
Tomoya Mori∗, Atsuhiro Takasu†, Jesper Jansson‡, Jaewook Hwang∗, Takeyuki Tamura∗, and Tatsuya Akutsu∗
∗Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan 611-0011

Email: {tmori,jj,hwangjw,tamura,takutsu@kuicr.kyoto-u.ac.jp
†National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430

Email: takasu@nii.ac.jp
‡The Hakubi Project, Kyoto University, Gokasho, Uji, Kyoto, Japan 611-0011

Email: jj@kuicr.kyoto-u.ac.jp

I. INTRODUCTION

The comparison of tree-structured data has numerous ap-
plications in various scientific areas such as RNA secondary
structures and glycans in biology and natural language pro-
cessing. The similar subtree search problem studied in this
paper is: given a pattern tree (representing a query) and a
large text tree (e.g., taken from a database), find the roots
of all subtrees of the text tree that are similar to the pattern
tree. We use tree edit distance for tree similarity. For ordered
trees, there exists a polynomial-time algorithm to compute
it [2]. However, in many situations, it is more appropriate
to consider unordered trees. There can be a significant gap
between the ordered and unordered tree edit distances, so
similar trees may be missed if we simply fix some arbitrary
ordering and apply the ordered variant. Unfortunately, the
unordered tree edit distance problem is known to be NP-
hard [3]. To cope with this hardness, several approaches have
been taken. Kilpeläinen and Mannila [4] considered the tree
inclusion problem which takes as input a pattern tree and a text
tree, and asks whether the text tree can be obtained from the
pattern tree by applying insertion operations. They showed that
the problem is NP-hard in general for unordered trees but can
be solved in polynomial time when the maximum outdegree of
the pattern tree is upper-bounded by a constant. On the negative
side, their approach ignores the costs of insertion operations,
which in many applications prohibits it from being practically
useful for similar subtree search. To make the concept of tree
inclusion more useful, we extend it so that the costs of insertion
operations are incorporated and substitutions of node labels are
possible.

II. PROBLEM DEFINITION

Let us first define the notation. For any rooted tree T , let
r(T) be the root of T , and V (T) the set of nodes in T . For any
v ∈ V (T), T (v) is the rooted subtree (connected subgraph) of
T induced by v and all of its descendants. Similarly, for a
set of nodes R = {v1, . . . , vd}, T (R) denotes the subforest
(the set of rooted subtrees) of T induced by v1, . . . , vd and all
their descendants. Let T1 be the pattern tree and T2 the text
tree. In what follows, m and n denote the size (the number of
nodes) of T1 and T2, respectively, and D denotes the maximum
outdegree among all nodes in T1. T1 is included in T2 if T2

can be obtained by applying a sequence of insertion operations
to T1. If T1 is included in T2, we write T1 ≺ T2. Furthermore,

this relation is extended to the case where T2 can be obtained
by applying a sequence of insertion operations to a forest (i.e.,
a set of rooted trees).

At a first glance, tree inclusion may appear useful for
similar subtree search. However, some drawbacks become
apparent when trying to apply it to real data. For example, the
costs of insertions are not accounted for. Another issue is that
substitutions of node labels are not allowed in tree inclusion.
To overcome these drawbacks, we introduce costs into the
tree inclusion problem. Define D0(T, T

′) as the minimum
cost of transforming T into T ′ by insertion and substitution
operations, where D0(T, T

′) = +∞ if there is no such
transformation. Also define:

The minimum-cost unordered tree inclusion problem (Min-
CostIncl): Given two rooted, unordered trees T1 and T2,
determine the value of D≺(T1, T2) = min

T ′
2

D0(T1, T
′
2), where

T ′
2 is taken over all connected subgraphs of T2.

Note that T ′
2 corresponds to the subtree (of a large tree

T2) similar to T1. Note also that the definition of D≺ ignores
the costs of inserting irrelevant nodes into T1. As defined
above, the problem MinCostIncl is an extended unordered
tree inclusion problem and it is still NP-hard in general.

III. MAIN ALGORITHM

We assume that all insertion and substitution operations
have non-negative costs because otherwise, there would be
cases in which the cost between two isomorphic trees could
be greater than the cost between two non-isomorphic trees.

Our algorithm is called MinCostIncl. It extends the al-
gorithm UnordInclusion of [4] referred to above by also
taking the costs of insertions and deletions into account. For
certain subsets of nodes R ⊆ V (T1), MinCostIncl computes
a score denoted by wv(R), which gives the minimum cost of
embedding the forest T1(R) into T2(v). Here, embedding a
forest S into a tree T means that T is obtained by insertion
and substitution operations on S, where insertion of a parent of
some roots of the current forest is allowed. Then, the required
cost is given by: D≺(T1, T2) = min

v∈V (T2)
wv({r(T1)}).

The pseudocode of MinCostIncl is listed in Algorithm 1.
In the algorithm, all wv(S) (resp., Wv(S)) are implicitly

Similar Subtree Search Using
Extended Tree Inclusion

(Extended abstract)

978-1-5090-2020-1/16/$31.00 © 2016 IEEE ICDE 2016 Conference1558

T2

v1

v

wv1({ u1,u3}) wv2({ u2})

wv3({})=0

v2 v3

wv({ u}) = w v1({ u1,u3}) + w v2({ u2})
 + δ(l(u),l(v))

T1 u

u1 u2 u3

Fig. 1. Illustrating the computation of minimum-cost tree inclusion. Here, u
is mapped to v.

initialized as wv(S) ← +∞ (resp., Wv(S) ← +∞), and
Wv(R) < +∞ finally gives the minimum cost of embedding
T1(R) into T2(v)− {v}.

Algorithm 1 MinCostIncl(T1, T2)

for all v ∈ V (T2) from the leaves to the root do
Let v1, . . . , vd be the children of v;
wv(∅) ← 0;
Wv(∅) ← 0;
for all u ∈ V (T1) from the leaves to the root do

for all R1, . . . , Rd such that Ri∩Rj = ∅ (for all i 	= j),
wvi(Ri) < +∞, and Ri ⊆ chd(u) do
R ← R1 ∪ · · · ∪Rd;
w ← wv1

(R1) + · · ·+ wvd
(Rd);

Wv(R) ← min(w, Wv(R)); (#1)
wv(R) ← min(wv(R), w + δ(−, �(v))); (#2)

end for
if Wv(chd(u)) < +∞ then (#3)

wv({u}) ← Wv(chd(u)) + δ(�(u), �(v));
for all vi such that wvi({u}) < +∞ do (#4)
wv({u}) ← min(wv({u}), wvi({u})+δ(−, �(v))).

end for
end for

Fig. 1 illustrates the core part of the algorithm. It cor-
responds to the case of R1 = {u1, u3}, R2 = {u2}, and
R3 = {}, which means that T1(u1) and T1(u3) are embedded
into T2(v1), T1(u2) is embedded into T2(v2), and no subtree
is embedded into T2(v3). In this case, the cost of embedding
T1(u) into T2(v) is given by wv1(R1)+wv2(R2)+wv3(R3)+
δ(�(u), �(v)), where u corresponds to v, and δ(l1, l2) denotes
the cost of substituting the label l1 by l2. It is to be noted that
δ(�(u), �(v)) is computed in “then” part of (#3). We examine
all partitions (i.e., all (R1, . . . , Rd)s) of the children of u
and take the minimum cost one (this minimum is computed
at (#1)). (#2) takes care of the case in which children of u
correspond to descendants of v but u does not correspond
to v. (#4) takes care of the case in which u corresponds to
a descendant of v. We note that the “for all R1, . . . , Rd”-
loop can be implemented efficiently by applying dynamic
programming (DP) from the leftmost child to the rightmost
child.

Theorem 1. D≺(T1, T2) can be computed in O(22Dmn) time
using O(2Dmn) space.

IV. EXPERIMENTAL RESULTS

All experiments were performed on a PC cluster with In-
tel(R) Xeon(R) CPU E5-2690 2.90GHz and 35.87 GB memory,

��
��
��

��
	

�
��

�
��
��
��
��

����������

�
��

�
��

��
��

�� �
�	��������������������
�
�	�������������� ������
�
�	��������������!�������
�
�	��������������"������
�
�	��������������#������
�
�	���������������������
�
�	����������������������
�
�	����������������������

#� "� !� � ���

Fig. 2. Execution times of MinCostIncl for varying sizes of the text trees.
Note that m ≤ n must hold from the definition of MinCostIncl.

running on a Linux operating system. Our algorithms were
implemented using the C++ language and each execution was
performed as a single process (i.e., no parallel processes),
where very minor simplifications were done in the imple-
mented versions. In this section, m,n, d,D and � denote the
size of the pattern tree (|V (T1)|), the size of the text tree
(|V (T2)|), the average outdegree, the maximum outdegree, and
the alphabet size (|Σ|), respectively.

To evaluate how the running time of MinCostIncl depends
on the sizes of the input trees, we randomly generated 100
pairs of pattern and text trees and measured the average CPU
time for each pair. The parameters m and n were varied and
the other parameters were fixed as (d,D, �) = (3, 5, 10) for
both the pattern and text trees. The results are shown in Fig. 2.
We can observe from this figure that the computation time
increases linearly with m. In the same way, we observed linear
processing time for n, which matches the theoretical bound of
O(22Dmn) on the running time. Note that MinCostIncl is fast
for large text trees (e.g., n = 100, 000). Although it is not fast
enough for real-time applications, the performance is allowable
for batch processing. We also conducted experiments using real
datasets and observed that MinCostIncl is fast and scalable.

V. CONCLUSION

In this paper, we have extended the concept of unordered
tree inclusion to take the costs of insertions and substitutions
into account. The resulting algorithm, MinCostIncl, has the
same time complexity as the original algorithm of [4] for
unordered tree inclusion (O(22Dmn)). Computational exper-
iments on a large synthetic dataset as well as real datasets
showed that our proposed algorithm is fast and scalable.
Source codes of the implemented algorithms are available upon
request.

REFERENCES

[1] M. Pawlik and N. Augsten, “RTED: A robust algorithm for the tree edit
distance,” Proc. the VLDB Endowment, 5(4), pp. 334-345, 2012.

[2] E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann, “An optimal
decomposition algorithm for tree edit distance,” ACM Trans. Algorithms,
vol. 6, no. 1, article 2, 2009.

[3] K. Zhang, R. Statman, and D. Shasha, “On the editing distance between
unordered labeled trees,” Inf. Proc. Lett., vol. 42, pp. 133–139, 1992.

[4] P. Kilpeläinen and H. Mannila, “Ordered and unordered tree inclusion,”
SIAM J. Computing, vol. 24, pp. 340–356, 1995.

1559

