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Abstract

This paper considers the problem of determining
whether a given set T of rooted triplets can be merged
without conflicts into a galled phylogenetic network, and
if so, constructing such a network. When the input T
is dense, we solve the problem in O(|T |) time, which is
optimal since the size of the input is Θ(|T |). In compar-
ison, the previously fastest algorithm for this problem
runs in O(|T |2) time. Next, we prove that the problem
becomes NP-hard if extended to non-dense inputs, even
for the special case of simple phylogenetic networks. We
also show that for every positive integer n, there exists
some set T of rooted triplets on n leaves such that any
galled network can be consistent with at most 0.4883·|T |
of the rooted triplets in T . On the other hand, we pro-
vide a polynomial-time approximation algorithm that
always outputs a galled network consistent with at least
a factor of 5

12 (> 0.4166) of the rooted triplets in T .

1 Introduction

A rooted triplet is a binary, rooted, unordered tree
with three distinctly labeled leaves. Aho et al. [1]
introduced the problem of determining whether a given
set of rooted triplets can be combined without conflicts
into a distinctly leaf-labeled tree which contains each
of the given rooted triplets as an induced subtree, and
if so, returning one. The original motivation for this
problem came from an application in the theory of
relational databases (see [1] for details), but it has
later been further studied and generalized because of its
applications to phylogenetic tree construction [2, 6, 7, 9,
12, 13, 16, 19, 20, 22, 24]. Here, we study an extension
of the problem in which the objective is to determine
if a given set T of rooted triplets can be merged into a
more complex structure known as a galled phylogenetic
network.

A phylogenetic network is a type of distinctly leaf-
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labeled, directed acyclic graph that can be used to
model non-treelike evolution. A number of methods for
inferring phylogenetic networks under various assump-
tions and using different kinds of data have recently
been proposed [8, 11, 14, 18, 21, 23]. A galled phylo-
genetic network (or galled network for short) is an im-
portant, biologically motivated structural restriction of
a phylogenetic network [8, 18, 23] in which all cycles in
the underlying undirected graph are node-disjoint1.

We present several new results for the problem of
inferring a galled network consistent with a given set T
of rooted triplets. Denote the set of leaf labels in T
by L. If T contains at least one rooted triplet for each
cardinality three subset of L, then T is called dense. We
first give an exact algorithm named FastGalledNetwork
for dense inputs whose running time is O(|T |). In
comparison, the previously fastest known algorithm
for this case runs in O(|T |2) time [14]. Since the size of
the input is Θ(|T |) when T is dense and any algorithm
that solves the problem must look at the entire input,
the asymptotic running time of our new algorithm is
optimal. The improvement in running time is due to
two observations: Firstly, that the so-called SN -sets
employed in [14] do not have to be explicitly computed
but can be represented using a tree (the SN -tree) which
we can construct in O(|T |) time, and secondly, that
the SN -tree can be expanded into a galled network
consistent with T (if one exists) in O(|T |) time by
replacing each internal node of degree three or higher
with a special kind of galled network found by applying
an algorithm called SimpleNetworks.

Next, we show that the problem becomes NP-hard
when T is not required to be dense. Finally, we consider
approximation algorithms. We present an O(|L| · |T |3)-
time algorithm that always outputs a galled network
consistent with at least a factor of 5

12 (> 0.4166) of the
rooted triplets in T , for any T . (Our approximation
algorithm can also be applied in the dense case when the

1Without the node-disjoint constraint, our problem becomes
trivial to solve since then a solution always exists, and further-
more, can be obtained in polynomial time using a simple sorting
network-based construction [14].



input cannot be combined into a galled network without
conflicts.) On the negative side, we show that there exist
inputs for which any galled network can be consistent
with at most a factor of 0.4883 of the rooted triplets. It
is interesting to note that for trees, the corresponding
bounds are known to be tight [7]: that is, there is a
polynomial-time approximation algorithm which always
constructs a tree consistent with at least 1

3 · |T | of the
rooted triplets in T , and there exist some inputs for
which no tree can achieve a factor higher than 1

3 · |T |.

1.1 Definitions A phylogenetic tree is a binary,
rooted, unordered tree whose leaves are distinctly la-
beled. A phylogenetic network is a generalization of
a phylogenetic tree formally defined as a rooted, con-
nected, directed acyclic graph in which: (1) exactly one
node has indegree 0 (the root), and all other nodes have
indegree 1 or 2; (2) all nodes with indegree 2 (referred to
as hybrid nodes) have outdegree 1, and all other nodes
have outdegree 0 or 2; and (3) all nodes with outde-
gree 0 (the leaves) are distinctly labeled. For any phy-
logenetic network N , let U(N) be the undirected graph
obtained from N by replacing each directed edge by an
undirected edge. N is said to be a galled phylogenetic
network (galled network, for short) if all cycles in U(N)
are node-disjoint. Galled networks are also known in
the literature as topologies with independent recombina-
tion events [23], galled-trees [8], gt-networks [18], and
level-1 phylogenetic networks [4, 14].

A phylogenetic tree with exactly three leaves is
called a rooted triplet. The unique rooted triplet on
a leaf set {x, y, z} in which the lowest common ancestor
of x and y is a proper descendant of the lowest common
ancestor of x and z (or equivalently, where the lowest
common ancestor of x and y is a proper descendant of
the lowest common ancestor of y and z) is denoted by
({x, y}, z). For any phylogenetic network N , a rooted
triplet t is said to be consistent with N if t is an induced
subgraph of N , and a set T of rooted triplets is said
to be consistent with N if every rooted triplet in T is
consistent with N .

Denote the set of leaves in any phylogenetic net-
work N by Λ(N), and for any set T of rooted triplets,
define Λ(T ) =

⋃
ti∈T Λ(ti). A set T of rooted triplets

is dense if for each {x, y, z} ⊆ Λ(T ), at least one of
({x, y}, z), ({x, z}, y), and ({y, z}, x) belongs to T . If T
is dense then |T | = Θ(|Λ(T )|3). Furthermore, for any
set T of rooted triplets and L′ ⊆ Λ(T ), define T |L′ as
the subset of T consisting of all rooted triplets t with
Λ(t) ⊆ L′. The problem we consider here is: Given
a set T of rooted triplets, output a galled network N
with Λ(N) = Λ(T ) such that N and T are consistent, if
such a network exists; otherwise, output null. See Fig-
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Figure 1: A dense set T of rooted triplets with leaf
set {a, b, c, d} and a galled phylogenetic network which is
consistent with T . Note that this solution is not unique.

ure 1 for an example. Throughout this paper, we write
L = Λ(T ) and n = |L|.

To describe our algorithms, we need the following
additional terminology. Let N be a phylogenetic net-
work. We call nodes with indegree 2 hybrid nodes and
their parent edges hybrid edges. Let h be a hybrid node
in N . Every ancestor s of h such that h can be reached
using two disjoint directed paths starting at the children
of s is called a split node of h. If s is a split node of h
then any path starting at s and ending at h is called a
merge path of h, and any path starting at a child of s
and ending at a parent of h is a clipped merge path of h.
From the above, it follows that in a galled network, each
split node is a split node of exactly one hybrid node, and
each hybrid node has exactly one split node.

Let N be a galled network. For any node u in N ,
N [u] denotes the subnetwork of N rooted at u, i.e., the
minimal subgraph of N which includes all nodes and
directed edges of N reachable from u. N [u] is called a
side network of N if there exists a merge path P in N
such that u does not belong to P but u is a child of a
node belonging to P . In this case, N [u] is also said to be
attached to P . N is called a simple phylogenetic network
(or simple network) if N has exactly one hybrid node h,
the root node of N is the split node of h, and every side
network of N is a leaf. For example, the galled network
on the right in Figure 1 is a simple network.

1.2 Applications Phylogenetic networks are used by
scientists to describe evolutionary relationships that do
not fit the traditional models in which evolution is as-
sumed to be treelike. Evolutionary events such as hori-
zontal gene transfer or hybrid speciation (often referred
to as recombination events) cannot be adequately rep-
resented in a single tree [8, 18, 21, 23] but can be mod-



eled in a phylogenetic network as internal nodes having
more than one parent. Galled networks are an impor-
tant type of phylogenetic networks which have attracted
special attention in the literature [4, 8, 18, 23] due to
their biological significance (see [8]) and their simple, al-
most treelike, structure. When the number of recombi-
nation events is limited and most of them have occurred
recently, a galled network may suffice to accurately de-
scribe the evolutionary process under study [8].

A challenge in the field of phylogenetics is to
develop efficient and reliable methods for constructing
and comparing phylogenetic networks. For example,
to construct a meaningful phylogenetic network for
a large subset of the human population (which may
subsequently be used to help locate regions in the
genome associated with some observable trait indicating
a particular disease) in the future, efficient algorithms
are crucial because the input can be expected to be
very large. The motivation behind the rooted triplet
approach taken in this paper is that a highly accurate
tree for each cardinality three subset of the leaf set
can be obtained through maximum likelihood-based
methods such as [3] or Sibley-Ahlquist-style DNA-
DNA hybridization experiments (see [16]). Hence, the
algorithms presented in [14] and in here can be used
as the merging step in a divide-and-conquer approach
for constructing phylogenetic networks analogous to
the quartet method paradigm for inferring unrooted
phylogenetic trees [15, 17] and other supertree methods
(see [9, 20] and the references therein). We consider
dense input sets in particular since this case can be
solved in polynomial time.

1.3 Related work Aho et al. [1] gave an O(|T | · n)-
time algorithm for determining whether a given set T
of rooted triplets on n leaves is consistent with some
rooted, distinctly leaf-labeled tree, and if so, returning
such a tree. Henzinger et al. [9] improved its running
time to min

{
O(|T | · n0.5), O(|T |+ n2 log n)

}
; replacing

the deterministic algorithm for dynamic graph connec-
tivity employed by Henzinger et al. yields a running
time of min

{
O(|T | · log2 n), O(|T |+ n2 log n)

}
[10, 13].

Ga̧sieniec et al. [6] studied a variant of the problem
for ordered trees. Ng and Wormald [20] considered the
problem of constructing all rooted, unordered trees dis-
tinctly leaf-labeled by Λ(T ) that are consistent with T .

If two or more of the rooted triplets are in con-
flict, i.e., contain contradicting branching information,
the algorithm of Aho et al. returns a null tree. How-
ever, this is not very practical in certain applications.
For example, in the context of constructing a phyloge-
netic tree from rooted triplets, some errors may occur
in the input when the rooted triplets are based on data

obtained experimentally, yet a non-null tree is still re-
quired. In this case, one can try to construct a tree
consistent with the maximum number of rooted triplets
in the input [2, 6, 7, 12, 24], or a tree with as many leaves
from Λ(T ) as possible which is consistent with all input
rooted triplets involving these leaves only [13]. Although
the former problem is NP-hard [2, 12, 24], Ga̧sieniec et
al. [7] showed that it has a polynomial-time approxima-
tion algorithm that outputs a distinctly leaf-labeled tree
consistent with at least 1

3 of the given rooted triplets,
which is a tight bound in the sense that there exist in-
puts T such that any distinctly leaf-labeled tree can be
consistent with at most 1

3 of the rooted triplets in T .
The problem studied in this paper was introduced

in [14]. The main result of [14] is an exact O(|T |2)-
time algorithm for the dense case. [14] also showed
that if no restrictions are placed on the structure of
the output phylogenetic network (i.e., if non-galled
networks are allowed) then the problem always has a
solution which can easily be obtained from any given
sorting network for n elements. Nakhleh et al. [18]
gave an O(n2)-time algorithm for the related problem
of combining two given phylogenetic trees T1 and T2

with identical leaf sets into a galled network containing
both T1 and T2 as induced subtrees, where n is the
number of leaves (in fact, this is equivalent to inferring
a galled network consistent with the set of all rooted
triplets which are induced subtrees of T1 or T2). They
also studied the case where T1 and T2 may contain
errors but only one hybrid node is allowed. Huson et
al. [11] considered a similar problem for constructing an
unrooted phylogenetic network from a set of unrooted,
distinctly leaf-labeled trees.

1.4 Organization of the paper In Section 2, we
present a new algorithm called SimpleNetworks for
computing all simple phylogenetic networks consistent
with a given dense set T of rooted triplets in O(n3)
time. This algorithm is used by our main algorithm
FastGalledNetwork in Section 3 to construct a galled
network consistent with a given dense set T of rooted
triplets, if one exists, in optimal O(n3) time. In
Section 4, we prove that the problem becomes NP-hard
if we remove the requirement that T forms a dense set.
Next, in Section 5.1, we show that for every positive
integer n, there exists some set T of rooted triplets
with |Λ(T )| = n such that any galled network can
be consistent with at most 0.4883 · |T | of the rooted
triplets in T . On the other hand, we give an O(n · |T |3)-
time algorithm in Section 5.2 that constructs a galled
network guaranteed to be consistent with at least a
factor of 5

12 (> 0.4166) of the rooted triplets in T for
any input T .



2 Constructing all simple phylogenetic
networks when T is dense

In this section, we describe an algorithm called Sim-
pleNetworks for inferring all simple phylogenetic net-
works consistent with a given dense set T of rooted
triplets in O(n3) time, where L = Λ(T ) and n = |L|.
This algorithm is later used by our main algorithm in
Section 3. Below, for any L′ ⊆ L, G(L′) denotes the aux-
iliary graph for L′ (originally defined by Aho et al. [1]),
which is the undirected graph with vertex set L′ and
edge set E(L′) where for each ({i, j}, k) ∈ T |L′, the
edge {i, j} is included in E(L′). SimpleNetworks as-
sumes that n ≥ 3, T is dense, and G(L) is connected.

For any simple network N , define A(N) and B(N)
to be the sets of leaves attached to the two clipped
merge paths in N , where we require without loss of
generality that A(N) is nonempty. If both A(N) and
B(N) are nonempty then N is called non-skew ; if
A(N) is nonempty and B(N) is empty then N is called
skew. Denote the leaf attached to the hybrid node of N
by h(N).

Algorithm SimpleNetworks calls two procedures
named Non-SkewSimpleNetworks and SkewSimpleNet-
works that find all valid non-skew simple networks and
all valid skew simple networks, respectively. Then, it re-
turns their union. In the next two subsections, we show
how to implement each of these two procedures to run
in O(n3) time. We thus obtain Theorem 2.1.

Theorem 2.1. The set of all simple networks consis-
tent with a given dense set of rooted triplets and leaf-
labeled by L can be constructed in O(n3) time.

The next two lemmas are used in Sections 2.1
and 2.2. A caterpillar tree is a rooted tree such that
every internal node has at most one child which is not
a leaf (see, e.g. [2]).

Lemma 2.1. Suppose N is a simple phylogenetic net-
work that is consistent with a set T of rooted triplets.
Let N ′ be the graph obtained from N by deleting the root
node of N , the hybrid node of N , and h(N) together with
all their incident edges, and then, for every node with
outdegree 1 and indegree less than 2, contracting its out-
going edge. If N is non-skew then N ′ consists of two bi-
nary caterpillar trees which are consistent with T |A(N)
and T |B(N), respectively; if N is skew then N ′ is a bi-
nary caterpillar tree which is consistent with T |A(N).

Lemma 2.2. [14] Let T be a dense set of rooted triplets
and let L be the leaf set of T . There is at most one
rooted, unordered tree distinctly leaf-labeled by L which
is consistent with T . Furthermore, if such a tree exists
then it must be binary.

2.1 Constructing all non-skew simple phyloge-
netic networks Let U be an undirected, connected
graph. Any partition (X,Y, Z) of the vertex set of U is
called a non-skew leaf partition in U if |X| ≥ 1, |Y | = 1,
|Z| ≥ 1, and in U the following holds: (1) X and Z form
two cliques; and (2) there is no edge between a vertex
in X and a vertex in Z. Any two non-skew leaf parti-
tions of the form (X,Y, Z) and (Z, Y,X) are considered
to be equivalent.

Lemma 2.3. Let T be a dense set of rooted triplets and
let L be the leaf set of T . If N is a non-skew simple
phylogenetic network with leaf set L that is consistent
with T then (A(N), h(N), B(N)) forms a non-skew leaf
partition in G(L).

By Lemmas 2.1 and 2.3, if N is a non-skew sim-
ple network with leaf set L that is consistent with T
then (A(N), h(N), B(N)) forms a non-skew leaf par-
tition in G(L) and T |A(N) and T |B(N) are consis-
tent with two binary caterpillar trees. Algorithm Non-
SkewSimpleNetworks, shown in Figure 2, uses these im-
plications to construct all non-skew simple networks
with leaf set L that are consistent with T . The algo-
rithm enumerates all non-skew leaf partitions in G(L),
and for each such leaf partition P , tries to build bi-
nary caterpillar trees for subsets of L induced by P
(Lemma 2.2 ensures that for any dense subset T ′ of T , if
T ′ is consistent with a caterpillar tree then it is uniquely
determined, so the algorithm of Aho et al. [1] can find it)
and if successful, then combines the caterpillar trees in
accordance with Lemma 2.1 to obtain all possible valid
simple networks. Lemmas 2.1 and 2.3 guarantee that
this approach will discover every valid simple network.
However, it may also yield some simple networks which
are not consistent with T ; hence, before including any
constructed network N in the final solution set N1, Non-
SkewSimpleNetworks verifies if N is consistent with T .

For any L′ ⊆ L with |L′| ≥ 3, BuildTree(T |L′)
refers to the fast implementation of the algorithm of
Aho et al. applied to T |L′ (we may assume it returns
null if it fails). For |L′| < 3, the set T |L′ is empty and
we simply let BuildTree(T |L′) return a tree with the
leaves in L′. The running time of BuildTree(T |L′) is
min

{
O(|T | · log2 n), O(|T |+n2 log n)

}
(see Section 1.3).

The next lemma is easy to prove after observing
that for any two non-skew leaf partitions (X, {h}, Z)
and (X ′, {h′}, Z ′) in an undirected connected graph,
h and h′ must be neighbors.

Lemma 2.4. Any undirected, connected graph U has at
most two non-skew leaf partitions.

Theorem 2.2. The time complexity of Algorithm Non-
SkewSimpleNetworks is O(n3).



Algorithm Non-SkewSimpleNetworks

Input: A dense set T of rooted triplets such that
G(L) consists of one connected component.

Output: The set of all non-skew simple networks with
leaf set L which are consistent with T .

1 Set N1 = ∅.
2 Construct G(L) and compute all non-skew leaf par-

titions in G(L).

3 for each non-skew leaf partition (X,Y, Z) in G(L)do

3.1 Let TX = BuildTree(T |X) and TZ =
BuildTree(T |Z).

3.2 if TX and TZ are binary caterpillar trees then

Make the roots of TX and TZ children of a
new root node, create a new hybrid node H
with a child labeled by the leaf in Y , and
construct at most four non-skew simple net-
works by attaching H to one of TX ’s bot-
tommost leaves’ parent edges and one of TZ ’s
bottommost leaves’ parent edges in all possi-
ble ways. For each obtained network N , if N
is consistent with T then N1 = N1 ∪ {N}.

endfor

4 return N1.

End Non-SkewSimpleNetworks

Figure 2: Constructing all non-skew simple networks.

2.2 Constructing all skew simple phylogenetic
networks To obtain all skew simple networks with leaf
set L consistent with T , Algorithm SkewSimpleNet-
works in Figure 3 tries all ways to remove one leaf x
from L and construct a binary caterpillar tree consis-
tent with all rooted triplets not involving x using a pro-
cedure named BuildCaterpillar. For each such caterpil-
lar Q, it forms two candidate skew simple networks by
letting the root of Q be a child of a new split node with
a hybrid node H such that H has a child labeled by x
and H is attached to one of Q’s two bottommost edges.
(By Lemma 2.1, every skew simple network with leaf
set L that is consistent with T must have this structure.)
Then, each candidate skew simple network is checked to
see if it is consistent with all rooted triplets in T involv-
ing x (by the above, it is always consistent with the
rest); if yes then it is included in the solution set N2.

The procedure BuildCaterpillar uses a graph D,
defined as follows. Given a set T of rooted triplets
with leaf set L, let D be the directed graph with vertex
set L such that there is a directed edge (x, y) if and
only if T contains at least one rooted triplet of the form
({y, z}, x), where z ∈ L. For any L′ ⊆ L, let D |L′

be the subgraph of D in which all vertices not in L′

and their incident edges have been deleted. D |L′ is
acyclic if and only if there exists a binary caterpillar
tree consistent with T |L′.

Algorithm SkewSimpleNetworks

Input: A dense set T of rooted triplets such that
G(L) consists of one connected component.

Output: The set of all skew simple networks with leaf
set L which are consistent with T .

1 Set N2 = ∅.
2 Construct D.

3 for every x ∈ L do

3.1 Let Q = BuildCaterpillar(D |L′), where L′ =
L \ {x}.

3.2 if Q �= null then

Make the root of Q a child of a new root
node r, create a new hybrid node H with a
child labeled by x, add an edge from r to H,
and construct two skew simple networks by
attaching H to each one of Q’s two bottom-
most edges. For each obtained network N , if
N is consistent with all rooted triplets in T
involving x then N2 = N2 ∪ {N}.

endfor

4 return N2.

End SkewSimpleNetworks

Figure 3: Constructing all skew simple networks.

For any L′ ⊆ L, BuildCaterpillar(D |L′) returns
a binary caterpillar tree with leaf set L′ which is
consistent with T |L′ if such a tree exists, and null
otherwise, by the following method. If D |L′ has a
cycle then return null. Else, do a topological sort of
D |L′ to find a linear ordering O of L′ and return a
binary caterpillar tree whose leaves are labeled in order
of increasing distance from the root according to O.
Since T is dense, O is uniquely determined except for its
last two elements which may be interchanged arbitrarily.

Theorem 2.3. The time complexity of Algorithm
SkewSimpleNetworks is O(n3).

3 An exact algorithm for inferring a galled
phylogenetic network from a dense set of
rooted triplets with optimal running time

Here, we present our algorithm FastGalledNetwork for
constructing a galled network consistent with a given
dense set T of rooted triplets, if such a network exists.
Its running time is O(n3), where n = |L| and L de-
notes the leaf set of T , which is optimal since the size of
the input is Θ(n3) when T is dense. In Section 3.1, we
give an algorithm named ComputeSNTree which com-
putes the so-called SN -tree for T in O(n3) time. Then,
in Section 3.2, we describe FastGalledNetwork. It uses
ComputeSNTree as well as SimpleNetworks from Sec-
tion 2 to construct a galled network consistent with T
(if one exists) from the SN -tree for T . The key observa-



tion is that each internal node of degree three or higher
in the SN -tree corresponds to a simple network whose
structure can be inferred by using SimpleNetworks.

3.1 Computing the SN-tree For any X ⊆ L, the
set SN(X) is defined recursively as SN(X ∪ {c}) if
there exist some x, x′ ∈ X and c ∈ L \ X such that
({x, c}, x′) ∈ T , and as X otherwise. SN -sets were
introduced in [14]. When T is dense, the SN -sets sat-
isfy the following important property.

Lemma 3.1. [14] If T is dense then for any A,B ⊆ L,
SN(A) ∩ SN(B) equals ∅, SN(A), or SN(B).

[14] showed how to compute SN({a, b}) for any
a, b ∈ L (where a may be equal to b) in O(n3) time;
that approach therefore takes O(n5) time to compute
SN({a, b}) for all a, b ∈ L. This section presents a
faster method for implicitly computing all SN -sets of
this form when T is dense which only requires O(n3)
time. The algorithm (ComputeSNTree) is listed in
Figure 4. Given a dense T , it builds a rooted tree called
the SN -tree for T which encodes all SN -sets so that
SN(X) for any X ⊆ L can be retrieved efficiently.

ComputeSNTree first constructs a directed graph
GT with vertex set V (GT ) and edge set E(GT ).
V (GT ) is defined as {v{a,b} | a, b ∈ L}, where v{a,a}
for any a ∈ L is denoted by v{a} for short, and
E(GT ) is {(v{a,c}, v{a,b}), (v{a,c}, v{b,c}), (v{b,c}, v{a,b}),
(v{b,c}, v{a,c}) | ({a, b}, c) ∈ T }

⋃
{(v{a,b}, v{a}),

(v{a,b}, v{b}) | a, b ∈ L}. Note that |V (GT )| = O(n2)
and |E(GT )| = O(n3).

Lemma 3.2. Suppose T is dense. For every a, b ∈ L,
we have c ∈ SN({a, b}) if and only if there exists a
directed path from v{a,b} to v{c} in GT .

Corollary 3.1. For any two nodes v{a,b} and v{c,d}
on a directed cycle in GT , SN({a, b}) = SN({c, d}).

By the above, computing SN({a, b}) is equiva-
lent to finding all nodes of the form v{c} reachable
from v{a,b}. Let the set of all strongly connected compo-
nents of GT be C = {C1, C2, . . . , Cm}. By Corollary 3.1,
SN({w, x}) = SN({y, z}) if v{w,x} and v{y,z} are in the
same Ci. So, we define SN(Ci) as SN({w, x}) for any
v{w,x} ∈ Ci. The set C has the following properties.

Lemma 3.3. For every c ∈ L, {v{c}} ∈ C. Also,
|C| = O(n), and for every i �= j, SN(Ci) �= SN(Cj).

Let G′
T be the directed graph with V (G′

T ) = C and
E(G′

T ) = {(Ci, Cj) | there exists some (v{w,x}, v{y,z}) ∈
E(GT ) where v{w,x} ∈ Ci and v{y,z} ∈ Cj}. Note
that G′

T is a directed acyclic graph. From G′
T , we

Algorithm ComputeSNTree

Input: A dense set T of rooted triplets.

Output: The SN -tree RT for T .

1 Build the directed graph GT and compute the set C
of strongly connected components of GT .

2 Build G′
T for T , build the SN -tree RT , and re-

turn RT .

End ComputeSNTree

Figure 4: Computing the SN -tree for a dense set T .

construct a graph RT with V (RT ) = C and E(RT ) =
{(Ci, Cj) ∈ E(G′

T ) | there exists no path of length at
least 2 from Ci to Cj in G′

T }. Finally, for every vertex
in RT with outdegree 1, contract its outgoing edge. The
next lemma implies that RT is a tree.

Lemma 3.4. RT is a tree with n leaves and no nodes
with outdegree 1. Its set of leaves is {{v{c}} | c ∈ L}.

In the rest of the paper, RT is called the SN -tree
for T . This is because SN({a, b}) for any a, b ∈ L can
be obtained from RT using the following lemma.

Lemma 3.5. Given any a, b ∈ L, let u be the lowest
common ancestor of v{a} and v{b} in RT . Then,
SN({a, b}) = {c ∈ L | v{c} is a descendant of u in RT }.

We have:

Theorem 3.1. The time complexity of Algorithm
ComputeSNTree is O(n3).

3.2 Algorithm FastGalledNetwork The main al-
gorithm of this section, Algorithm FastGalledNetwork,
is listed in Figure 5. Recall that for any node u in
a rooted, leaf-labeled tree R, R[u] is the subtree of R
rooted at u and Λ(R[u]) denotes the set of leaves in R[u].
Below, T |u is shorthand for the set T |Λ(R[u]).

In Step 1, FastGalledNetwork computes the SN -
tree R for T with Algorithm ComputeSNTree from Sec-
tion 3.1. Then, in Steps 2 and 3, it tries to construct
a galled network Nu consistent with all rooted triplets
in T |u for each node u in R in bottom-up order. If suc-
cessful, it returns Nr, where r is the root of R (note that
T = T | r); otherwise, it returns null. To obtain Nu for
any node u in R, FastGalledNetwork proceeds as fol-
lows. Let q be the degree of u and denote the children
of u by {u1, u2, . . . , uq}. If q = 0 then let Nu be a
network consisting of one leaf, labeled by u. If q = 2
then form Nu by joining the roots of Nu1 and Nu2 to
a new root node. Otherwise, q ≥ 3 by Lemma 3.4.
In this case, let α1, α2, . . . , αq be q new symbols not
in L, and define a function f as follows. For every



Algorithm FastGalledNetwork

Input: A dense set T of rooted triplets.

Output: A galled network consistent with T , if one
exists; otherwise, null.

1 Let R = ComputeSNTree(T ).

2 Define Nu for every leaf u in R to be a single node
labeled by u.

3 for each internal node u in R in bottom-up order do

/*Construct a galled network Nu for Λ(R[u]). */

3.1 Denote the set of children of u in R by
{u1, u2, . . . , uq}.

3.2 If q = 2, let Nu be a network with a root node
joined to Nu1 and Nu2 .

3.3 Otherwise (q ≥ 3), build T ′ from T |u, compute
N = SimpleNetworks(T ′), and check if N is
empty; if yes then return null, else select any
N ′ ∈ N and form a network Nu by replacing
each αi in N ′ with Nui .

endfor

4 return Nr, where r is the root of R.

End FastGalledNetwork

Figure 5: Constructing a galled phylogenetic network
consistent with a dense set T of rooted triplets.

x ∈ Λ(R[u]), let f(x) = αi where x ∈ Λ(R[ui]). Next,
define T ′ as the set

{
({f(x), f(y)}, f(z)) : ({x, y}, z) ∈

(T |u) and f(x), f(y), f(z) all differ
}
, and apply Algo-

rithm SimpleNetworks from Section 2 to T ′. If there
is a simple phylogenetic network N ′ consistent with T ′

then replace each αi in N ′ with Nui and let Nu be the
resulting network; otherwise, terminate and output null.

The correctness of this method follows from the
next two lemmas.

Lemma 3.6. For any node u in R, if T |u is consistent
with a galled network with leaf set Λ(R[u]) and if q ≥ 3
then there exists a simple network consistent with T ′.

Proof. (Sketch.) Let M be any galled network with leaf
set Λ(R[u]) consistent with T |u. First show that if
q ≥ 3 then the root of M is a split node of some hybrid
node h, and then that each side network attached to a
merge path of h contains leaves from only one Λ(R[ui]).
Next, observe that by concatenating side networks con-
taining leaves from the same Λ(R[ui]), M can be trans-
formed into a galled network M∗ consistent with T |u
such that each side network M∗

i attached to a merge
path of h is bijectively leaf-labeled by one Λ(R[ui]).
Construct a simple phylogenetic network M ′ from M∗

by replacing each M∗
i by a leaf labeled by αi. Then,

M ′ is consistent with T ′. �

Lemma 3.7. Let u be any node in R and suppose each
T |ui is consistent with a galled network Nui . If q = 2

then the galled network obtained by joining Nu1 and Nu2

to a new root node is consistent with T |u. If q ≥ 3 and
T ′ is consistent with a simple network N ′ with leaf set
{α1, α2, . . . , αq} then the galled network obtained from
N ′ by replacing each αi by Nui

is consistent with T |u.

Proof. Analogous to the proof of Lemma 8 in [14] (just
substitute T with T |u and each SNi with Λ(R[ui])). �

Theorem 3.2. The time complexity of Algorithm Fast-
GalledNetwork is O(n3).

We remark that FastGalledNetwork can be modified
to return all galled networks consistent with T by
utilizing all simple networks computed in Step 3.3.
However, this may take exponential time.

4 NP-hardness of the non-dense case

We now prove that the problem of inferring a galled
phylogenetic network which is consistent with a given
set of T rooted triplets, if one exists, is NP-hard when
T is not required to be dense. Our proof consists
of a polynomial-time reduction from the NP-complete
problem Set Splitting (see, e.g., [5]) to the decision
version of our problem. We use the same reduction
to prove that the closely related problem of inferring a
simple phylogenetic network which is consistent with a
given (non-dense) set of rooted triplets is also NP-hard.

Set Splitting: Given a set S = {s1, s2, . . . , sn} and a
collection C = {C1, C2, . . . , Cm} of subsets of S where
|Cj | = 3 for every Cj ∈ C, does (S, C) have a set
splitting, i.e., can S be partitioned into two disjoint
subsets S1, S2 such that for every Cj ∈ C it holds that
Cj is not a subset of S1 and Cj is not a subset of S2?

First, we describe the reduction from Set Splitting.
Given an instance (S, C), construct a non-dense set T of
rooted triplets having a leaf set L with L = {h, x, y} ∪
{sji | si ∈ S, 1 ≤ j ≤ m}, where h, x, y, and all sji are
new elements not belonging to S. Initially, let T consist
of the two rooted triplets ({x, h}, y) and ({y, h}, x).
Next, for each Cj ∈ C, write Cj = {sa, sb, sc} with

a < b < c and include three rooted triplets ({sja, h}, s
j
b),

({sjb, h}, sjc), and ({sjc, h}, sja) in T . Finally, for each si ∈
S, add m rooted triplets ({s1

i , s
2
i }, h), ({s2

i , s
3
i }, h), . . . ,

({sm−1
i , smi }, h), ({smi , s1

i }, h) and 2m rooted triplets
({s1

i , h}, x), ({y, h}, s1
i ), ({s2

i , h}, x), ({y, h}, s2
i ), . . . ,

({smi , h}, x), ({y, h}, smi ) to T . (In the reduction, C is

encoded by rooted triplets of the form ({sja, h}, s
j
b). The

purpose of the other rooted triplets is to force any galled
network N consistent with T to have a special structure;
see Lemma 4.1. Then, for each Cj = {sa, sb, sc} ∈ C, at

most two of sja, s
j
b, s

j
c can descend from the same clipped

merge path from the root in N , inducing a set splitting.)



Lemma 4.1. Suppose N is a galled network with leaf
set L which is consistent with T . Then: (1) the root r
of N is a split node; (2) one side network attached to
a merge path of r contains h but no other leaves; and
(3) h is a descendant of the hybrid node for r.

Theorem 4.1. Given any non-dense set T of rooted
triplets, it is NP-hard to determine if there exists a
galled network which is consistent with T . It is also
NP-hard to determine if there exists a simple network
which is consistent with T .

Proof. (Sketch.) First show that if (S, C) has a set
splitting then there exists a simple network consistent
with T . Next, use Lemma 4.1 to prove that if there
exists a galled network consistent with T then (S, C)
has a set splitting. Since a simple phylogenetic network
is always a galled network, the theorem follows. �

5 Approximating the maximum number of
consistent rooted triplets

This section studies the problem of constructing a galled
network consistent with the maximum number of rooted
triplets in T for any (not necessarily dense) given T .
Section 5.2 presents a polynomial-time approximation
algorithm for this problem which always outputs a
galled network consistent with at least a factor of 5

12
(> 0.4166) of the rooted triplets in T . On the negative
side, Section 5.1 shows that there exist inputs for which
any galled network can be consistent with at most a
factor of 0.4883 of the rooted triplets in T .

5.1 Inapproximability result Given any positive
integer n, fix T to contain all possible rooted triplets
for a leaf set L of size n, that is, T =

{
({a, b}, c),

({a, c}, b), ({b, c}, a) | a, b, c ∈ L
}
. For any phylogenetic

network N , let #N denote the number of rooted triplets
from T that are consistent with N .

Lemma 5.1. Let N be a galled network with Λ(N) = L.
If N contains a non-split node u with two children u1, u2

such that u is the root node or a child of a hybrid
node, then making u into a split node by removing the
edges (u, u1) and (u, u2), adding two new nodes v and w,
and inserting the edges (u, v), (u,w), (v, u1), (w, u2),
and (v, w) yields a galled network N ′ with #N ′ = #N .

Lemma 5.2. Let N be a galled network with Λ(N) = L.
Suppose N contains a merge path P of a hybrid node h,
c is the child of h, N [u] is a side network attached to P ,
u �= c, and u has two children u1, u2. If |N [u]| ≥ |N [c]|
then N can be transformed to a galled network N ′ with
#N ′ ≥ #N by letting N [u] and N [c] trade places. Else,
if |N [u]| ≤ |N [c]| then N can be transformed to a galled

network N ′ with #N ′ ≥ #N by removing N [u] and
instead attaching N [u1] and N [u2] to P , and removing
a hybrid edge in case u was a split node.

By repeatedly applying Lemmas 5.1 and 5.2, the
next lemma concludes that for any fixed n, at least
one of the galled networks N for a set of n leaves that
maximizes #N must be a caterpillar network. A galled
network N is called a caterpillar network if, for every
merge path P in N , all side networks attached to P
except for the one at the hybrid node are leaves.

Lemma 5.3. For any galled network N , there is a cater-
pillar network N ′ with Λ(N ′) = Λ(N) and #N ′ ≥ #N .

Now, we are ready to show the bound on the
approximation ratio. Let S(n) be the maximum value
of #N taken over all galled networks N with n leaves.

Lemma 5.4. S(n) = max1≤a≤n

{(
a
3

)
+ 2 ·

(
a
2

)
·(n−a) +

a ·
(
n−a

2

)
+ S(n− a)

}
.

Proof. (Sketch.) By Lemma 5.3, there is a caterpillar
network N that maximizes #N among all galled net-
works with n leaves. The recurrence for S(n) counts
the maximum number of rooted triplets in T consistent
with a caterpillar network with n leaves. �

Theorem 5.1. There is no approximation algorithm
with approximation ratio larger than 0.4883.

Proof. Define T (n) = |T | for any given positive inte-
ger n, i.e., T (n) = 3 ·

(
n
3

)
. Note that the approxima-

tion ratio can be at most minn∈Z+
S(n)
T (n) . By inserting

n = 1000 into the recurrence in Lemma 5.4, we obtain
S(1000) = 243383298. Hence, the approximation ratio

must be less than or equal to S(1000)
T (1000) < 0.4883. �

5.2 A polynomial-time 5
12 -approximation algo-

rithm Given any set T of rooted triplets, our approx-
imation algorithm called Approximate (shown in Fig-
ure 6) infers a galled network which is consistent with
at least 5

12 of the rooted triplets in T . We first describe
the algorithm and then present the analysis.

Initially, Approximate partitions the set of leaves L
into three subsets A,B,C so that none of them equals L
using an algorithm named LeafPartition (described
later). Then, for each X ∈ {A,B,C}, it recursively in-
fers a galled network KX by calling Approximate(T |X).
Next, for each X ∈ {A,B,C}, it generates a galled
network NetworkX such that the root node is a split
node whose hybrid node is the parent of KX , and the
other two networks in {KA,KB ,KC} \ {KX} are side
networks. Finally, it returns the best network among
NetworkA, NetworkB , and NetworkC .



To complete the description of the algorithm, we
need to explain how LeafPartition divides L into the
three subsets A,B,C. We partition L so that a special
condition 5N1 + 8N2 + 12N3 ≥ 5 · |T | holds, where for
i ∈ {0, 1, 2, 3}, we define Ni = |Zi(A,B,C)| and where
Zi(A,B,C) is the set defined as follows:

• Z0(A,B,C) = {({x, y}, z) ∈ T | x and z are in one
of the subsets A,B,C and y is in another};

• Z1(A,B,C) = {({x, y}, z) ∈ T | x, y, and z are in
one of the subsets A,B,C};

• Z2(A,B,C) = {({x, y}, z) ∈ T | x, y, and z are in
three different subsets among A,B,C};

• Z3(A,B,C) = {({x, y}, z) ∈ T | x and y are in one
of the subsets A,B,C and z is in another}.

Note that Z0(A,B,C) ∪ Z1(A,B,C) ∪ Z2(A,B,C) ∪
Z3(A,B,C) = T . As shown below, any A,B,C which
imply 5N1 + 8N2 + 12N3 ≥ 5 · |T | guarantee a good
approximation ratio. Algorithm LeafPartition (also
listed in Figure 6) is a greedy algorithm which performs
the partitioning. It first divides L into three subsets
arbitrarily, and then moves leaves (one at a time) from
one subset to another until score(A,B,C) cannot be
further improved, where we define score(A,B,C) =
4N1+7N2+12N3. If one of the subsets, say A, equals L
after finishing moving the leaves, then we select a leaf u

that maximizes p(u)
c(u) , where p(u) = |{({x, y}, u) ∈ T}|

and c(u) = |{({u, x}, y) ∈ T }|, and move u from A to
either B or C. (This step is to ensure that none of
the three subsets equals L.) It can be shown that this
extra move does not reduce the value of score(A,B,C).
Since score increases in every iteration of the while-
loop, Step 2.1 is performed at most 12·|T | times in total.

The next two lemmas are needed to analyze the
approximation ratio of Approximate.

Lemma 5.5. When Algorithm LeafPartition termi-
nates, we have 5N1 + 8N2 + 12N3 ≥ 5 · |T |.

Proof. (Sketch.) Write score(A,B,C) = x · N1 + y ·
N2 + z ·N3. For each of the six possible ways of moving
a leaf m from one of the subsets A,B,C to another, we
derive a formula to express how score is affected. After
LeafPartition is done, moving m will not increase the
value of score, so, e.g., score(A \ {m}, B ∪ {m}, C) −
score(A,B,C) ≤ 0. Then, by summing over all m ∈ A,
we obtain an inequality IAB . In the same way, we derive
five inequalities IAC , IBA, IBC , ICA, and ICB , and then
add them to obtain (z + 2y + x) ·N0 + (2z − 6x) ·N1 +
(2z− 6y) ·N2 + (2y + x− 5z) ·N3 ≤ 0. By substituting
N0 = |T | −N1 − N2 − N3 and replacing x = 4, y = 7,
z = 12, we get 5N1 + 8N2 + 12N3 ≥ 5 · |T |. �

Algorithm LeafPartition

Input: A set T of rooted triplets.

Output: A partition of L into three subsets A,B,C
such that none of them equals L and such
that 5N1 + 8N2 + 12N3 ≥ 5 · |T |.

1 Arbitrarily partition L into three subsets A,B,C.

2 while moving a leaf m from one subset to another
increases score(A,B,C) = 4N1 + 7N2 + 12N3 do

2.1 Move m accordingly.

endwhile

3 if one of the subsets A,B,C equals L then

3.1 Choose a leaf u that maximizes p(u)
c(u)

and move u
to another subset. Go to Step 2.

endif

4 return A,B,C.

End LeafPartition

Algorithm Approximate

Input: A set T of rooted triplets.

Output: A galled network that is consistent with at
least 5

12
· |T | of the rooted triplets in T .

1 Partition L into A,B,C using LeafPartition.

2 For X ∈ {A,B,C}, let KX = Approximate(T |X).

3 For X ∈ {A,B,C}, generate a galled network
NetworkX in which the root node is a split node
whose hybrid node h is the parent of KX , and the
other two networks in {KA,KB ,KC}\{KX} are side
networks attached to the merge paths of h.

4 return the NetworkX among X ∈ {A,B,C} that
is consistent with the most rooted triplets in T .

End Approximate

Figure 6: An approximation algorithm for computing a
galled network consistent with as many rooted triplets
in T as possible.

Let m(T ) be the number of rooted triplets in T con-
sistent with the network returned by Approximate(T ).

Lemma 5.6. If m(T |Z) ≥ q · |T |Z| for every Z ∈
{A,B,C} then m(T ) ≥ q ·N1 + 2

3 ·N2 + N3.

Proof. Every rooted triplet in Z2(A,B,C) is consistent
with two of NetworkA, NetworkB , and NetworkC , and
every rooted triplet in Z3(A,B,C) is consistent with
all of these three networks. So, NetworkX returned by
Approximate must be consistent with at least 2

3 ·N2+N3

of the rooted triplets in Z2(A,B,C) ∪ Z3(A,B,C).
Also, each of NetworkA, NetworkB , and NetworkC
is consistent with m(T |A) + m(T |B) + m(T |C) ≥
q ·(|T |A|+ |T |B|+ |T |C|) = q ·N1 of the rooted triplets
in Z1(A,B,C). Thus, in total, NetworkX is consistent
with at least q ·N1 + 2

3 ·N2 +N3 rooted triplets in T . �

Theorem 5.2. m(T ) ≥ 5
12 · |T |.



Proof. By induction on |L|. Base case (|L| = 3):
Steps 3 and 4 of Algorithm Approximate construct
a network consistent with at least 2/3 of the rooted
triplets in T , i.e., m(T ) ≥ 5

12 · |T |. Inductive case
(|L| > 3): Step 2 of Approximate recursively constructs
three networks KA,KB ,KC for T |A, T |B, and T |C,
respectively. By the induction assumption, m(T |X) ≥
5
12 · |T |X| for each X ∈ {A,B,C}. By Lemmas 5.5
and 5.6, m(T ) ≥ 5

12 ·N1 + 2
3 ·N2 + N3 ≥ 5

12 · |T |. �

Lastly, the algorithm’s running time is given by:

Theorem 5.3. The time complexity of Algorithm Ap-
proximate is O(n · |T |3).
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