEMDSK)
return(dphp);

#endif
if (! (logged & 0x1))
{

hmpack.dskno = cnvdsk[setdsk];
hmpack.com1 = 0x30;
hmpack.com2 = 0x02;
actvdsk = dsk;
dskstate[dsk].change = 0;
sendpkt(&hmpack, 7);

 if (! dskwait(dsk, 0x72, 0x0))
{

sendack();
ipcstate = IDLE;
return (0L);

}
getstpkt(stpkt); /* determine disk type and size */
sendack();
ipcstate = IDLE;
st1 = stpkt[PKTSTPRM];
st2 = stpkt[PKTSTPRM+1];
if (st1 & 0x80) /* not ready / ready */
{

dskstate[dsk].ready = 0;
return(0L);

}
else

dskstate[dsk].ready = 1;
switch (st1 & 7)
{
 case 1 : /* floppy disk */

dphp->dpbp = &dpb0;

Apendix - D EXORmacs BIOS CP/M-68K System Guide

93

break;
#if ! CTLTYPE

 case 2 : /* hard disk */
dphp->dpbp = &dpb2;
break;

#endif
 default : bioserr("Invalid Disk Status");

dphp = 0L;
break;

}
}
return(dphp);

}

#if ! LOADER
/**/
/* */
/* This function is included as an undocumented, */
/* unsupported method for EXORmacs users to format */
/* disks. It is not a part of CP/M-68K proper, and */
/* is only included here for convenience, since the */
/* Motorola disk controller is somewhat complex to */
/* program, and the BIOS contains supporting routines. */
/* */
/**/
format(dsk)
REG WORD dsk;
{

REG WORD retval;
if (! slctdsk((BYTE)dsk, (BYTE) 1)) return;

#if MEMDSK
if (setdsk == MEMDSK) return;

#endif
fmtpack.dskno = cnvdsk[setdsk];
actvdsk = setdsk;
dskstate[setdsk].change = 0;
sendpkt(&fmtpack, 7);
if (! dskwait(setdsk, 0x70, 0x0)) retval = 0;
else retval = 1;
sendack();
ipcstate = IDLE;
return(retval);

}
#endif

Apendix - D EXORmacs BIOS CP/M-68K System Guide

94

/**/
/* */
/* Bios initialization. Must be done before any regular BIOS */
/* calls are performed. */
/* */
/**/
biosinit()
{

initprts();
initdsks();

}
initprts()
{
 portinit(PORT1);
 portinit(PORT2);
}
initdsks()
{

REG WORD i;
REG WORD imsave;

#if ! LOADER
for (i = 0; i < NUMTB; ++i)
{

tbuf[i].valid = 0;
tbuf[i].dirty = 0;
if ((i+1) < NUMTB) tbuf[i].nextbuf = &tbuf[i+1];

 else tbuf[i].nextbuf = 0;
}
firstbuf = &tbuf[0];
lastbuf = &tbuf[NUMTB-1];

#else
bufvalid = 0;

#endif
for (i = 0; i <= MAXDSK; i += 1)
{

dskstate[i].state = IDLE;
dskstate[i].ready = 1;
dskstate[i].change = 0;

}
imsave = setimask(7); /* turn off interrupts */
intcount = 0;
ipcstate = IDLE;
setimask(imsave); /* turn on interrupts */

}

Apendix - D EXORmacs BIOS CP/M-68K System Guide

95

/**/
/* */
/* BIOS MAIN ENTRY -- Branch out to the various functions. */
/* */
/**/
LONG cbios(d0, d1, d2)
REG WORD d0;
REG LONG d1, d2;
{

switch(d0)
{

case 0: biosinit(); /* INIT */
break;

#if ! LOADER
case 1: flush(); /* WBOOT */

initdsks();
wboot();

 /* break; */
#endif

case 2: return(portstat(PORT1)); /* CONST */
 /* break; */
case 3: return(portin(PORT1)); /* CONIN */
 /* break; */
case 4: portout(PORT1, (char)d1); /* CONOUT */

break;
case 5: ; /* LIST */

 case 6: portout(PORT2, (char)d1); /* PUNCH */
break;

case 7: return(portin(PORT2)); /* READER */
 /* break; */
case 8: settrk = 0; /* HOME */

break;
case 9:

return(slctdsk((char)d1, (char)d2)); /* SELDSK */
 /* break; */
case 10: settrk = (int)d1; /* SETTRK */

 break;
case 11: setsec = ((int)d1-1); /* SETSEC */

 break;
case 12: setdma = d1; /* SETDMA */

 break;

Apendix - D EXORmacs BIOS CP/M-68K System Guide

96

case 13: return(read()); /* READ */
 /* break; */

#if ! LOADER
case 14: return(write((char)d1)); /* WRITE */
 /* break; */
case 15: if (*(BYTE *)(PORT2 + PORTSTAT) & PORTTDRE)

return (0x0ff);
 else return (0x000);

 /* break; */
#endif

case 16: return(sectran((int)d1, d2)); /* SECTRAN */
 /* break; */

#if ! LOADER
case 18: return(&memtab); /* GMRTA */
 /* break; */
case 19: return(iobyte); /* GETIOB */
 /* break; */
case 20: iobyte = (int)d1; /* SETIOB */

 break;
case 21: if (flush()) return(0L); /* FLUSH */

 else return(0xffffL);
 /* break; */

#endif
case 22: return(setxvect((int)d1,d2)); /* SETXVECT */
 /* break; */

#if ! LOADER
 /***/

/* This function is not part of a standard BIOS. */
/* It is included only for convenience, and will */
/* not be supported in any way, nor will it */
/* necessarily be included in future versions of */
/* CP/M-68K */
/***/
case 63: return(! format((int)d1)); /* Disk Formatter */
 /* break; */

#endif
 default: return(0L);

 break;
} /* end switch */

} /* END OF BIOS */

/* End of C Bios */

Apendix - D EXORmacs BIOS CP/M-68K System Guide

97

Listing D-2. EXORmacs BIOSTYPS.H File

/* @(#)biostyps.h 1.1 */
/**/
/* */
/* Portable type definitions for use */
/* with the C BIOS according to */
/* CP/M-68K (tm) standard usage. */
/* */
/**/
#define LONG long
#define ULONG unsigned long
#define WORD short int
#define UWORD unsigned short
#define BYTE char
#define UBYTE unsigned char
#define VOID
#define REG register
#define LOCAL auto
#define MLOCAL static
#define GLOBAL extern
#define EXTERN extern
/**/

Listing D-3. EXORmacs NORMBIOS.H File
#define LOADER 0
#define CTLTYPE 0
#define MEMDSK 4

Listing D-4. EXORmacs LOADBIOS.H File

#define LOADER 1
#define CTLTYPE 0
#define MEMDSK 0

Listing D-5. EXORmacs BIOSA.S File

.text
*
* Global Code addresses
*

.globl _init

.globl _biosinit

Apendix - D EXORmacs BIOS CP/M-68K System Guide

98

.globl _flush

.globl _wboot

.globl _cbios

.globl _dskia

.globl _dskic

.globl _setimask

.globl _ccp

.globl cpm * Lowest addr of CP/M

.globl _end * Highest addr of CP/M
*
* Global data addresses
*

.globl _memtab * memory region table

.globl _dpb3 * RAM disk dpb address

.globl _memdsk * -> First memory disk location
*
* Vector Addresses
*
dskint: .equ $3fc * UDC Interrupt vector
trap3: .equ $8c * Trap 3 vector
buserr: .equ $8 * Bus error vector
*
*
_init: lea entry,a0

move.l a0,trap3
lea _dskia,a0
move.l a0,dskint

*
* Auto-Size TPA
*

lea _memtab,a0 * a0 -> Memory region table
move.w #1,(a0)+ * 1 region
move.l #$400,(a0)+ * TPA starts at 400
move.l #cpm-$408,(a0)+ * Ends where CP/M begins

*
* Auto-Size RAM disk
*

move.l buserr,-(sp) * Push bus err vector
lea _end,a0 * a0 -> Last location in CP/M
add.l #cpm,a0 * Linker doesn't reloc this!!
move.l a0,_memdsk * -> first location in RAM disk
move.l #quit,buserr * set up vector -> ourselves

loop:
tst.w (a0)+ * Find
bra loop * End of memory

quit:
 add.l #14,a7 * Clear buserr gorp

move.l (a7)+,buserr * Pop buserr vector
sub.l #_end,a0 * a0 = # bytes in RAM disk
sub.l #cpm,a0 * Relocation bug
move.l a0,d0 * Into D reg for shift
move.l #11,d1 * Load shift count
lsr.l d1,d0 * Divide by 2048
move.w d0,_dpb3+6 * Load DRM field of dpb

Apendix - D EXORmacs BIOS CP/M-68K System Guide

99

move #$2000,sr
jsr _biosinit
clr.l d0
rts

*
_wboot: clr.l d0

jmp _ccp
*
entry: move.l d2,-(a7)

move.l d1,-(a7)
move.w d0,-(a7)
jsr _cbios
add #10,a7
rte

*
_dskia: link a6,#0

movem.ld0-d7/a0-a5,-(a7)
jsr _dskic
movem.l(a7)+,d0-d7/a0-a5
unlk a6
rte

*
_setimask: move sr,d0

lsr #8,d0
and.l #7,d0
move sr,d1
ror.w #8,d1
and.w #$fff8,d1
add.w 4(a7),d1
ror.w #8,d1
move d1,sr
rts
.data
.globl BIOSDATA

BIOSDATA: .dc.l 0,0
.end

Listing D-6. EXORmacs LDBIOS.S File
.text
.globl _bios
.globl _biosinit
.globl _cbios
.globl _dskia
.globl _dskic
.globl _setimask

*
*
*
*
_bios: link a6,#0

move.l d2,-(a7)

Apendix - D EXORmacs BIOS CP/M-68K System Guide

100

move.l d1,-(a7)
move.w d0,-(a7)
move #$2000,sr
lea _dskia,a0
move.l a0,$3fc
jsr _cbios
unlk a6
rts

*
_dskia: link a6,#0

movem.ld0-d7/a0-a5,-(a7)
jsr _dskic
movem.l(a7)+,d0-d7/a0-a5
unlk a6
rte

*
_setimask: move sr,d0

lsr #8,d0
and.l #7,d0
move sr,d1
ror.w #8,d1
and.w #$fff8,d1
add.w 4(a7),d1
ror.w #8,d1
move d1,sr
rts

*
.end

 Listing D-7. EXORmacs BOOTER.S File

* Information to go on the 256 byte *
* boot sector of an ExorMacs *

.text

.dc.l $4000 * starting stack pointer

.dc.l start * starting program counter
. dc.w 1 * garbage

.dc.w 1 * length of SAT

.dc.l 2 * secondary directory start

.dc.l 0 * primary directory PSN list start

.dc.l 0 * start of boot loader

.dc.w 26 * length of boot loader

.dc.l $0 * boot execution address

.dc.l $0 * boot load address

.dc.b '9/30' * generation date

.dc.b 'CP/M-68K of 9/30/82 ' * volume descriptor

.dc.b '0020' * version/revision

.dc.w $0a484 * checksum (god help us)

.dc.l $0f1e2d3c * diagnostic test pattern

Apendix - D EXORmacs BIOS CP/M-68K System Guide

101

.dc.l $4b5a6978

.dc.l $8796a5b4

.dc.l $c3d2e1f0

.dc.l $0f1e2d3c * diagnostic test pattern

.dc.l $4b5a6978

.dc.l $8796a5b4

.dc.l $c3d2e1f0

.dc.l $4f8f0f07 * diagnostic test pattern

.dc.l $0b0d0e06

.dc.l $0a0c0408

.dc.l $04020100

.dc.l 00, 00, 00, 00 * diagnostic test pattern

.dc.l 0 * diagnostic test area directory

.dc.l 0 * start of dump area

.dc.w 0 * length of dump area

.dc.l 0 * start of sector lockout table

.dc.w 0 * length of sector lockout table

.dc.l 0,0,0,0,0,0,0 * unused, reserved

.dc.l 0,0,0,0,0,0

.dc.l 0,0,0,0,0,0,0

.dc.l 0,0,0,0,0,0

.dc.b 'EXORMACS' * let's hear it for Motorola
*
* end of volume id
*
* begin boot info proper
*

.ds.b $300 * skip over exception vectors

.even
start: move #$2700,sr

move.l #$8,a0
 move.w #253,d0

exlp: move.l #expdef,(a0)+
dbf d0,exlp
jmp grunt

expdef: rte
grunt: move #$2000,sr

.end

Apendix - D EXORmacs BIOS CP/M-68K System Guide

102

Appendix E
Putboot Utilility Assembly Language Source

 1 **
 2 * *
 3 * Program to Write Boot Tracks for CP/M-68K (tm) *
 4 * *
 5 * Copyright Digital Research 1982 *
 6 * *
 7 **
 8 *
 9 *
 10 *
 11 prntstr = 9 BDOS Functions
 12 dseldsk = 14
 13 open = 15
 14 readseq = 20
 15 dsetdma = 26
 16 *
 17 seldsk = 9 BIOS Functions
 18 settrk = 10
 19 setsec = 11
 20 isetdma = 12
 21 write = 14
 22 sectran = 16
 23 flush = 21
 24 *
 25 bufcnt = $80
 26 bufsize = $80*bufcnt
 27 *
 28 00000000 .text
 29 *
 30 00000000 4E560000 start: link a6,#0
 31 00000004 206E0008 move.l 8(a6),a0 base page address
 32 00000008 43E8005C lea $5c(a0),a1
 33 0000000C 23C900004080 move.l a1,fcb
 34 00000012 423900004094 clr.b hflag
 35 00000018 D0FC0081 add #$81,a0 first character of command tail
 36 0000001C 0C180020 scan: cmpi.b #$20,(a0)+ skip over blanks
 37 00000020 67FA beq scan
 38 00000022 5388 sub.l #1,a0
 39 00000024 4A10 scan1: tst.b (a0)
 40 00000026 670001A4 beq erxit
 41 0000002A 0C18002D cmpi.b #$2d,(a0)+ check for -H flag
 42 0000002E 6626 bne nohyph
 43 00000030 0C180048 cmpi.b #$48,(a0)+
 44 00000034 66000196 bne erxit
 45 00000038 4A3900004094 tst.b hflag
 46 0000003E 6600018C bne erxit
 47 00000042 13FC00FF00004094 move.b #$ff,hflag

103

 48 0000004A 04B90000002400004080 sub.l #$24,fcb change to 2nd default fcb
 49 00000054 60C6 bra scan
 50 00000056 0C100020 nohyph: cmpi.b #$20,(a0)
 51 0000005A 66C8 bne scan1
 52 0000005C 0C180020 scan2: cmpi.b #$20,(a0)+
 53 00000060 67FA beq scan2
 54 00000062 0C200061 cmpi.b #$61,-(a0) get disk letter
 55 00000066 6D04 blt upper upshift
 56 00000068 04500020 sub #$20,(a0)
 57 0000006C 0C100041 upper: cmpi.b #$41,(a0) compare with range A - P
 58 00000070 6D00015A blt erxit
 59 00000074 0C100050 cmpi.b #$50,(a0)
 60 00000078 6E000152 bgt erxit
 61 0000007C 1010 move.b (a0),d0
 62 0000007E 4880 ext.w d0 put disk letter into range 0 - 15
 63 00000080 907C0041 sub.w #$41,d0
 64 00000084 33C00000408A move.w d0,dsk
 65 *
 66 * open file to copy
 67 *
 68 0000008A 303C000F move.w #open,d0
 69 0000008E 223900004080 move.l fcb,d1
 70 00000094 4E42 trap #2
 71 00000096 0C4000FF cmpi.w #$00ff,d0
 72 0000009A 660C bne openok
 73 0000009C 223C00000034 move.l #opnfl,d1
 74 000000A2 4EF9000001D2 jmp erx
 75 000000A8 207900004080 openok: move.l fcb,a0
 76 000000AE 42280020 clr.b 32(a0)
 77 *
 78 * read
 79 *
 80 000000B2 243C00000000 move.l #buf,d2
 81 000000B8 42790000408E clr.w count
 82 000000BE 303C001A rloop: move.w #dsetdma,d0
 83 000000C2 2202 move.l d2,d1
 84 000000C4 4E42 trap #2
 85 000000C6 303C0014 move.w #readseq,d0
 86 000000CA 223900004080 move.l fcb,d1
 87 000000D0 4E42 trap #2
 88 000000D2 4A40 tst.w d0
 89 000000D4 661A bne wrtout
 90 000000D6 D4BC00000080 add.l #128,d2
 91 000000DC 52790000408E add.w #1,count
 92 000000E2 0C7900800000408E cmpi.w #bufcnt,count
 93 000000EA 6E0000FE bgt bufoflx
 94 000000EE 60CE bra rloop
 95 *
 96 * write
 97 *
 98 000000F0 303C0009 wrtout: move.w #seldsk,d0 select the disk
 99 000000F4 32390000408A move.w dsk,d1
 100 000000FA 4202 clr.b d2
 101 000000FC 4E43 trap #3

Appendix - E PUTBOOT Utility CP/M-68K System Guide

104

 102 000000FE 4A80 tst.l d0 check for select error
 103 00000100 670000D8 beq selerx
 104 00000104 2040 move.l d0,a0
 105 00000106 2068000E move.l 14(a0),a0 get DPB address
 106 0000010A 33D000004084 move.w (a0),spt get sectors per track
 107 00000110 33E8000E0000408C move.w 14(a0),off get offset
 108 00000118 427900004088 clr.w trk start at trk 0
 109 0000011E 33FC000100004086 move.w #1,sect start at sector 1
 110 00000126 41F900000000 lea buf,a0
 111 0000012C 4A3900004094 tst.b hflag
 112 00000132 660C bne wrt1
 113 00000134 0C50601A cmpi.w #$601a,(a0)
 114 00000138 6606 bne wrt1
 115 0000013A D1FC0000001C add.l #28,a0
 116 00000140 23C800004090 wrt1: move.l a0,bufp
 117 *
 118 00000146 4A790000408E wloop: tst.w count
 119 0000014C 6774 beq exit
 120 0000014E 323900004086 move.w sect,d1 check for end-of-track
 121 00000154 B27900004084 cmp.w spt,d1
 122 0000015A 6F1E ble sok
 123 0000015C 33FC000100004086 move.w #1,sect advance to new track
 124 00000164 303900004088 move.w trk,d0
 125 0000016A 5240 add.w #1,d0
 126 0000016C 33C000004088 move.w d0,trk
 127 00000172 B0790000408C cmp.w off,d0
 128 00000178 6C78 bge oflex
 129 0000017A 303C000A sok: move.w #settrk,d0 set the track
 130 0000017E 323900004088 move.w trk,d1
 131 00000184 4E43 trap #3
 132 00000186 323900004086 move.w sect,d1 set sector
 133 0000018C 303C000B move.w #setsec,d0
 134 00000190 4E43 trap #3
 135 00000192 303C000C move.w #isetdma,d0 set up dma address for write
 136 00000196 223900004090 move.l bufp,d1
 137 0000019C 4E43 trap #3
 138 0000019E 303C000E move.w #write,d0 and write
 139 000001A2 4241 clr.w d1
 140 000001A4 4E43 trap #3
 141 000001A6 4A40 tst.w d0 check for write error
 142 000001A8 6638 bne wrterx
 143 000001AA 527900004086 add #1,sect increment sector number
 144 000001B0 53790000408E sub #1,count
 145 000001B6 06B90000008000004090 add.l #128,bufp
 146 000001C0 6084 bra wloop
 147 *
 148 000001C2 303C0015 exit: move.w #flush,d0 exit location - flush bios buffers
 149 000001C6 4E43 trap #3
 150 000001C8 4E5E unlk a6
 151 000001CA 4E75 rts and exit to CCP
 152 *
 153 000001CC 223C00000000 erxit: move.l #erstr,d1 miscellaneous errors
 154 000001D2 303C0009 erx: move.w #prntstr,d0 print error message and exit
 155 000001D6 4E42 trap #2

Appendix - E PUTBOOT Utility CP/M-68K System Guide

105

 156 000001D8 60E8 bra exit
 157 *
 158 000001DA 223C00000017 selerx: move.l #selstr,d1 disk select error
 159 000001E0 60F0 bra erx
 160 000001E2 223C00000026 wrterx: move.l #wrtstr,d1 disk write error
 161 000001E8 60E8 bra erx
 162 000001EA 223C0000004E bufoflx: move.l #bufofl,d1 buffer overflow
 163 000001F0 60E0 bra erx
 164 000001F2 223C00000060 oflex: move.l #trkofl,d1
 165 000001F8 60D8 bra erx
 166 *
 167 *
 168 00000000 .bss
 169 *
 170 .even
 171 *
 172 00000000 buf: .ds.b bufsize+128
 173 *
 174 00004080 fcb: .ds.l 1 fcb address
 175 00004084 spt: .ds.w 1 sectors per track
 176 00004086 sect: .ds.w 1 current sector
 177 00004088 trk: .ds.w 1 current track
 178 0000408A dsk: .ds.w 1 selected disk
 179 0000408C off: .ds.w 1 1st track of non-boot area
 180 0000408E count: .ds.w 1
 181 00004090 bufp: .ds.l 1
 182 00004094 hflag: .ds.b 1
 183 *
 184 00004096 .data
 184 00000000
 185 *
 186 00000000 496E76616C696420 erstr: .dc.b 'Invalid Command Line',13,10,'$'
 186 00000008 436F6D6D616E6420
 186 00000010 4C696E650D0A24
 187 00000017 53656C6563742045 selstr: .dc.b 'Select Error',13,10,'$'
 187 0000001F 72726F720D0A24
 188 00000026 5772697465204572 wrtstr: .dc.b 'Write Error',13,10,'$'
 188 0000002E 726F720D0A24
 189 00000034 43616E6E6F74204F opnfl: .dc.b 'Cannot Open Source File',13,10,'$'
 189 0000003C 70656E20536F7572
 189 00000044 63652046696C650D
 189 0000004C 0A24
 190 0000004E 427566666572204F bufofl: .dc.b 'Buffer Overflow',13,10,'$'
 190 00000056 766572666C6F770D
 190 0000005E 0A24
 191 00000060 546F6F204D756368 trkofl: .dc.b 'Too Much Data for System Tracks',13,10,'$'
 191 00000068 204461746120666F
 191 00000070 722053797374656D
 191 00000078 20547261636B730D
 191 00000080 0A24
 192 *
 193 *
 194 00000082 .end

Appendix - E PUTBOOT Utility CP/M-68K System Guide

106

S y m b o l T a b l e
buf 00000000 BSS bufcnt 00000080 ABS bufofl 0000004E DATA bufoflx 000001EA TEXT
bufp 00004090 BSS bufsize 00004000 ABS count 0000408E BSS dseldsk 0000000E ABS
dsetdma 0000001A ABS dsk 0000408A BSS erstr 00000000 DATA erx 000001D2 TEXT
erxit 000001CC TEXT exit 000001C2 TEXT fcb 00004080 BSS flush 00000015 ABS
hflag 00004094 BSS isetdma 0000000C ABS nohyph 00000056 TEXT off 0000408C BSS
oflex 000001F2 TEXT open 0000000F ABS openok 000000A8 TEXT opnfl 00000034 DATA
prntstr 00000009 ABS readseq 00000014 ABS rloop 000000BE TEXT scan 0000001C TEXT
scan1 00000024 TEXT scan2 0000005C TEXT sect 00004086 BSS sectran 00000010 ABS
seldsk 00000009 ABS selerx 000001DA TEXT selstr 00000017 DATA setsec 0000000B ABS
settrk 0000000A ABS sok 0000017A TEXT spt 00004084 BSS start 00000000 TEXT
trk 00004088 BSS trkofl 00000060 DATA upper 0000006C TEXT wloop 00000146 TEXT
write 0000000E ABS wrt1 00000140 TEXT wrterx 000001E2 TEXT wrtout 000000F0 TEXT
wrtstr 00000026 DATA

End of Appendix E

Appendix - E PUTBOOT Utility CP/M-68K System Guide

107

Appendix F
Motorola S-Records

F.1 S-record Format
The Motorola S-record format is a method of representing binary memory images in an

ASCII form. The primary use of S-records is to provide a convenient form for transporting
programs between computers. Since most computers have means of reading and writing ASCII
information, the format is widely applicable. The SENDC68 utility provided with CP/M-68K may
be used to convert programs into S-record form.

An S-record file consists of a sequence of S-records of various types. The entire content
of an S-record is ASCII. When a hexadecimal number needs to be represented in an S-record it is
represented by the ASCII characters for the hexadecimal digits comprising the number. Each
S-record contains five fields as follows:

 Field: S type length address data checksum
Characters: 1 1 2 2, 4 or 6 variable 2

Figure F-1. S-record Fields

The field contents are as follows:
Table F-1. S-record Field Contents

Field Contents
S The. ASCII Character IS'. This signals the beginning of the S-record.
type A digit, between 0 and 9, represented in ASCII, with the exceptions that 4

and 6 are not allowed. Type is explained in detail below.

108

Table F-1. (continued)
Field Contents
length The number of character pairs in the record, excluding the first three

fields. (That is, one half the number of characters total in the address,
data, and checksum fields.) This field has two hexadecimal digits,
representing a one byte quantity.

address The address at which the data portion of the record is to reside in memory.
The data goes at this address and successively higher numbered addresses.
The length of this field is determined by the record type.

data The actual data to be loaded into memory, with each byte of data
represented as a pair of hexadecimal digits, in ASCII.

checksum A checksum computed over the length, address, and data fields. The
checksum is computed by adding the values of all the character pairs (each
character pair represents a one-byte quantity) in these fields, taking the
one's complement of the result, and finally taking the least significant byte.
This byte is then represented as two ASCII hexadecimal digits.

F.2 S-record Types
There are eight types of S-records. They can be divided into two categories: records

containing actual data, and records used to define and delimit groups of data-containing records.
Types 1, 2, and 3 are in the first category, and the rest of the types are in the second category.
Each of the S-record types is described individually below.

Appendix - F.1 S-record Format CP/M-68K System Guide

109

Table F-2. S-record Types
Type Meaning
0 This type is a header record used at the beginning of a group of S-records.

The data field may contain any desired identifying information. The
address field is two bytes (four S-record characters) long, and is normally
zero.

1 This type of record contains normal data. The address field is two bytes
long (four S-record characters).

2 Similar to Type 1, but with a 3-byte (six S-record characters) address field.
3 Similar to Type 1, but with a 4-byte (eight S- record characters) address

field.
5 This record type indicates the number of Type 1, 2, and 3 records in a

group of S-records. The count is placed in the address field. The data field
is empty (no characters).

7 This record signals the end of a block of type 3 S-records. If desired, the
address field is 4 bytes long (8 characters), and may be used to contain an
address to which to pass control. The data field is empty.

8 This is similar to type 7 except that it ends a block of type 2 S-records,
and its address field is 3 bytes (6 characters) long.

9 This is similar to type 7 except that it ends a block of type I S-records, and
its address field is 2 bytes (4 characters) long.

S-records are produced by the SENDC68 utility program (described in the CP/M-68K
Operating System Programmer's Guide).

End of Appendix F

Appendix - F.2 S-record Types CP/M-68K System Guide

110

Appendix G
CP/M-68K Error Messages

This appendix lists the error messages returned by the internal components of CP/M-68K:
BDOS, BIOS, and CCP, and by the CP/M-68K system utility, PUTBOOT. The BIOS error
messages listed here are specific to the EXORmacs BIOS distributed by Digital Research. BIOSes
for other hardware might have different error messages which should be documented by the
hardware vendor.

The error messages are listed in Table G-1 in alphabetic order with explanations and
suggested user responses.

Table G-1. CP/M-68K Error Messages
Message Meaning
bad relocation information bits

 CCP. This message is a result of a BDOS Program Load Function (59)
error. It indicates that the file specified in the command line is not a valid
executable command file, or that the file has been corrupted. Ensure that
the file is a command file. The CP/M-68K Operating System Programmer's
Guide describes the format of a command file. If the file has been
corrupted, reassemble or recompile the source file, and relink it before you
reenter the command line.

 BIOS ERROR -- DISK X NOT SUPPORTED
 BIOS. The disk drive indicated by the variable "X" is not supported by the

BIOS. The BDOS supports a maximum of 16 drives, lettered A through P.
Check the documentation provided by the manufacturer for your particular
system configuration to find out which of the BDOS drives your BIOS
implements. Specify the correct drive code and reenter the command line.

111

Table G-1. (continued)
Message Meaning
BIOS ERROR -- Invalid Disk Status

 BDOS. The disk controller returned unexpected or incomprehensible
information to the BIOS. Retry the operation. If the error persists, check
the hardware. If the error does not come from the hardware, it is caused
by an error in the internal logic of the BIOS. Contact the place you
purchased your system for assistance. You should provide the information
below.

 1) Indicate which version of the operating system you are using.
 2) Describe your system's hardware configuration.
 3) Provide sufficient information to reproduce the error. Indicate which

 program was running at the time the error occurred. if possible, you
 should also provide a disk with a copy of the program.

Buffer Overflow
 PUTBOOT. The bootstrap file will not fit in the PUTBOOT bootstrap

buffer. PUTBOOT contains an internal buffer of approximately 16K bytes
into which it reads the bootstrap file. Either make the bootstrap file smaller
so that it will fit into the buffer, or change the size of the PUTBOOT
buffer. The PUTBOOT source code is supplied with the system distributed
by DRI. Equate bufsize (located near the front of the PUTBOOT source
code) to the required dimension in Hexidecimals. Reassemble and relink
the source code before you reenter the PUTBOOT command line.

Cannot Open Source File
 PUTBOOT. PUTBOOT cannot locate the source file. Ensure that you

specify the correct drive code and filename before you reenter the
PUTBOOT command line.

Appendix - G CP/M-68K Error Messages CP/M-68K System Guide

112

Table G-1. (continued)
Message Meaning
CP/M Disk change error on drive x

 BDOS. The disk in the drive indicated by the variable x is not the same
disk the system logged in previously. When the disk was replaced you did
not enter: a CTRL-C to log in the current disk. Therefore, when you
attempted to write to, erase, or rename a file on the current disk, the
BDOS set the drive status to read-only and warm booted the system. The
current disk in the drive was not overwritten. The drive status was
returned to read-write when the system was warm booted. Each time a disk
is changed, you must type a CTRL-C to log in the new disk.

CP/M Disk file error: filename is read-only.
Do you want to: Change it to read/write (C),

 or Abort (A)?
 BDOS. You attempted to write to, erase, or rename a file whose status is

read-only. Specify one of the options enclosed in parentheses. If you
specify the C option, the BDOS changes the status of the file to read- write
and continues the operation. The read-only protection previously assigned
to the file is lost.

 If you specify the A option or a CTRL-C, the program terminates and
CP/M-68K returns the system prompt.

CP/M Disk read error on drive x
Do you want to: Abort (A), Retry (R), or Continue

 with bad data (C)?
 BDOS. This message indicates a hardware error. Specify one of the

options enclosed in parentheses. Each option is described below.
 Option Action
 A or CTRL-C Terminates the operation and CP/M-68K returns the

system prompt. (Meaning continued on next page.)

Appendix - G CP/M-68K Error Messages CP/M-68K System Guide

113

Table G-1. (continued)
Message Meaning
CP/M Disk read error on drive x (continued)

 Option Action
 R Retries operation. If the retry fails, the system

reprompts with the option message.
 C Ignores error and continues program execution. Be

careful if you use this option. Program execution
should not be continued for some types of programs.
For example, if you are updating a data base and
receive this error but continue program execution,
you can corrupt the index fields and the entire data
base. For other programs, continuing program
execution is recommended. For example, when you
transfer a long text file and receive an error because
one sector is bad, you can continue transferring the
file. After the file is transferred, review the file, and
add the data that was not transferred due to the bad
sector.

CP/M Disk write error on drive x
Do you want to: Abort (A), Retry (R),

 or Continue with bad data (C)?
 BDOS. This message indicates a hardware error. Specify one of the

options enclosed in parentheses. Each option is described below.
 Option Action
 A or CTRL-C Terminates the operation and CP/M-68K returns the

system prompt.
 R Retries operation. If the retry fails, the system

reprompts with the option message (Meaning
continued on next page.)

Appendix - G CP/M-68K Error Messages CP/M-68K System Guide

114

Table G-1. (continued)
Message Meaning
CP/M Disk write error on drive x (continued)

 Option Action
 C Ignores error and continues program execution.

Be careful if you use this option. Program execution
should not be continued for some types of programs.
For example, if you are updating a data base and
receive this error but continue program execution,
you can corrupt the index fields and the entire data
base, For other programs, continuing program
execution is recommended. For example, when you
transfer a long text file and receive an error because
one sector is bad, you can continue transferring the
file. After the file is transferred, review the file, and
add the data that was not transferred due to the bad
sector.

CP/M Disk select error on drive x
Do you want to: Abort (A), Retry (R)

 BDOS. There is no disk in the drive or the disk is not inserted correctly.
Ensure that the disk is securely inserted in the drive. If you enter the R
option, the system retries the operation. If you enter the A option or
CTRL-C the program terminates and CPM-68K returns the system prompt.

CP/M Disk select error on drive x
 BDOS. The disk selected in the command line is outside the range A

through P. CP/M-68K can support up to 16 drives, lettered A through P.
Check the documentation provided by the manufacturer to find out which
drives your particular system configuration supports. Specify the correct
drive code and reenter the command line.

Appendix - G CP/M-68K Error Messages CP/M-68K System Guide

115

Table G-1. (continued)
Message Meaning
File already exists

 CCP. This error occurs during a REN command. The name specified in
the command line as the new filename already exists. Use the ERA
command to delete the existing file if you wish to replace it with the new
file. If not, select another filename and reenter the REN command line.

insufficient memory or bad file header
 CCP. This error could result from one of three causes:
 1) The file is not a valid executable command file. Ensure that you are

 requesting the correct file. This error can occur when you enter the
 filename before you enter the command for a utility. Check the
 appropriate section of the CP/M-68K Operating System Programmer's
 Guide or the CP/M-68K Operating System User's Guide for the correct
 command syntax before you reenter the command line. If you are trying
 to run a program when this error occurs, the program f i le may have
 been corrupted. Reassemble or recompile the source file and relink it
 before you reenter the command line.

 2) The program is too large for the available memory. Add more memory
 boards to the system configuration, or rewrite the program to use less
 memory.

 3) The program is linked to an absolute location in memory that cannot be
 used. The program must be made relocatable, or linked to a usable
 memory location. The BDOS Get/Set TPA Limits Function (63) returns
 the high and low boundaries of the memory space that is available for

 loading programs.

Appendix - G CP/M-68K Error Messages CP/M-68K System Guide

116

Table G-1. (continued)
Message Meaning
Invalid Command Line

 PUTBOOT. Either the command line syntax is incorrect, or you have
selected a disk drive code outside the range A through P. Refer to the
section in this manual on the PUTBOOT utility for a full description of the
command line syntax. The CP/M-68K BDOS supports 16 drives, lettered
A through P. The BIOS may or may not support all 16 drives. Check the
documentation provided by the manufacturer for your particular system
configuration to find out which drives your BIOS supports. Specify a valid
drive code before reentering the PUTBOOT command line.

No file
 CCP. The filename specified in the command line does not exist. Ensure

that you use the correct filename and reenter the command line.
No wildcard filenames

 CCP. The command specified in the command line does not accept
wildcards in file specifications. Retype the command line using a specific
filename.

Program Load Error
 CCP. This message indicates an undefined failure of the BDOS Program

Load Function (59). Reboot the system and try again. If the error persists,
then it is caused by an error in the internal logic of the BDOS. Contact the
place you purchased your system for assistance. You should provide the
information below.

 1) Indicate which version of the operating system you are using.
 2) Describe your system's hardware configuration. (Meaning continued on

 next page.)

Appendix - G CP/M-68K Error Messages CP/M-68K System Guide

117

Table G-1. (continued)
Message Meaning

 3)Provide sufficient information to reproduce the error. Indicate which
 program was running at the time the error occurred. If possible, you
 should also provide a disk with a copy of the program.

read error on program load
 CCP. This message indicates a premature end-of-file. The file is smaller

than the header information indicates. Either the file header has been
corrupted or the file was only partially written. Reassemble or recompile
the source file, and relink it before you reenter the command line.

Select Error
 PUTBOOT. This error is returned from the BIOS select disk function.

The drive specified in the command line is either not supported by the
 BIOS, or is not physically accessible. Check the documentation provided

by the manufacturer to find out which drives your BIOS supports. This
error is also returned if a BIOS supported drive is not supported by your
system configuration. Specify a valid drive and reenter the PUTBOOT
command line.

SUB file not found
 CCP. The file requested either does not exist, or does not have a filetype

of SUB. Ensure that you are requesting the correct file. Refer to the
section on SUBMIT in the CP/M-68K Operating System User's Guide for
information on creating and using submit files.

Syntax: REN newfile=oldfile
 CCP. The syntax of the REN command line is incorrect. The correct

syntax is given in the error message. Enter the REN command followed by
a space, then the new filename, followed immediately by an equals sign (=)
and the name of the file you want to rename.

Appendix - G CP/M-68K Error Messages CP/M-68K System Guide

118

Table G-1. (continued)
Message Meaning
Too many arguments: argument?

 CCP. The command line contains too many arguments. The extraneous
arguments are indicated by the variable argument. Refer to the CP/M-68K
Operating System User's Guide for the correct syntax for the command.
Specify only as many arguments as the command syntax allows and reenter
the command line. Use a second command line for the remaining
arguments, if appropriate.

Too Much Data for System Tracks
 PUTBOOT. The bootstrap file is too large for the space reserved for it on

the disk. Either make the bootstrap file smaller, or redefine the number of
tracks reserved on the disk for the file. The number of tracks reserved for
the bootstrap file is controlled by the OFF parameter in the disk parameter
block in the BIOS.

 This error can also be caused by a bootstrap file that contains a symbol
table and relocation bits. To find out if the bootstrap program will fit on the
system tracks without the symbol table and relocation bits, use the SIZE68
Utility to display the amount of space the bootstrap program occupies.
The first and second items returned by the SIZE68 Utility are the amount
of space occupied by the text and data, respectively. The third item
returned is the amount of space occupied by the BSS. The sum of the first
two items, or the total minus the third item, will give you the amount of
space required for the bootstrap program on the system tracks. Compare
the amount of space your bootstrap program requires to the amount of
space allocated by the OFF parameter.

 Because the symbol table and relocation bits are at the end of the file, the
bootstrap program may have been entirely written to the system tracks and
you can ignore this message. Or, you can run RELOC on the bootstrap file
to remove the symbol table and relocation bits from the bootstrap file and
reenter the PUTBOOT command line.

Appendix - G CP/M-68K Error Messages CP/M-68K System Guide

119

Table G-1. (continued)
Message Meaning
User # range is [0-15]

 CCP. The user number specified in the command line is not supported by
the BIOS. The valid range is enclosed in the square brackets in the error
message. Specify a user number between 0 and 15 (decimal) when you
reenter the command line.

Write Error
 PUTBOOT. Either the disk to which PUTBOOT is writing is damaged or

there is a hardware error. Insert a new disk and reenter the PUTBOOT
command line. If the error persists, check for a hardware error.

End of Appendix G

Appendix - G CP/M-68K Error Messages CP/M-68K System Guide

120

Index
-H flag, 53 BIOS function 6 Auxiliary
0 0 0 0 , 4 0 Output, 21
_autost, 51 BIOS function 7 Auxiliary
__ccp, 16 Input, 22
_ccp entry point, 50 BIOS function 8 Home, 23
_init, 15 BIOS function 9 Select Disk
_init entry point, 50 Drive, 24
_init routine, 51 BIOS function 10 Set Track
__usercmd, 51 Number, 25

 BIOS function 11 get Sector
A Number, 26

 BIOS function 12 Set OMA
absolute, 2 Address, 27
absolute data BIOS function 13 Read Sector,

down-loading, 50 28
address, 1 BIOS function 14 Write Sector,
address space, 1 29
algorithms, 31 BIOS function 15 Return List
allocation vector, 11 Status, 30
ALV, 41 BIOS function 16 Sector
applications programs, 5 Translate, 31
ASCII character, 5, 20 BIOS function 18 ,-Jet Address
ASCII CTRL-Z(IAH), 22 of MRT, 32
AUXILIARY INPUT device, 33 BIOS function 19 Get I/O Byte,
AUXILIARY OUTPUT device, 33 33

 BIOS function 20 Set I/O Byte,
B 36

 BIOS function 21 Flush
base page, 2 Buffers, 37
BDOS, 3, 5, 6, 7, 50 BIOS function 22 Set Exception
BDOS Direct BIOS Function Handler Address, 38

Call 50, 13 BIOS function I Warm Boot, 16
BDOS function 61 Set Exception BIOS function

Vector, 38 called by BDOS, 13
BIOS, 3, 5, 6, 10, 13 Home (8), 25
BIOS BIOS interface, 39

compiled, 7 BIOS internal variables, 15
creating, 39 BIOS register usage, 14

BIOS flush buffers operation, BIOS write operation, 47
47 BLM, 43

BIOS function 0, 15 Block Mask, 43
BIOS function 0 block number

Initialization, 15 largest allowed, 44
BIOS function 2 Console Block Shift Factor, 42

Status, 17 block storage, 2
 BIOS function 3 Read Console BLS, 44

Character, 18 BLS bytes, 48
BIOS function 4 Write Console boot disk, 11, 49

Character, 19 boot tracks, 43
BIOS function 5 List Character boot

Output, 20 warm, 47
121

bootstrap loader, 6 D
machine dependent, 43

bootstrap procedure, 9 data segment, 2
bootstrapping loading, 9 device models
BSH, 42 logical, 5
bss, 2 DIRBUF, 40
buffer directory buffer, 11

writing to disk, 47 directory check vector, 43
built-in user commands, 4 disk, 6
byte, 1 disk access
byte (8 bit) value, 42 sequential, 46

 disk buffers
C writing, 37

 disk definition tables, 39
C language, 39 disk devices, 6
carriage return, 19 disk drive
CBASE feature, 51 total storage capacity, 43
CCP, 3, 4, 6, 7, 50 disk head, 23
CCP entry point, 16 Disk Parameter Block (DPB), 11,
character devices, 5 13, 24, 42, 43
checksum vector, 41 Disk Parameter Block fields,
CKS, 43 42
Cold Boot Automatic Command Disk Parameter Header (DPH),

Execution, 51 11, 13, 24, 31, 40
Cold Boot Loader, 7 Disk Parameter Header
Cold Boot Loader elements, 40, 41

creating, 10 disk select operation, 24
cold start, 6 disk throughput, 46
communication protocol, 20 disk writes, 37
configuration requirements, 49 DMA address, 27
Conout, 10 DMA buffer, 29
CONSOLE device, 33 DPB, 40
CP/M-68K DRM, 43

customizing, 7 DSM, 43, 44
generating, 7
installing, 49 E
loading, 49
logical device end-of-file, 5
 characteristics, 33 end-of-file condition, 22
system modules, 3 error indicator, 24

CP/M-68K configuration, 39 ESM, 44
CP/M-68K file structure, 1 exception vector area, 1, 38
CP/M-68K programming model, 2 EXORmacs, 49
CPM.REL, 7 Extent Mask, 43
CPM.SYS

creating, 7 F
CPM.SYS, 6, 9
CPM.SYS file, 51 FDC, 49
CPMLDR, 9 file storage, 6
CPMLDR.SYS, 10 file system tracks, 43

building, 11 Function 0, 10
CPMLIB, 7
CSV, 41
CTRL-Z (lAH), 5

122

G N
Get MRT, 11 nibble, I
graphics device

bit-mapped, 4 O
I OFF parameter, 43, 53

 offset, I
I/O byte, 34 output device
I/O byte field definitions, 34 auxiliary, 21
I/0 character,5
I/O devices P

character, 5
disk drives, 5 parsing
disk file, 5 command lines, 4

init, 10 physical sector, 46
interface PIP, 35

hardware, 5 PUTBOOT utility, 10, il, 53
interrupt vector area, 3

 R
J

 Read, 11
jsr _init, 15 read/write head, 45

 README file, 50
L register contents

 destroyed by BIOS, 13
L068 command, 7 RELOC utility, 7
LDRLIB, 10 relocatable, 2
line-feed, 19 reserved tracks
list device, 20 number of, 43
LIST device, 33 return code value, 28
Loader BIOS rotational latency, 41, 45, 47

writing, 10 RTE, 10
loader system library, 10 rts instruction, 15
logical sector numbering, 41
longword (32-bit) value, 40 S
longword value, 1, 15

 LRU buffers, 48 S-record files, 49
S-record systems, 50

M S-records
 bringing up CP/M-68K, 50

MACSbug, 49 longword location, 50
mapping scratchpad area, 40

logical to physical, 41 scratchpad words, 40
maximum track number sector, 5

65535, 25 sector numbers
memory location unskewed, 26

absolute, 7 sector skewing, 53
Memory Region Table, 32 sector translate table, 41
mopping sectors -128-byte, 5, 45

logical-to-physical, 6 Sectran, 11
Motorola MC68000, 1 Seldsk, 10

 Set exception, 11
 Setdma, 11

123

Setsec, 11
Settrk, 11
SETTRK function, 23
SIZE68 command, 7, 8
SPT, 42
SPT parameter, 53
STAT, 35
system disk, 6
system generation, 6
T
text segment, 2
TPA, I
track, 6
track 00 position, 23
transient program, 2
translate table, 31
Trap 3 handler, 10
TRAP 3 instruction, 13
Trap 3 vector, 15
trap initialization, 10
turn-key systems, 51
U
UDC, 49
user interface, 4
W
warm boot, 47
word, 1
word (16-bit) value, 40, 42
word references, 36
X
XLT, 40

124

