
Theoretical Computer Science 660 (2017) 57–74
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On the parameterized complexity of associative and

commutative unification ✩

Tatsuya Akutsu a, Jesper Jansson a, Atsuhiro Takasu b, Takeyuki Tamura a,∗
a Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
b National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 March 2016
Received in revised form 13 September
2016
Accepted 22 November 2016
Available online 28 November 2016
Communicated by A. Kucera

Keywords:
Unification
Parameterized algorithm
Dynamic programming
Tree edit distance

This article studies the parameterized complexity of the unification problem with associa-
tive, commutative, or associative-commutative functions with respect to the parameter
“number of variables”. It is shown that if every variable occurs only once then both of the
associative and associative-commutative unification problems can be solved in polynomial
time, but that in the general case, both problems are W [1]-hard even when one of the
two input terms is variable-free. For commutative unification, an algorithm whose time
complexity depends exponentially on the number of variables is presented; moreover, if
a certain conjecture is true then the special case where one input term is variable-free
belongs to FPT. Some related results are also derived for a natural generalization of the
classic string and tree edit distance problems that allows variables.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Unification is a useful concept in many areas of computer science such as automated theorem proving, program verifi-
cation, natural language processing, logic programming, and database query systems [5,17,19,20]. In its fundamental form,
the unification problem is to find a substitution for all variables in two given terms that makes the terms identical, where
terms are constructed from function symbols, variables, and constants [20]. As an example, the two terms f (x, y) and
f (g(a), f (b, x)), where f and g are functions, x and y are variables, and a and b are constants, become identical by substi-
tuting x by g(a) and y by f (b, g(a)).

Unification has a long history beginning with the seminal work of Herbrand in 1930 (see, e.g., [20]). It is becoming an
active research area again because of math search, an information retrieval (IR) task where the objective is to find all docu-
ments containing a specified mathematical formula and/or all formulas similar to a query formula [18,23,24]; for example,
math search has been adopted as a pilot task in the IR evaluation conference NTCIR [24]. Also, math search systems such
as Wolfram Formula Search and Wikipedia Formula Search have been developed. Since mathematical formulas are typically
represented by rooted trees, it may seem reasonable to measure the similarity between formulas simply by measuring the

✩ A preliminary version of this article appeared in Proceedings of the 9th International Symposium on Parameterized and Exact Computation (IPEC 2014),
volume 8894 of Lecture Notes in Computer Science, pp. 15–27, Springer International Publishing Switzerland, 2014.

* Corresponding author.
E-mail addresses: takutsu@kuicr.kyoto-u.ac.jp (T. Akutsu), jj@kuicr.kyoto-u.ac.jp (J. Jansson), takasu@nii.ac.jp (A. Takasu), tamura@kuicr.kyoto-u.ac.jp

(T. Tamura).
URLs: http://www.bic.kyoto-u.ac.jp/takutsu/members/takutsu/index.html (T. Akutsu), http://sunflower.kuicr.kyoto-u.ac.jp/~jj/ (J. Jansson),

http://www.nii.ac.jp/en/faculty/digital_content/takasu_atsuhiro/ (A. Takasu), http://sunflower.kuicr.kyoto-u.ac.jp/~tamura/index.html.en (T. Tamura).
http://dx.doi.org/10.1016/j.tcs.2016.11.026
0304-3975/© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.tcs.2016.11.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:takutsu@kuicr.kyoto-u.ac.jp
mailto:jj@kuicr.kyoto-u.ac.jp
mailto:takasu@nii.ac.jp
mailto:tamura@kuicr.kyoto-u.ac.jp
http://www.bic.kyoto-u.ac.jp/takutsu/members/takutsu/index.html
http://sunflower.kuicr.kyoto-u.ac.jp/~jj/
http://www.nii.ac.jp/en/faculty/digital_content/takasu_atsuhiro/
http://sunflower.kuicr.kyoto-u.ac.jp/~tamura/index.html.en
http://dx.doi.org/10.1016/j.tcs.2016.11.026
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2016.11.026&domain=pdf

58 T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74
structural similarity of their trees. However, methods directly based on approximate tree matching such as the tree edit
distance (see, e.g., the survey in [7]) alone are not sufficient if every label is treated as a constant. For example, under unit
cost edit operations, the query x2 + x has the same tree edit distance to each of the formulas y2 + z and y2 + y, although
y2 + y is mathematically the same as x2 + x while y2 + z is not.

Because of the practical importance of the unification problem and its variants, heuristic algorithms have been proposed,
some of which incorporate approximate tree matching techniques [15,17]. On the negative side, their worst-case perfor-
mance may be poor. To make the study of the computational complexity of unification more formal, this article examines
some natural variants of the unification problem from the viewpoint of parameterized complexity and presents several new
algorithms for them. The parameterized complexity is considered with respect to the parameter “number of variables ap-
pearing in the input”; we choose this parameter because the number of variables is often much smaller than the length of
the terms.

1.1. Related work

An exponential-time algorithm for the unification problem was given in [26]. In the twenty years that followed, nu-
merous faster and more practical algorithms were published (see [20] for a comprehensive survey), and in particular, a
linear-time algorithm for the problem was developed [11,25].

Various extensions of unification have also been considered [5,6,19,20]. Three such extensions are unification with as-
sociative, commutative, and associative-commutative functions (where a function f is called associative if f (x, f (y, z)) =
f (f (x, y), z) always holds, commutative if f (x, y) = f (y, x) always holds, and associative-commutative if it is both associa-
tive and commutative). These are especially relevant for math search since many functions encountered in practice have
one of these properties. Interestingly, when allowing such functions, there are more ways to map nodes in the two corre-
sponding trees to each other, and as a result, the computational complexity of unification may increase. Indeed, each of the
associative, commutative, and associative-commutative unification problems is NP-hard [6,12].

The special case of unification where one of the two input terms contains no variables is also known as matching.
Unfortunately, all of the associative, commutative, and associative-commutative matching problems remain NP-hard [6,12],
and polynomial-time algorithms are known only for very restricted cases [2,6,19]. E.g., associative-commutative matching
can be done in polynomial time if every variable occurs exactly once [6].

We remark that associative unification is in PSPACE and both commutative unification and associative-commutative uni-
fication are in NP (see, e.g., the references in Section 3.4 in [5]). Although this means that all three problems can be solved
in single exponential-time in the size of the input, it does not necessarily mean single exponential-time algorithms with
respect to the number of variables.

For an introduction to parameterized complexity, the reader is referred to the textbook [14]. When a problem is proved to
be W[1]-hard or W[2]-hard, it is strongly believed that developing an FPT algorithm is impossible. To prove W[i]-hardness,
we often use reduction from Longest Common Subsequence (LCS). LCS is, given a set of strings R = {r1, r2, . . . , rq} over an
alphabet �0 and an integer l, to determine whether there exists a string r of length l such that r is a subsequence of ri

for every ri ∈ R , where r is called a subsequence of r′ if r can be obtained by performing deletion operations on r′ . LCS is
W [1]-hard with respect to the parameter (q, l) (this problem variant is called “LCS-3” in [8]). On the other hand, LCS is
W [2]-hard with respect to the parameter l (this problem variant is called “LCS-2” in [8]). The definitions of FPT and W[i]
by [8] are given in Appendix A.

Other previous work on associative and/or commutative unification has focused on central aspects such as termination,
soundness, and completeness of algorithms (see, for example, [28]) as well as implementations [27]. In computational exper-
iments done in the 1980s, associative-commutative unification was not efficiently computable in general [9], but computable
for DO-terms for very small instances [21].

1.2. Summary of new results

We present a number of new results on the parameterized complexity of associative, commutative, and associative-
commutative unification with respect to the parameter “number of variables appearing in the input”, denoted from here on
by k. See Table 1 for an overview. Most notably:

• Both associative and associative-commutative matching are W [1]-hard.
• Commutative matching can be done in O (2k poly(m, n)) time, where m and n are the sizes of the two input terms, if a

certain conjecture is true.
• Both associative and associative-commutative unification can be done in polynomial time if every variable occurs exactly

once.
• Commutative unification can be done in polynomial time if the number of variables is bounded by a constant.

In addition, we show that generalizing the classic string and tree edit distance problems [7,16] to also allow variables yields
W [1]-hard problems.

T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74 59
Table 1
Summary of the new results in this article. SEDV = the string edit distance problem with variables,
OTEDV = the ordered tree edit distance problem with variables, and DO = distinct occurrences of
all variables. W [1]-hard and FPT mean with respect to the parameter k. The result marked by ∗ is
true if Conjecture 1 in Section 4.2 holds.

matching unification DO-matching DO-unification

Associative W [1]-hard – P P
(Theorem 1) (Ref. [6]) (Theorem 2)
NP-complete
(Ref. [6])

Commutative NP-hard XP P P
(Ref. [6]) (Theorem 5) (Ref. [6]) (Theorem 4)
FPT∗
(Theorem 3)

Associative- W [1]-hard – P P
commutative (Theorem 6) (Ref. [6]) (Proposition 4)

NP-hard
(Ref. [6])

SEDV W [2]-hard W [2]-hard/W [1]-hard – P
(Theorem 7) (Theorem 7/Theorem 8) (Theorem 11)

O (|�|k poly)

(Proposition 5)

OTEDV – W [1]-hard – P
(Theorem 10) (Theorem 11)

To simplify the presentation, the algorithms described in this article only determine if two terms are unifiable, but they
may be modified to output the corresponding substitutions (when unifiable) by using standard traceback techniques. We
remark that it is not possible to always output a most general unifier (mgu) [22] because there does not necessarily exist
an mgu for either associative unification or commutative unification. For example, in commutative unification, f (x, y) and
f (a, b) have two unifiers θ = {x/a, y/b} and θ = {x/b, y/a} and thus no mgu, and in associative unification, f (x, y) and
f (a, f (b, c)) have two unifiers θ = {x/a, y/ f (b, c)} and θ = {x/ f (a, b), y/c} and thus no mgu.

2. Basic definitions

Suppose that � is a set of function symbols, where each function symbol has an associated arity, which is an integer
describing how many arguments the function takes, and that � is a set of variables. No function symbol is allowed to be a
variable, i.e., � ∩ � = ∅. A function symbol with arity 0 is called a constant. A term over � ∪ � is defined recursively as:

1. A constant is a term,
2. A variable is a term,
3. If t1, · · · , td are terms and f is a function symbol with arity d > 0 then f (t1, . . . , td) is a term.

Every term is identified with a rooted, ordered, node-labeled tree in which every internal node is labeled by a function
symbol with nonzero arity and every leaf is labeled by either a constant or a variable. The tree identified with a term t is
also denoted by t . For any term t , N(t) is the set of all nodes in its tree t , r(t) is the root of t , and γ (t) is the function
symbol of r(t). The size of t is defined as |N(t)|. For any u ∈ N(t), tu denotes the subtree of t rooted at u and hence
corresponds to a subterm of t . Any variable that occurs only once in a term is called a DO-variable, where “DO” stands
for “distinct occurrences”, and a term in which all variables are DO-variables is called a DO-term [6]. A term that consists
entirely of elements from � is called variable-free or a ground term.

Let T be a set of terms over � ∪ �. A substitution θ is defined as any partial mapping from � to T (where we let x/t
indicate that the variable x is mapped to the term t), under the constraint that if x/t ∈ θ then t is not allowed to contain
the variable x. For any term t ∈ T and substitution θ , tθ is the term obtained by simultaneously replacing its variables
in accordance with θ . For example, θ = {x/y, y/x} is a valid substitution, and in this case, f (x, y)θ = f (y, x). Two terms
t1, t2 ∈ T are said to be unifiable if there exists a θ such that t1θ = t2θ , and such a θ is called a unifier.

Example 1. Let � = {a, b, f , g}, where a and b are constants, f has arity 2, and g has arity 3, and let � = {w, x, y, z}. Define
the terms t1 = f (g(a, b, a), f (x, x)), t2 = f (g(y, b, y), z), and t3 = f (g(a, b, a), f (w, f (w, w))). Then t1 and t2 are unifiable
since t1θ = t2θ = f (g(a, b, a), f (x, x)) holds for θ = {y/a, z/ f (x, x)}. Similarly, t2 and t3 are unifiable since t2θ

′ = t3θ
′ =

f (g(a, b, a), f (w, f (w, w))) with θ ′ = {y/a, z/ f (w, f (w, w))}. However, t1 and t3 are not unifiable because it is impossible
to simultaneously satisfy x = w and x = f (w, w). �

60 T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74
Fig. 1. Illustrating the reduction in Theorem 1. Here, r1 = aab, r2 = aba, and l = 2. The two terms t1 and t2 can be matched since there exists a unifier of
the form θ = {x1/a, x2/b, y1,1/&1

1, y1,2/ f (f (&2
1, a), &3

1), y1,3/&4
1, . . . }, corresponding to the common subsequence ab of length 2.

In this paper, the unification problem is to determine whether two input terms t1 and t2 are unifiable. (Other versions of
the unification problem have also been studied in the literature, but will not be considered here.) Unless otherwise stated,
m and n denote the sizes of the two input terms t1 and t2. The unification problem can be solved in linear time [11,
25]. The important special case of the unification problem where one of the two input terms is variable-free is called the
matching problem. Another important special case of the unification problem is unification for DO-terms, where both terms
are DO-terms and no variable occurs in both of them.

Throughout the paper, k refers to the number of variables occurring in the input.

3. Associative unification

A function f with arity 2 is called associative if f (x, f (y, z)) = f (f (x, y), z) always holds. Associative unification is a
variant of unification in which functions may be associative. In this section, we assume that all functions are associative.
However all results are valid by appropriately modifying the details even if usual (non-associative) functions are included.

3.1. Hardness

Associative matching was shown to be NP-hard in [6] by a simple reduction from 3SAT. However, the proof in [6] does
not show the parameterized hardness. We therefore present the following new result.

Theorem 1. Associative matching is W [1]-hard with respect to the number of variables even for a fixed �.

Proof. We present an FPT-reduction [14] from the longest common subsequence problem (LCS, explained in Section 1.1) to
associative matching.

First consider the case of an unrestricted �. Let ({r1, . . . , rq}, l) be any given instance of LCS. For each i = 1, . . . , q,
create a term ui as follows: ui = f (yi,1, f (x1, f (yi,2, f (x2, · · · f (yi,l, f (xl, f (yi,l+1, g(#, #))) · · ·)))), where # is a character
not appearing in r1, . . . , rq . Create a term t1 by replacing the last occurrence of # in each ui by ui+1 for i = 1, . . . , q − 1,
thus concatenating u1, . . . , uq , as shown in Fig. 1. Next, transform each ri into a string r′

i of length 1 + 2 · |ri| by inserting
a special character & j

i in front of the jth in ri , and appending &|ri |+1
i to the end of ri , where each & j

i is considered to
be a distinct constant, meaning that & j

i does not match any symbol (in particular, & j
i �= & j′

i′ holds for all i �= i′ and for
j �= j′) but can match any variable. Represent each r′

i by a term ti defined by: ti = f (r′
i[1], f (r′

i[2], f (r′
i[3], f (· · · , f (r′

i[1 +
2 · |r′

i |], g(#, #)) · · ·)))). Finally, create a term t2 by concatenating t1, . . . , tq . (Again, see Fig. 1.) Now, t1 and t2 can be
matched if and only if there exists a common subsequence of {r1, . . . , rq} of length l. Since the number of variables in t1 is
(l + 1)q + l = lq + l + q, it is an FPT-reduction and thus the problem is W [1]-hard.

For the case of a fixed �, represent each constant by a distinct term using a special function symbol h and binary
encoding (e.g., the 10th symbol among 16 symbols can be represented as h(1, h(0, h(1, 0)))). �
3.2. Algorithms

For any term t , define the canonical form of t (called the “flattened form” in [6]) as the term obtained by contract-
ing all edges in t whose two endpoints are labeled by the same function symbol. For example, the canonical form of
f (g(a, b), f (c, d)) is f (g(a, b), c, d). It is easy to see that the canonical form of t can be computed in linear time [6].

We begin with the simplest case in which every term is variable-free.

T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74 61
Fig. 2. An example of associative unification. The DO-terms t1, t2 are transformed into their canonical forms and then unified by θ =
{y/h(a, d), z/ f (g(b, b), a), w/ f (x, c)}.

Proposition 1. Associative unification for variable-free terms can be done in linear time.

Proof. Transform the two terms into their canonical forms in linear time as above. Then it suffices to test if the canonical
forms are isomorphic. The rooted ordered labeled tree isomorphism problem is trivially solvable in linear time by traversing
the trees [10]. �

We next consider associative unification for DO-terms, which has some similarities to DO-associative-commutative
matching [6]. To handle the more general case of two DO-terms t1 and t2, we transform them into their canonical forms
t1 and t2 and apply the following procedure, which returns ‘true’ if and only if t1 and t2 are unifiable. See Fig. 2 for an
illustration. The procedure considers all pairs u ∈ N(t1), v ∈ N(t2) in bottom-up order, and assigns D[u, v] = 1 if and only if
(t1)u and (t2)v are unifiable.

Procedure AssocUni f D O (t1, t2)

for all u ∈ N(t1) do /* in post-order */
for all v ∈ N(t2) do /* in post-order */

if (t1)u or (t2)v is a variable then (#1)
D[u, v] ← 1;

else if (t1)u or (t2)v is a constant then (#2)
if (t1)u and (t2)v are the same constant
then D[u, v] ← 1 else D[u, v] ← 0;

else (#3) /* (t1)u = f1((t1)u1 , . . . , (t1)up), (t2)v = f2((t2)v1 , . . . , (t2)vq) */
if f1 = f2 and 〈(t1)u1 , . . . , (t1)up 〉 and 〈(t2)v1 , . . . , (t2)vq 〉 are compatible
then D[u, v] ← 1 else D[u, v] ← 0;

if D[r(t1), r(t2)] = 1 then return true else return false.

Algorithm 1. AssocUnifDO.

When both u and v are internal nodes, we need to check if 〈(t1)u1 , . . . , (t1)up 〉 and 〈(t2)v1 , . . . , (t2)vq 〉 are compatible,
where compatible implicitly means unifiable. This compatibility is defined and efficiently tested by regarding the two se-
quences of nodes as two strings and applying string matching with variable-length don’t-care symbols [4], while setting the
difference to 0 and allowing don’t-care symbols in both strings. Until the end of this section, matching for strings means
this kind of string matching (not a special case of unification).

Let sa = a1 . . .ap and sb = b1 . . .bq be two strings including variable-length don’t-care symbols ‘*’. Intuitively, ‘*’ in sa
(resp., in sb) can match any non-empty substring of sb (resp., sa), where the substring can include ‘*’. In addition, matching
between constants (i.e., symbols except ‘*’) is not necessarily symmetric and we can define any M ⊆ ({a1, . . . , ap} − {∗}) ×
({b1, . . . , bq} − {∗}) as a set of allowed matching constant pairs. Then, we say that sa matches sb (and also sb matches sa) if
there exists a set of pairs of indices L ⊆ {1, . . . , p} × {1, . . . , q} satisfying the following conditions:

• for all ai �= ∗, |{ j|(i, j) ∈ L}| = 1,
• for all b j �= ∗, |{i|(i, j) ∈ L}| = 1,
• for all ai = ∗, { j|(i, j) ∈ L} is a non-empty set of consecutive numbers,
• for all b j = ∗, {i|(i, j) ∈ L} is a non-empty set of consecutive numbers,
• for all (i, j) ∈ L, |{k|(i, k) ∈ L}| = 1 or |{k|(k, j) ∈ L}| = 1 holds,
• there are no pairs (i1, j1), (i2, j2) ∈ L such that (i2 − i1) · (j2 − j1) < 0.

The first and second lines mean that each constant symbol can match exactly one symbol (constant or variable). The third
and fourth lines mean that each variable symbol can match a consecutive substring in the other string. The fifth line
means that there is no overlap among matching pairs. The last line means that matching must be order-preserving. It is
to be noted that match here means that for the whole parts of two input strings. For example, ab ∗ d can match a ∗ d by
L = {(1, 1), (2, 2), (3, 2), (4, 3)}, where M = {(a, a), (b, b), (c, c), (d, d)}. Further, we can see that ab ∗ c ∗d can match a ∗d, but
ab ∗ c cannot match a ∗ d or ac ∗ c.

62 T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74
The following pseudocode decides whether or not sa matches sb by successively assigning E[i, j] = 1 if and only if
the prefix a1 . . .ai matches the prefix b1 . . .b j for increasing values of i and j. We define and examine whether (t1)u =
f ((t1)u1 , . . . , (t1)up) and (t2)v = f ((t2)v1 , . . . , (t2)vq) are compatible by constructing the strings sa = (t1)u1 . . . (t1)up and
sb = (t2)v1 . . . (t2)vq where each variable is replaced by ‘*’, defining a matching relation by M = {((t1)ui , (t2)v j)|(t1)ui �=
∗, (t2)v j �= ∗, (t1)ui and (t2)v j are unifiable}, and testing whether sa matches sb .

Procedure StrMatchV DC(sa, sb)

for all i, j ∈ {0, . . . , p} × {0, . . . ,q} do E[i, j] ← 0;
E[0,0] ← 1;
for i = 1 to p do

for j = 1 to q do
if ai = ∗ and b j = ∗ then (#1)

E[i, j] ← max{maxi′<i{E[i′, j − 1]},max j′< j{E[i − 1, j′]}}
else if ai = ∗ then E[i, j] ← max j′< j{E[i − 1, j′]} (#2)
else if b j = ∗ then E[i, j] ← maxi′<i{E[i′, j − 1]} (#3)
else if ai matches b j then E[i, j] ← E[i − 1, j − 1]; (#4)

if E[p,q] = 1 then return true else return false.

Algorithm 2. StrMatchVDC.

Note that there exists a case in which one variable partially matches two variables in associative unification. For example,
consider two terms f (t1, x, t2) and f (y, z). Here, {x/ f (t3, t4), y/ f (t1, t3), z/ f (t4, t2)} is a unifier. However, we can have a
simpler unifier {x/t3, y/ f (t1, t3), z/t2} because each variable occurs only once. Therefore, we can use string matching with
variable-length don’t-care symbols. This issue is discussed in the proof of Theorem 2 and referred to as “overlap removal”.

Lemma 1. String matching with variable-length don’t-care symbols can be solved in O (pq(p + q)) time with Algorithm 2.

Proof. First we prove the soundness and the completeness of the algorithm by showing that E[i, j] = 1 holds if and only if
a1 . . .ai matches b1 . . .b j , using mathematical induction on i and j.

As the base step, we note that E[i, 0] = E[0, j] = 0 holds for any i = 1, . . . , m and j = 1, . . . , n because the for-loops
begin from i = 1 and j = 1. Furthermore, we can see the following from E[0, 0] = 1 and the corresponding lines:

• if a1 = ∗ and b1 = ∗, E[1, 1] = 1 holds from part (#1),
• if a1 = ∗ and b1 �= ∗, E[1, 1] = 1 holds from part (#2),
• if a1 �= ∗ and b1 = ∗, E[1, 1] = 1 holds from part (#3),
• if a1 �= ∗, b1 �= ∗, and a1 = b1, E[1, 1] = 1 holds from part (#4),
• otherwise E[1, 1] = 0 holds because there is no change on E[1, 1] after the initialization.

Since all the cases of i = 1 or j = 1 are covered, this proves the claim for the cases of i ≤ 1 or j ≤ 1.
As the induction step, we assume that the claim holds for i = 0, . . . , I − 1 and j = 0, . . . , J − 1, and consider the case of

i = I and j = J , where I > 0, J > 0, and I + J > 2. Since ‘*’ can match any string (including ‘*’s) with length greater than 0,
a1 . . .aI can match b1 . . .b J if and only if one of the following holds:

(i) aI = ∗, b J = ∗, and b1 . . .b J−1 matches a1 . . .ah for some h ∈ {1, 2, . . . , I − 1},
(ii) aI = ∗, b J = ∗, and a1 . . .aI−1 matches b1 . . .bh for some h ∈ {1, 2, . . . , J − 1},

(iii) aI = ∗, b J �= ∗, and a1 . . .aI−1 matches b1 . . .bh for some h ∈ {1, 2, . . . , J − 1},
(iv) aI �= ∗, b J = ∗, and b1 . . .b J−1 matches a1 . . .ah for some h ∈ {1, 2, . . . , I − 1},
(v) aI �= ∗, b J �= ∗, aI = b J , and a1 . . .aI−1 matches b1 . . .b J−1.

In cases (i) and (ii), E[I, J] = 1 holds from part (#1), In case (iii), E[I, J] = 1 holds from part (#2), In case (iv), E[I, J] = 1
holds from part (#3), In case (v), E[I, J] = 1 holds from part (#4). Otherwise, E[I, J] = 0 holds. Since all the cases of i = I
and j = J are covered, this proves the claim for the case of i = I and j = J . Therefore, the algorithm is sound and complete.

Next, we analyze the time complexity. The most time-consuming part is clearly (#1), which takes O (p + q) time. Since
(#1) is repeated O (pq) times, the total time complexity is O (pq(p + q)). �
Theorem 2. Associative unification for DO-terms can be done in O (m2n2(m + n)) time.

Proof. First we prove the soundness and the completeness of Algorithm 1. For that purpose, it is enough to prove that
D[u, v] = 1 holds if and only if (t1)u and (t2)v are unifiable, using mathematical induction of the size of (t1)u and (t2)v .

T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74 63
As the base step, we assume that either (t1)u or (t2)v is a variable or a constant. Then, (t1)u and (t2)v are unifiable if
and only if one of the following holds:

(i) (t1)u is a variable,

(ii) (t2)v is a variable,

(iii) (t1)u and (t2)v are the same constant,

because each variable occurs at most once and thus can match any term (including variables). In cases (i) and (ii), D[u, v] =
1 holds from part (#1). In case (iii) D[u, v] = 1 holds from part (#2). Otherwise, D[u, v] = 0 holds. This proves the claim
for the base step.

As the induction step, we assume that (t1)u = f1((t1)u1 , . . . , (t1)up), (t2)v = f2((t2)v1 , . . . , (t2)vq), and D[ui, v j] = 1 holds
if and only if t1

ui
and t2

v j
are unifiable. Since (t1)u and (t2)v are not unifiable if f1 �= f2 and this property is also correctly

handles in part (#3), we assume w.l.o.g. that f1 = f2 = f .

For the soundness, we prove that if sa matches sb , there exists a unifier θ such that (t1)uθ = (t2)vθ . We construct such
a θ by applying the following rules beginning with θ = ∅:

• If ‘*’ in sa corresponding to a variable x in (t1)u matches a symbol in sb corresponding to a term or variable (t2)v j , we
add x/(t2)v j to θ .

• If ‘*’ in sa corresponding to a variable x in (t1)u matches two or more consecutive symbols in sb corresponding to
consecutive terms (t2)v j . . . (t

2)v j+l , we add x/ f ((t2)v j , . . . , (t2)v j+l) to θ .

• If ‘*’ in sb corresponding to a variable y in (t2)v matches a symbol in sa corresponding to a term (t1)ui , we add y/(t1)ui

to θ .

• If ‘*’ in sb corresponding to a variable y in (t2)v matches two or more consecutive symbols in sa corresponding to
consecutive terms (t1)ui . . . (t

1)ui+l , we add y/ f ((t1)ui , . . . , (t1)ui+l) to θ .

Since each variable occurs at most once, θ is well defined and thus (t1)uθ = (t2)vθ holds.

For the completeness, we prove that if there exists θ satisfying (t1)uθ = (t2)vθ , sa matches sb . We assume that t =
(t1)uθ = (t2)vθ is a ground term (i.e., a term not containing any variable) because otherwise each variable can be replaced
by any constant. We assume w.l.o.g. that t is in canonical form and has the form t = f (t1, t2, . . . , tr). It is to be noted that
none of ti , (t1)ui , and (t2)vi have the form f (. . .) because all of these are in canonical form. Since t does not contain any
variable, the following relations hold for some ki and h j :

• (t1)ui θ = tki (if ki + 1 = ki+1),
• (t1)ui θ = f (tki , . . . , tki+1−1) (otherwise),
• (t2)v j θ = th j (if h j + 1 = h j+1),

• (t2)v j θ = f (th j , . . . , th j+1−1) (otherwise),

where k1 = h1 = 1 and kp+1 = hq+1 = r + 1. Then, we construct a matching between sa = s1 . . .ap and sb = b1 . . .bq as
follows. We assign intervals to each of (t1)ui and (t2)v j . Initially, we assign [ki, ki+1 − 1] to (t1)ui and [h j, h j+1 − 1] to
(t2)v j . First we remove overlaps between [ki, ki+1 − 1] and [h j, h j+1 − 1] if ki < h j < ki+1 < h j+1 or h j < ki < h j+1 < ki+1

holds, in a greedy manner from the smaller positions to larger positions. In the former case, we replace [ki , ki+1 − 1] and
[h j, h j+1 − 1] with [ki, h j − 1] and [ki+1, h j+1 − 1], respectively. In the latter case, we replace [ki, ki+1 − 1] and [h j, h j+1 − 1]
with [h j+1, ki+1 − 1] and [h j, ki − 1], respectively. Then, the resulting intervals do not have overlaps where it is allowed
one interval is identical or completely included in another interval. It is to be noted that if ki < h j < ki+1 < h j+1 < ki+2

holds, [h j, h j+1 − 1] has overlaps between [ki, ki+1 − 1] and [ki+1, ki+2 − 1], but [ki+1, h j+1 − 1] remains because the overlap
removal is applied in a greedy manner (see y2 in Fig. 3).

Let [kL
i , k

R
i] and [hL

j , h
R
j] be the resulting intervals assigned to (t1)ui and (t2)v j , respectively. It is seen from the construc-

tion that each interval is non-empty, and the union of [kL
i , k

R
i]s and the union of [hL

j , h
R
j]s are equivalent (see also Fig. 3

(C)). Then, we construct a matching between sa and sb by the following rule:

• if [kL
i , k

R
i] = [hL

j , h
R
j], ai matches b j ,

• if [kL
i , k

R
i] ⊇ [hL

j , h
R
j] and ai = ∗, ai matches a consecutive subsequence including b j ,

• if [kL, kR] ⊆ [hL, hR] and b j = ∗, b j matches a consecutive subsequence including ai .
i i j j

64 T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74
Fig. 3. Illustration of construction of a pairing from a unifier. (A) t1
uθ = t2

vθ = t . (B) Assignment of intervals. (C) Removal of overlaps.

Since each position i in an interval corresponds to ti and only identical consecutive intervals are removed, this is a valid
matching and thus the completeness is proved.

Next, we analyze the time complexity. The most time-consuming part is clearly the string matching with variable-length
don’t-care symbols. As shown in Lemma 1, it can be done in O (mn(m + n)) time. Since the for-loops are iterated O (mn)

times, the total time complexity is O (m2n2(m + n)). �
4. Commutative unification

A function f with arity 2 is called commutative if f (x, y) = f (y, x) always holds. Commutative unification is a variant of
unification in which functions are allowed to be commutative. W.l.o.g., all functions are assumed to be commutative in this
section. Free function symbols are not allowed. Consequently, the trees that represent terms as explained in Section 2 now
become unordered and binary trees. Commutative matching was shown to be NP-hard in [6] (by another reduction from
3SAT than the one referred to above). Here, we present a parameterized algorithm for commutative matching for DO-terms
and a polynomial-time algorithm for commutative unification with a bounded number of variables.

We consider the following four cases in the rest of this section. (1) When both terms are variable-free. (2) When one term
is variable-free. (3) When both terms are DO-terms. (4) The general case where both terms may contain non-DO-variables.

4.1. Case 1: Both terms are variable-free

First note that commutative unification is easy to solve when both t1 and t2 are variable-free because in this case, it
reduces to the rooted unordered labeled tree isomorphism problem which is solvable in linear time (see, e.g., p. 86 in [1]):

Proposition 2. Commutative unification for variable-free terms can be done in linear time.

4.2. Case 2: One term is variable-free

Next, we consider commutative matching. We will show how to construct a 0–1 table D[u, v] for all node pairs
(u, v) ∈ N(t1) × N(t2), such that D[u, v] = 1 if and only if (t1)u and (t2)v can be matched, by applying bottom-up dy-
namic programming. It is enough to compute these table entries for pairs of nodes with the same depth only. We also
construct a table �[u, v], where each entry holds a set of possible substitutions θ such that (t1)uθ = (t2)v .

Let θ1 = {xi1/ti1 , . . . , xip /tip } and θ2 = {x j1/t j1 , . . . , x jp /t jq } be substitutions. θ1 is said to be compatible with θ2 if there
exists no variable x such that x = xia = x jb but tia �= t jb . Let �1 and �2 be sets of substitutions. We define �1 � �2 =
{θi ∪ θ j : θi ∈ �1 is compatible with θ j ∈ �2}. For any node u, uL and uR denote the left and right child of u. The algorithm
is as follows:

T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74 65
Procedure CommutMatch(t1, t2)

for all pairs (u, v) ∈ N(t1) × N(t2) with the same depth
do /* in bottom-up order */

if (t1)u is a variable then (#1)
�[u, v] ← {{(t1)u/(t2)v }}; D[u, v] ← 1

else if (t1)u is a constant then (#2)
�[u, v] ← ∅;
if (t1)u = (t2)v then D[u, v] ← 1 else D[u, v] ← 0

else if γ ((t1)u) �= γ ((t2)v) then (#3)
�[u, v] ← ∅; D[u, v] ← 0 /* recall: γ (t) is a function symbol of r(t) */

else (#4)
�[u, v] ← ∅; D[u, v] ← 0;
for all (u1, u2, v1, v2) ∈ {(uL , uR , v L , v R), (uR , uL , v L , v R)} do

if D[u1, v1] = 1 and D[u2, v2] = 1 and �1[u1, v1] � �2[u2, v2] �= ∅
then �[u, v] ← �[u, v] ∪ (�1[u1, v1] � �2[u2, v2]); D[u, v] ← 1;

if D[r(t1), r(t2)] = 1 then return true else return false.

Algorithm 3. CommutMatch.

Let Bi denote the maximum size of �[u, v] when the number of (distinct) variables in (t1)u is i. Then, we have the
following conjecture.

Conjecture 1. B1 = 1 and Bi+ j = 2Bi B j hold, from which Bi = 2i−1 follows.

Theorem 3. If Conjecture 1 holds, then commutative matching can be done using O (2k poly(m, n)) time, where k is the number of
variables in t1.

Proof. First, we prove the soundness and the completeness of Algorithm 3. For that purpose, it is enough to prove that
D[u, v] = 1 holds if and only if (t1)u matches (t2)v , and �[u, v] is a set of all possible substitutions θ such that (t1)uθ =
(t2)v (otherwise �[u, v] = ∅), using mathematical induction on the size of (t1)u .

As the base step, we assume that (t1)u is a variable or a constant. In the former case, (t1)u always matches (t2)v , and
�[u, v] = {{(t1)u/(t2)v}} holds. In this case, D[u, v] = 1 and �[u, v] = {{(t1)u/(t2)v}} hold from part (#1). In the latter case,
(t1)u matches (t2)v if and only if (t1)u = (t2)v . This condition is correctly tested in part (#2). Furthermore, �[u, v] = ∅
holds. This proves the claim for the base step.

As the induction step, we assume that (t1)u = f ((t1)uL , (t1)uR). If γ (t2)r �= f , (t1)u does not match (t2)v . In this case,
D[u, v] = 0 and �[u, v] = ∅ hold from part (#3). Then, we assume w.l.o.g. that (t2)v = f ((t2)v L , (t2)v R) and D[ua, vb] and
�[ua, vb] have already been obtained for all a, b ∈ {L, R}. In this case, (t1)uθ = (t2)v holds if and only if one of the following
holds:

• (t1)uL θL = (t2)v L and (t1)uR θR = (t2)v R hold, and θL and θR are compatible (i.e., the same variables are substituted by
the same terms),

• (t1)uL θL = (t2)v R and (t1)uR θR = (t2)v L hold, and θL and θR are compatible.

In each case, D[u, v] = 1 holds from part (#4). Furthermore, �[u, v] consists of all θ such that (t1)uθ = (t2)v because it is
constructed from only compatible pairs. Otherwise, D[u, v] = 0 and �[u, v] = ∅ hold from part (#4). This proves the claim
for the induction step.

Next, we analyze the time complexity. We consider the number of elements in �[u, v]. A crucial observation is that
if (t1)uL does not contain a variable then |�[u, v]| ≤ max(|�[uR , v L]|, |�[uR , v R]|) holds (and analogously for (t1)uR). Let
Bi denote the maximum size of �[u, v] when the number of (distinct) variables in (t1)u is i. Then, the following re-
lations hold: B1 = 1, Bi+ j = 2Bi B j , from which Bi = 2i−1 follows. Therefore, �1[u1, v1] � �2[u2, v2] can be computed in
O (2k poly(m, n)) time by using ‘sorting’ as in usual ‘join’ operations. Thus, the total running time is also O (2k poly(m, n)). �
Lemma 2. If the total number of occurrences of variables in t1 is i, i ≥ 1, and t2 is variable-free then the number of different substitu-
tions θ such that (t1)θ = t2 is at most 2i−1 .

Proof. Fix an arbitrary left-to-right ordering of the children at each node in the unordered, rooted, node-labeled tree iden-
tified with the term t2 and denote the resulting ordered tree by t′

2. Let X be the set of all ordered trees that: (i) can be
obtained by ordering the children at each internal node in the unordered tree identified with t1; and (ii) can be matched
with t′

2. For every t′
1 ∈ X , define S(t′

1) as the substitution θ for which (t′
1)θ = t′

2. Also define Y = {S(t′
1) : t′

1 ∈ X}. Then the
number of different substitutions θ satisfying (t1)θ = t2 equals |Y |. (Note that |X | ≥ |Y | and that strict inequality is possible;
e.g., if t1 = f (a, x) and t2 = f (a, a) then |X | = 2 while |Y | = 1). The rest of this proof derives an upper bound on |Y |.

Say that an internal node in a tree is an lca-node if it is the lowest common ancestor of two or more leaves corresponding
to variables. Consider the following randomized procedure that transforms the unordered tree identified with the term t1
into an ordered tree t′ and outputs the substitution θ such that (t′)θ = t′ if t′ and t′ can be matched:
1 1 2 1 2

66 T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74
Procedure GenerateMatching (t1)

1. Let t′
1 be the (initially unordered) tree identified with t1.

2. for each lca-node u in t′
1 do

choose one of the two children of u uniformly at random and make it the left
child of u, and make the other one the right child.

3. Do a depth-first traversal of t′
1 starting at the root and whenever encountering an

internal node u whose children have not yet been ordered do
let u A be any child of u such that the subtree rooted at u A is variable-free and
let uB be the other child, and assign left and right among u A and uB as well as
among all descendants of u A so the subtree rooted at u A becomes isomorphic
to the corresponding subtree in t′

2, if possible; otherwise, assign left and right
to u A and uB arbitrarily.

4. if t′
1 and t′

2 can be matched then output the substitution θ such that (t′
1)θ = t′

2;
else output the empty set.

Algorithm 4. GenerateMatching.

Since there are i occurrences of variables in t1 and i ≥ 1, there are i − 1 lca-nodes and the procedure has to make
i − 1 choices in Step 2. In Step 3, any choices made regarding the assignment of left and right to u A and uB and to the
descendants of u A do not affect the output substitution because whenever such a decision is required, either the two
subtrees rooted at the children of the corresponding node in t′

2 are identical to each other or the substitution output
in Step 4 will be the empty set. Therefore, Algorithm 4 yields one of at most 2i−1 different possible outcomes. Finally,
each substitution in Y can be generated by the procedure by making some (not necessarily unique) set of choices. Thus,
|Y | ≤ 2i−1. �

By Lemma 2, Conjecture 1 is true when every variable in t1 occurs exactly once. In other words, according to Theorem 3,
the special case of the commutative matching problem where t1 is a DO-term is in FPT with respect to the parameter k.
We have not been able to prove that Conjecture 1 holds in the more general case where t1 is not a DO-term.

4.3. Case 3: Both terms are DO-terms

Next, we consider commutative unification when both input terms are DO-terms. In this case, we can use a technique
similar to Algorithm 3. However, we do not keep sets of tentative unifiers here since each variable occurs only once. In the
following procedure, D[u, v] is determined in a bottom-up manner so that D[u, v] = 1 if and only if (t1)u and (t2)v are
unifiable.

Procedure CommuteUni f yD O (t1, t2)

for all pairs (u, v) ∈ N(t1) × N(t2) do /* in post-order */
if (t1)u or (t2)v is a variable then (#1)

D[u, v] ← 1;
else if (t1)u or (t2)v is a constant then (#2)

if (t1)u = (t2)v then D[u, v] ← 1 else D[u, v] ← 0;
else

Let (t1)u = f1((t1)uL , (t1)uR) and (t2)v = f2((t2)v L , (t2)v R);
if f1 = f2 then (#3)

if (D[uL , v L] = 1 and D[uR , v R] = 1) or
(D[uL , v R] = 1 and D[uR , v L] = 1)

then D[u, v] ← 1 else D[u, v] ← 0
else D[u, v] ← 0;

if D[r1, r2] = 1 then return true else return false.

Algorithm 5. CommuteUnifyDO.

Theorem 4. Commutative unification for DO-terms can be done in O (mn) time.

Proof. First, we prove the correctness of Algorithm 5 by showing that D[u, v] = 1 holds if and only if (t1)u and (t2)v are
unifiable.

As the base case, we assume that (t1)u or (t2)v is a constant or a variable. In this case, two terms are unifiable if and
only if one of the following holds:

• (t1)u is a variable,
• (t2)v is a variable,
• (t1)u = (t2)v ,

because each variable occurs at most once. These cases are correctly handled in parts (#1) and (#2). Therefore, D[u, v] = 1
holds if and only if (t1)u and (t2)v are unifiable.

T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74 67
As the induction step, we assume that (t1)u = f1((t1)uL , (t1)uR) and (t2)v = f2((t2)v L , (t2)v R) and the values of
D[uL, v L], D[uR , v R], D[uL, v R], D[uR , v L] have already been determined. In this case, two terms are unifiable if and only if
f1 = f2 and one of the following holds:

• (t1)uL and (t2)v L are unifiable, and (t1)uR and (t2)v R are unifiable,
• (t1)uL and (t2)v R are unifiable, and (t1)uR and (t2)v L are unifiable.

These cases are correctly handled in part (#3). Therefore, D[u, v] = 1 holds if and only if (t1)u and (t2)v are unifiable. This
proves the correctness of the algorithm.

Next, we analyze the time complexity. It is clear that each line in the for-loop is executed in a constant time. Since the
for-loop is iterated O (mn) times, the total time complexity is O (mn). �
4.4. Case 4: General case

Finally, we consider the general case in which both t1 and t2 contain variables of any type. Although the linear-time
unification algorithm by Paterson and Wegman [25] is not for commutative unification, we can use their basic idea of
representing two variable-free terms t1 and t2 by a directed acyclic graph (DAG) having distinguished vertices r1 and r2 of
indegree 0. Let G(V , E) be a directed acyclic graph satisfying the following:

• only r1 and r2 have indegree 0,
• each vertex has outdegree 2 or 0,
• for each vertex v with outdegree 0, a constant symbol cv is assigned to v ,
• for each vertex v with outdegree 2, a function symbol f v with arity 2 is assigned to v ,

where cu = cv and fu = f v are allowed for u �= v .
Then, we can associate a variable-free term tv to any v ∈ V by the following rule:

• if v is a vertex with outdegree 0, the term cv is assigned to tv ,
• if v is a vertex having outgoing edges to v1 and v2, the term f v(tv1 , tv2) is assigned to tv .

See Fig. 4 for an example of such a G(V , E). Then, testing whether r1 and r2 represent the same term takes polynomial
time (in the size of G) by using the following procedure:

Procedure T estCommut Ident(r1, r2, G(V , E))

for all (u, v) ∈ V × V do
if u = v then D[u, v] ← 1 else D[u, v] ← 0;

for all (u, v) ∈ V × V such that u �= v do /* in post-order */
if tu or tv is a constant then (#2)

if tu = tv then D[u, v] ← 1 else D[u, v] ← 0;
else

Let tu = f1(tuL , tuR) and tv = f2(tv L , tv R);
if f1 = f2 then (#3)

if (D[uL , v L] = 1 and D[uR , v R] = 1) or
(D[uL , v R] = 1 and D[uR , v L] = 1)

then D[u, v] ← 1 else D[u, v] ← 0
else D[u, v] ← 0;

if D[r1, r2] = 1 then return true else return false.

Algorithm 6. TestCommutIdent.

Proposition 3. Algorithm 6 correctly tests in O (|V |2) time whether two commutative terms rooted at r1 and r2 are identical.

Proof. First we prove the soundness and the completeness of the algorithm by showing that D[u, v] = 1 holds if and only
if tu and tv are identical.

As the base step, we assume that either tu or tv is a constant. If u = v , D[u, v] = 1 is assigned in part (#1). Otherwise,
D[u, v] = 1 is assigned in part (#2) if and only if both are the same constant. This proves the claim for the base step.

As the induction step, we assume that tu = f1(tuL , trR) and tv = f2(tv L , tv R) (otherwise either tu or tv is a constant). tu
and tv are identical if and only if f1 = f2 holds and one of the following holds

• tuL and tv L are identical, and tuR and tv R are identical,
• tuL and tv R are identical, and tuR and tv L are identical.

Clearly, these conditions are checked in part (#3). Therefore, tu and tv are identical if and only if D[u, v] = 1 is assigned in
part (#3). This proves the claim for the induction step and thus the correctness of the algorithm.

68 T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74
Fig. 4. Example of DAGs G(V , E) and G ′(V ′, E ′) for the algorithm and proof of Theorem 5. G ′(V ′, E ′) is drawn so that the orderings of siblings in t′
1

and t′
2 are reflected, and arcs in A are represented by dotted curves. d is a newly introduced constant to represent variable z. In this case, tr1 = tr2 =

f (g(a, d), g(f (d, f (c, b)), b)).

Next, we analyze the time complexity. Each line in the for-loops can be processed in a constant time. Since the for-loops
are iterated O (mn) times, the total time complexity is O (mn). �

To cope with terms involving variables, we need to consider all possible mappings from the set of variables to N(t1) ∪
N(t2). For each such mapping, we replace all appearances of the variables by the corresponding nodes, resulting in a DAG
to which we apply Algorithm 6. The following pseudocode describes the procedure for terms with variables:

Procedure CommutUni f y(t1, t2)

for all mappings M from a set of variables to nodes in t1 and t2 do
if there exists a directed cycle (excluding a self-loop) then continue;
Replace each variable having a self-loop with a distinct constant symbol;
Replace each occurrence of a variable node u with node M(u);

/* if M(u) = v and M(v) = w then u is replaced by w */
Let G(V , E) be the resulting DAG;
Let r1 and r2 be the nodes of G corresponding to t1 and t2;
if T estCommut Ident(r1, r2, G(V , E)) = true then return true;

return false.

Algorithm 7. CommutUnify.

For an illustration of how it works, see Fig. 4. In summary, we have the following theorem, which means that commu-
tative unification is in the class XP [14]. Note that when the number of variables k is a constant, the time complexity is
polynomial.

Theorem 5. Commutative unification can be done in O ((m + n)k+2) time.

Proof. First, we prove the soundness of Algorithm 7. Note that it checks whether each graph contains a directed cycle,
which performs occur check [22]. If the graph does not contain a directed cycle, it returns ‘true’ only if Algorithm 6 returns
true. Since the correctness of Algorithm 6 is proved in Proposition 3, the soundness of Algorithm 7 is proved. It should be
noted that a unifier θ can be obtained from M: if variable x is mapped to node v , then x/tv ∈ θ .

Next, we prove the completeness. Suppose that t1 and t2 are commutatively unifiable. Then, there exist unifiable non-
commutative terms t′

1 and t′
2 that are obtained by exchanging left and right arguments in some terms in t1 and t2.

Furthermore, t′
1 and t′

2 have the most general unifier because they are non-commutative. Let G ′(V ′, E ′) be a graph obtained
by identifying nodes corresponding to the same variable in the union of t′

1 and t′
2. Paterson and Wegman [25] showed that

the mgu is represented by a set of arcs A from variable nodes to nodes in G ′(V ′, E ′), where each node has at most one
outgoing arc (there may exist some nodes without outgoing arcs). Since A corresponds to the mgu, G ′(V ′, E ′ ∪ A) is acyclic.
We let M(u) = v in G(V , E) if and only (u, v) ∈ A. Then, G(V , E) is also acyclic. Each variable without an outgoing arc is
replaced by a distinct constant symbol not appearing in t1 or t2. Since the mgu is the most general, this replacement does
not affect the unifiability and thus tr1 and tr2 represent identical terms. Therefore, Algorithm 6 returns true. Since such an
M is examined in the for-loop, Algorithm 7 outputs ‘true’. This proves the completeness.

T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74 69
Next, we analyze the time complexity. Recall that k is the number of (distinct) variables in t1 and t2. Since the number
of possible mappings is bounded by (m + n)k and Algorithm 6 can be done in O ((m + n)2) time, Algorithm 7 runs in
O ((m + n)k+2) time. �
5. Associative-commutative unification

Associative-commutative unification is the variant of unification in which some functions can be both associative and
commutative. The next theorem shows that associative-commutative matching is W [1]-hard even if every function is asso-
ciative and commutative.

Theorem 6. Matching is W [1]-hard with respect to the number of variables even if every function symbol is associative and commu-
tative.

Proof. We show an FPT-reduction from LCS (variant LCS-3 in [8]). Let (S, l) be an instance of LCS where S = {s1, . . . , sk} is
a set of strings and l is an integer.

We cannot represent the order of the characters in the strings directly. Instead, we represent the position of each char-
acter by the size of the corresponding term.

Let f1, f2, f3, f4 be distinct functional symbols and a be a constant not appearing in S . For each si[j], we define the
term ŝi[j] by

ŝi[j] = f1(si[j], f2(

j︷ ︸︸ ︷
a,a, · · · ,a)).

Then, we define the term t2 by

t2 = f3(f4(ŝ1[1], ŝ1[2], · · · , ŝ1[|s1|]), f4(ŝ2[1], ŝ2[2], · · · , ŝ2[|s2|]),
· · · , f4(ŝk[1], ŝk[2], · · · , ŝk[|sk|])).

Next, we define the term ti
j (i = 1, . . . , k, j = 1, . . . , l) by

ti
j = f1(x j, f2(yi,1, yi,2, · · · , yi, j)),

where x j and yi,hs are variables. Then, we define ti (i = 1, . . . , l) and t1 by

ti = f4(zi, ti
1, ti

2, · · · , ti
k),

t1 = f3(t
1, t2, · · · , tl),

where zi is a variable.
We show that t1 and t2 are unifiable if and only if LCS of S has length at least l. First we show the ‘if’ part. Let sc be a

common subsequence of S such that |sc | = l. We consider a partial substitution θ ′ defined by

θ ′ = {x1/sc[1], x2/sc[2], . . . , xl/sc[l]}.
Then, it is straightforward to see that θ ′ can be extended to a substitution θ such that t2 = t1θ .

Conversely, suppose that there exists a substitution θ satisfying t2 = t1θ . We can see from the construction of t1 and t2
that if x j matches si[h] and x j′ matches si[h′] for some i ∈ {1, . . . , k} where j < j′ ≤ l, then h < h′ must hold. Let x j/a j ∈ θ

(j = 1, . . . , l). Then, we can see from the above property that sc = a1a2 . . .al is a common subsequence of S .
Since the reduction can be done in polynomial time and the number of variables is bounded by a polynomial in k and l,

the theorem holds. �
Thus, it is unlikely that an FPT-algorithm for associative-commutative matching exists. On the other hand, associative-

commutative matching can be done in polynomial time if t1 is a DO-term [6]. We can extend this algorithm to the
special case of unification where both terms are DO-terms. In the extended algorithm, due to the definition of associative-
commutative unification, f ((t1)u1 , . . . , (t1)up) and f ((t2)v1 , . . . , (t2)vq) can be unified by θ = {(t1)ui / f ((t2)v1 , . . . , (t2)v j−1 ,

(t2)v j+1 , . . . , (t2)vq), (t2)v j / f ((t1)u1 , . . . , (t1)ui−1 , (t1)ui+1 (t1)up)} if (t1)ui and (t2)v j are variables for some i, j.
This yields:

Proposition 4. Associative-commutative unification can be done in polynomial time if both t1 and t2 are DO-terms.

70 T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74
6. String and tree edit distance with variables

6.1. String edit distance with variables

In this subsection, we introduce string edit distance with variables based on unification for strings. Let � be an alphabet
and � a set of variables. A substitution is a mapping from � to �. For any string s over � ∪ � and substitution θ , let sθ
denote the string over � obtained by replacing every occurrence of a variable x ∈ � in s by the symbol θ(x). (We write x/a
to express that x is substituted by a.) Two strings s1 and s2 over � ∪ � are called unifiable if there exists a substitution θ
such that s1θ = s2θ .

Example 2. Suppose � = {a, b, c} and � = {x, y, z}. Let s1 = abxbx, s2 = ayczc, and s3 = axcby. Then s1 and s2 are unifiable
since s1θ = s2θ = abcbc holds for θ = {x/c, y/b, z/b}. Also, s2 and s3 are unifiable since s2θ

′ = s3θ
′ = accbc holds for

θ ′ = {x/c, y/c, z/b}. On the other hand, s1 and s3 are not unifiable since there does not exist any θ ′′ with s1θ
′′ = s3θ

′′ . �
We shall use the following notation. For any string s, |s| is the length of s. The string edit distance (see, e.g., [16]) between

two strings s1, s2 over �, denoted by dS (s1, s2), is the length of a shortest sequence of edit operations that transforms s1
into s2, where an edit operation on a string is one of the following three operations: a deletion of the character at some
specified position, an insertion of a character at some specified position, or a replacement of the character at some specified
position by a specified character.1 For example, dS (bcdf e, abgde) = 3 because abgde can be obtained from bcdf e by the
deletion of f , the replacement of c by g , and the insertion of an a, and no shorter sequence can accomplish this. By
definition, dS (s1, s2) = mined : ed(s1)=s2 |ed| = mined : ed(s2)=s1 |ed| holds, where ed is a sequence of edit operations.

We generalize the string edit distance to two strings s1, s2 over � ∪ � by defining

d̂S(s1, s2) = min
ed : (∃θ) (ed(s1)θ = s2θ)

|ed|.

The string edit distance problem with variables takes as input two strings s1, s2 over � ∪�, and asks for the value of d̂S (s1, s2).
(To the authors’ knowledge, this problem has not been studied before. Note that it differs from the pattern matching with
variables problem [13], in which one of the two input strings contains no variables and each variable may be substituted by
any string over �, but no insertions or deletions are allowed.) Let k be the number of variables appearing in at least one
of s1 and s2. Although dS (s1, s2) is easy to compute in polynomial time (see [16]), computing d̂S (s1, s2) is W [2]-hard with
respect to the parameter k according to the next theorem:

Theorem 7. The string edit distance problem with variables is W [2]-hard with respect to k when the number of occurrences of every
variable is unrestricted, even if one of the two strings has no variables.

Proof. As in the proof of Theorem 1, we reduce from LCS. It is known that LCS is W [2]-hard with respect to the parameter
l (problem “LCS-2” in [8]).

Given any instance of LCS, we construct an instance of the string edit distance problem with variables as follows. Let � =
�0 ∪ {#}, where # is a symbol not appearing in r1, r2, . . . , rq , and � = {x1, x2, . . . , xl}. Clearly, R has a common subsequence
of length l if and only if there exists a θ such that x1x2 · · · xlθ is a common subsequence of R . Now, construct s1 and s2 by
setting:

s1 = x1x2 · · · xl#x1x2 · · · xl# · · ·#x1x2 · · · xl

s2 = r1#r2# · · ·#rq

where the substring x1x2 · · · xl occurs q times in s1. By the construction, there exists a θ such that x1x2 · · · xlθ is a common
subsequence of R if and only if there exists a θ such that s1θ is a subsequence of s2. The latter statement holds if and only
if d̂S(s1, s2) = (

∑q
i=1 |ri |) − ql. Since k = l, this is an FPT-reduction. �

The above proof can be extended to prove the W [1]-hardness of a restricted case with a bounded number of occurrences
of each variable as follows.

Theorem 8. The string edit distance problem with variables is W [1]-hard with respect to k, even if the total number of occurrences of
every variable is 2.

1 In the literature, “replacement” is usually referred to as “substitution”. Here, we use “replacement” to distinguish it from the “substitution” of variables
defined above.

T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74 71
Proof. We use the same basic idea for the reduction as in the proof of Theorem 7. As before, let (R, l) be any given instance
of LCS, where R = {r1, r2, . . . , rq} is a set of strings over an alphabet �0 and l is an integer. Recall that LCS is W [1]-hard
with respect to the parameter (q, l) (the problem variant LCS-3 in [8]).

To bound the number of occurrences of each variable by 2, we replace the jth occurrence (1 ≤ j ≤ q) of each variable xi

in the string s1 in the proof of Theorem 7 by q − 1 new consecutive variables of the form x j,h
i , where h ∈ {1, 2, . . . , q} \ { j},

and then force x1,2
i θ = x2,1

i θ = x1,3
i θ = . . . = xq−1,q

i θ = xq,q−1
i θ in any substitution θ . For this purpose, we stretch out

each input string r j inside the constructed string s2 by duplicating its symbols and inserting a @-symbol to represent the
boundaries between successive positions in r j . To prevent two variables of the form x j,a

i and x j,b
i from being paired to

different positions of r j , we enclose all x j,∗
i -variables in the resulting s1 by a pair of special y j

i -variables that have to be
paired to some symbol of the form α j,i that only occurs twice in s2. Also, to ensure that every x j,h

i θ = xh, j
i θ , we place one

of x j,h
i and xh, j

i in s1 and the other one at the corresponding position in s2. More precisely, the modified construction is as
follows.

• Let � = �0 ∪ {@, #} ∪ {α j,h : 1 ≤ j ≤ q, 1 ≤ h ≤ |r j|}, where @, #, and all α j,h are symbols not in �0. Introduce the fol-

lowing variables: � = {x j,h
i : 1 ≤ i ≤ l, 1 ≤ j ≤ q, 1 ≤ h ≤ q, j �= h} ∪ {y j

i : 1 ≤ i ≤ l, 1 ≤ j ≤ q}. For each j ∈ {1, 2, . . . , q},
create a string x̃ j by:

x̃ j = y j
1 x j,1

1 x j,2
1 · · · x j, j−1

1 x j, j+1
1 · · · x j,q

1 y j
1 @

y j
2 x j,1

2 x j,2
2 · · · x j, j−1

2 x j, j+1
2 · · · x j,q

2 y j
2 @

· · · @ y j
l x j,1

l x j,2
l · · · x j, j−1

l x j, j+1
l · · · x j,q

l y j
l

• For each r j ∈ R , express it as r j = r j,1r j,2 · · · r j,p j , where p j = |r j | and each r j,h ∈ �0, and create a string r̃ j by taking
q − 1 copies of the symbol r j,1 and enclosing them by a pair of α j,1-symbols, followed by an @-symbol, q − 1 copies of
r j,2 enclosed by a pair of α j,2-symbols, followed by @, etc.:

r̃ j = α j,1r j,1r j,1 · · · r j,1α j,1 @α j,2r j,2r j,2 · · · r j,2α j,2 @

· · · @α j,p(j)r j,p j r j,p j · · · r j,p j α j,p(j)

• Partition � into two sets �< and �> by defining �< = {x j,h
i ∈ � : j < h} and �> = {x j,h

i ∈ � : j > h}. Let t be a
string over �< obtained by concatenating the elements of �< in any arbitrary order, and let u be the corresponding
string over �> obtained from t by replacing each symbol x j,h

i by xh, j
i . E.g., let t = x1,2

1 x1,3
1 · · · xa,b

i · · · xq−1,q
l and u =

x2,1
1 x3,1

1 · · · xb,a
i · · · xq,q−1

l .
• Finally, construct s1 and s2 by setting:

s1 = x̃1 # x̃2 # · · · # x̃q # t

s2 = r̃1 # r̃2 # · · · # r̃q # u

Then each y j
i -variable occurs twice in s1, and each x j,h

i -variable occurs once in the substring x̃1 # ̃x2 # · · · # ̃xq and once in
either t or u, i.e., twice in total in s1 and s2.

It follows from the construction that there exists a common subsequence of R of length l if and only if there exists some
θ such that s1θ is a subsequence of s2θ , which in turn holds if and only if d̂S (s1, s2) = ((

∑q
i=1 |ri |) − ql) · (q + 2). Since the

number of variables is q(q − 1)l + ql = q2l, which is still a polynomial in q and l, it is an FPT-reduction. �
Furthermore, the following W [1]-hardness result is also obtained.

Theorem 9. The string edit distance problem with variables is W [1]-hard with respect to k, even if variables occur only in s1 and the
number of occurrences of every variable is at most 3.

Proof. We show an FPT-reduction from the maximum clique problem, which is W [1]-hard [14]. Let (G(V , E), l) be an
instance of the maximum clique problem (i.e., asking whether there exists an l-clique in G(V , E)), where V = {v1, . . . , vn}.
We construct two strings s1 and s2 as follows.

Let � = {y1, . . . , yl} ∪ {xi, j | i = 1, . . . , l, j = 1, . . . , l, i �= j}, where we identify xi, j with x j,i (i.e., xi, j = x j,i). Let si =
yi xi,1xi,2 · · · xi,l yi yi . Then, s1 is defined as s1 = s1s2 · · · sl . s1 represents an l-clique. Notice that each variable occurs at most
three times.

Let N(vi) = {vi,1, . . . , vi,di } be the set of neighbors of vi , arranged in the order of v1, v2, . . . , vn . We define ti (i =
1, . . . , n) by ti = aibi,1 · · · , bi,di aiai where ai and bi, j are constants. We let bi,p = b j,q iff vi,p = v j and v j,q = vi . Otherwise,
any two symbols are distinct. Finally, we let s2 = t1t2 · · · tn . s2 represents G(V , E).

72 T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74
Then, we can see that G(V , E) has an l-clique iff d̂S (s1, s2) = |s2| −|s1|. Since the number of variables in s1 is 1
2 l(l −1) + l,

this is an FPT reduction. �
On the positive side, the number of possible θ is bounded by |�|k . This immediately yields a fixed-parameter algorithm

with respect to k when � is fixed:

Proposition 5. The string edit distance problem with variables can be solved in O (|�|k poly(m, n)) time, where m and n are the
lengths of the two input strings.

Also note that in the special case where every variable in the input occurs exactly once, the problem is equivalent to
approximate string matching with don’t-care symbols, which can be solved in polynomial time [3].

6.2. Tree edit distance with variables

Similar to what was done in Section 6.1, we can combine the tree edit distance with unification to get what we call
the tree edit distance problem with variables. Let dT (t1, t2) be the tree edit distance between two node-labeled (ordered or
unordered) trees t1 and t2, whose definition is as follows.

To simplify the presentation, we assume that the root r(T) of any tree T has an imaginary parent node p(T) labeled by
a unique symbol that does not appear anywhere else in T and that p(T) /∈ V (T), where V (T) is the set of nodes in T . Let t1
and t2 be two rooted ordered (or unordered) trees. The tree edit distance between t1, t2 denoted by dT (t1, t2), is the length
of a shortest sequence of edit operations that transforms t1 into a tree isomorphic to t2, where an edit operation on a tree
T is one of the following three operations.

Deletion: Delete a node v in V (T) with parent u, making the children of v become children of u. The children are inserted
in the place of v into the set of the children of u.

Insertion: Inverse of delete. Insert a node v as a child of any node u in V (T) ∪ {p(T)}, making v the parent of a (possibly
empty) subset of the children of u.

Replacement: Change the label (function symbol) of a node v .

Note that the definition of the isomorphism differs between ordered and unordered trees: the order of children must be
preserved in the ordered tree isomorphism whereas it does not need to be preserved in the unordered tree isomorphism.
See [7] for more details of the definitions.

We generalize dT (t1, t2) to two trees, i.e., two terms, over � ∪ � by defining d̂T (t1, t2) = mined : (∃θ) (ed(t1)θ = t2θ) |ed|. The
tree edit distance problem with variables takes as input two (ordered or unordered) trees t1, t2 over � ∪ �, and asks for the
value of d̂T (t1, t2).

As before, let k be the number of variables appearing in at least one of t1 and t2. By applying Theorem 8, we obtain:

Theorem 10. The tree edit distance problem with variables is W [1]-hard with respect to k, both for ordered and unordered trees, even
if the number of occurrences of every variable is bounded by 2.

As demonstrated in [6], certain matching problems are easy to solve for DO-terms. The next theorem states that the
ordered tree edit distance problem with variables also becomes polynomial-time solvable for DO-terms. (In contrast, the
classic unordered tree edit distance problem is already NP-hard for variable-free terms; see, e.g., [7]).

Theorem 11. The ordered tree edit distance problem with variables can be solved in polynomial time when t1 and t2 are DO-terms.

Proof. Let F1 and F2 be two ordered forests. Let T1 (resp., T2) be the rightmost tree of F1 (resp., F2). It is known (see,
e.g., [7]) that the rooted ordered tree edit distance can be computed by the following dynamic programming procedure in
O (m2n2) time:

D[ε, ε] ← 0,

D[F1, ε] ← D[F1 − r(T1), ε] + δ(r(T1),−),

D[ε, F2] ← D[ε, F2 − r(T2)] + δ(−, r(T2)),

D[F1, F2] ← min

⎧⎨
⎩

D[F1 − r(T1), F2] + δ(r(T1),−),

D[F1, F2 − r(T2)] + δ(−, r(T2)),

D[F1 − T1, F2 − T2] + D[T1 − r(T1), T2 − r(T2)] + δ(r(T1), r(T2)),

where ε denotes the empty tree, F − v (resp., F − T) is the forest obtained by deleting v (resp., T) from F , δ(x, x) = 0 and
δ(x, y) = 1 for x �= y, and D[t1, t2] is the tree edit distance between the two trees t1 and t2.

T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74 73
To cope with DO-variables, it is enough to add the following when taking the minimum in the recursive formula for
computing D[F1, F2] above:

D[F1 − T1, F2 − T2], if T1 or T2 consists of a variable node.

It is clear that the time complexity is the same as that of the original dynamic programming procedure, and hence
polynomial. (More sophisticated techniques for further reducing the time complexity of computing the tree edit distance
mentioned in [7] and elsewhere may also be applied here.) �
7. Concluding remarks

In this paper, we have studied the parameterized complexity of unification with associative and/or commutative functions
with respect to the number of variables. See Table 1 in Section 1.2 for a summary.

Some remaining open problems include

1. Determining whether each of the commutative unification problem and the matching version of Theorem 8 (i.e., where
all variables occur in one of the strings and the number of occurrences of each variable is at most 2) is W [1]-hard or
FPT.

2. Determining whether associative unification is in XP.
3. Resolving Conjecture 1.

Acknowledgements

This work was partially supported by the Collaborative Research Programs of National Institute of Informatics (1-2
(2013–2014)) and of Institute for Chemical Research, Kyoto University (2016-27). TA was partially supported by Grant-
in-Aid #26240034 from JSPS, Japan. JJ was supported by the Hakubi Project at Kyoto University. TT was partially supported
by JSPS, Japan (Grant-in-Aid for Young Scientists (B) 25730005).

Appendix A. Definitions of FPT and W[i] by [8]

A parameterized problem L is a subset of �∗ × N , where � is a fixed alphabet and N is a natural number. For L and
k ∈ N , we write Lk to denote the associated fixed-parameter problem Lk = {x|(x, k) ∈ L}.

Definition 1. A parameterized problem L is fixed parameter tractable if there is a constant α and an algorithm
 such that

 decides if (x, k) ∈ L in time f (k)|x|α where f : N → N is an arbitrary function.

The classes related to FPT and W [i] are intuitively based on the complexity of the circuits required to check a solution,
or alternatively, the “natural logical depth” of the problem.

Definition 2. A mixed Boolean circuit consists of the following two kinds of gates.

1. Small gates: “not” gates, “and” gates and “or” gates with bounded fan-in. We will usually assume that the bound of
fan-in is 2 for “and” gates and “or” gates, and 1 for “not” gates.

2. Large gates: “and” gates and “or” gates with unrestricted fan-in

Definition 3. The depth of a circuit C is defined to be the maximum number of gates (small or large) on an input–output
path in C . The weft of a circuit C is the maximum number of large gates on an input–output path in C .

Definition 4. A family of decision circuits F has bounded depth if there is a constant h such that every circuit in the family
F has depth at most h. F has bounded weft if there is a constant t such that every circuit in the family F has weft at most
t . The weight of a Boolean vector x is the number of 1’s in the vector.

Definition 5. Let F be a family circuit of decision circuits. We allow F to have many different circuits with a given number
of inputs. To F we associate the parameterized circuit problem L F = {(C, k) : C accepts an input vector of weight k}.

Definition 6. A parameterized problem L belongs to W [t] if L reduces to the parameterized circuit problem L F (t,h) for the
family F (t, h) of mixed type decision circuits of weft at most t , and depth at most h, for some constant h.

Definition 7. A parameterized problem L belongs W [P] if L reduces to the circuit problem L F , where F is the set of all
circuits without restrictions.

74 T. Akutsu et al. / Theoretical Computer Science 660 (2017) 57–74
The class of fixed parameter tractable problems is denoted by FPT. The framework above describes a hierarchy of param-
eterized complexity classes

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P]
for which there are many natural hard or complete problems. For example, INDEPENDENT SET, CLIQUE, and LCS-3 are known
to be W [1]-complete. DOMINATING SET is known to be W [2]-complete, and LCS-2 is W [2]-hard.

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.
[2] K. Aikou, Y. Suzuki, T. Shoudai, T. Uchida, T. Miyahara, A polynomial time matching algorithm of ordered tree patterns having height-constrained

variables, in: Combinatorial Pattern Matching, Springer, 2005, pp. 346–357.
[3] T. Akutsu, Approximate string matching with don’t care characters, Inform. Process. Lett. 55 (5) (1995) 235–239.
[4] T. Akutsu, Approximate string matching with variable length don’t care characters, IEICE Trans. Inf. Syst. E79D (1996) 1353–1354.
[5] F. Baader, W. Snyder, Unification theory, in: Handbook of Automated Reasoning, 2001, pp. 447–533.
[6] D. Benanav, D. Kapur, P. Narendran, Complexity of matching problems, J. Symbolic Comput. 3 (1) (1987) 203–216.
[7] P. Bille, A survey on tree edit distance and related problems, Theoret. Comput. Sci. 337 (1) (2005) 217–239.
[8] H. Bodlaender, R.G. Downey, Fellows, H.T. Wareham, The parameterized complexity of sequence alignment and consensus, Theoret. Comput. Sci. 147

(1995) 31–54.
[9] H.-J. Bürckert, A. Herold, D. Kapur, J.H. Siekmann, M.E. Stickel, M. Tepp, H. Zhang, Opening the AC-unification race, J. Automat. Reason. 4 (4) (1988)

465–474.
[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, 2009.
[11] D. De Champeaux, About the Paterson–Wegman linear unification algorithm, J. Comput. System Sci. 32 (1) (1986) 79–90.
[12] S. Eker, Single elementary associative-commutative matching, J. Automat. Reason. 28 (1) (2002) 35–51.
[13] H. Fernau, M.L. Schmid, Pattern matching with variables: a multivariate complexity analysis, Inform. and Comput. 242 (2015) 287–305.
[14] J. Flum, M. Grohe, Parameterized Complexity Theory, Springer Verlag, Berlin, 2006.
[15] D. Gilbert, M. Schroeder, Fuzzy unification and resolution based on edit distance, in: Proc. 1st IEEE International Symposium on Bioinformatics and

Biomedical Engineering, 2000, pp. 330–336.
[16] N.C. Jones, P. Pevzner, An Introduction to Bioinformatics Algorithms, MIT Press, 2004.
[17] P. Julián-Iranzo, C. Rubio-Manzano, An efficient fuzzy unification method and its implementation into the Bousi∼Prolog system, in: Proc 2010 IEEE

International Conference on Fuzzy Systems, 2010, pp. 1–8.
[18] S. Kamali, F.W. Tompa, A new mathematics retrieval system, in: Proceedings of the 19th ACM International Conference on Information and Knowledge

Management, 2010, pp. 1413–1416.
[19] D. Kapur, P. Narendran, Complexity of unification problems with associative-commutative operators, J. Automat. Reason. 9 (2) (1992) 261–288.
[20] K. Knight, Unification: a multidisciplinary survey, ACM Comput. Surv. 21 (1) (1989) 93–124.
[21] P. Lincoln, J. Christian, Adventures in associative-commutative unification, J. Symbolic Comput. 8 (1–2) (1989) 217–240.
[22] J.W. Lloyd, Foundations of Logic Programming, Springer, 1984.
[23] T.T. Nguyen, K. Chang, S.C. Hui, A math-aware search engine for math question answering system, in: Proceedings of the 21st ACM International

Conference on Information and Knowledge Management, 2012, pp. 724–733.
[24] NTCIR, http://research.nii.ac.jp/ntcir/ntcir-10/conference.html, 2013.
[25] M.S. Paterson, M.N. Wegman, Linear unification, J. Comput. System Sci. 16 (1978) 158–167.
[26] J.A. Robinson, A machine-oriented logic based on the resolution principle, J. ACM 12 (1) (1965) 23–41.
[27] K. Slind, AC unification in HOL90, in: Higher Order Logic Theorem Proving and Its Applications, Springer, 1994, pp. 437–449.
[28] M.E. Stickel, A unification algorithm for associative-commutative functions, J. ACM 28 (3) (1981) 423–434.

http://refhub.elsevier.com/S0304-3975(16)30689-2/bib61686F3734s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib61696B6F753035s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib61696B6F753035s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib616B757473753935s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib616B757473753936s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib6261616465723031s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib62656E616E61763837s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib62696C6C653035s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib626F646C61656E6465723935s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib626F646C61656E6465723935s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib627572636B657274313938386F70656E696E67s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib627572636B657274313938386F70656E696E67s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib636F726D656E32303039696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib64655F6368616D70656175783836s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib656B65723032s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib6665726E61753133s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib666C756D3036s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib67696C626572743030s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib67696C626572743030s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib6A6F6E65733034s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib6972616E7A6F3130s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib6972616E7A6F3130s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib6B616D616C693130s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib6B616D616C693130s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib6B617075723932s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib6B6E696768743839s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib6C696E636F6C6E31393839616476656E7475726573s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib6C6C6F79643834s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib6E677579656E3132s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib6E677579656E3132s1
http://research.nii.ac.jp/ntcir/ntcir-10/conference.html
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib7061746572736F6E3738s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib726F62696E736F6E3635s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib736C696E64313939346163s1
http://refhub.elsevier.com/S0304-3975(16)30689-2/bib737469636B656C31393831756E696669636174696F6Es1

	On the parameterized complexity of associative and commutative uniﬁcation
	1 Introduction
	1.1 Related work
	1.2 Summary of new results

	2 Basic deﬁnitions
	3 Associative uniﬁcation
	3.1 Hardness
	3.2 Algorithms

	4 Commutative uniﬁcation
	4.1 Case 1: Both terms are variable-free
	4.2 Case 2: One term is variable-free
	4.3 Case 3: Both terms are DO-terms
	4.4 Case 4: General case

	5 Associative-commutative uniﬁcation
	6 String and tree edit distance with variables
	6.1 String edit distance with variables
	6.2 Tree edit distance with variables

	7 Concluding remarks
	Acknowledgements
	Appendix A Deﬁnitions of FPT and W[i] by [8]
	References

