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Abstract. Given an ordered labeled forest F (“the target forest”) and
an ordered labeled forest G (“the pattern forest”), the most similar
subforest problem is to find a subforest F ′ of F such that the distance
between F ′ and G is minimum over all possible F ′. This problem gener-
alizes several well-studied problems which have important applications
in locating patterns in hierarchical structures such as RNA molecules’
secondary structures and XML documents. In this paper, we present
efficient algorithms for the most similar subforest problem with forest
edit distance for three types of subforests: simple substructures, sibling
substructures, and closed subforests.

1 Introduction

An ordered labeled tree is a rooted tree in which the left-to-right ordering among
nodes is fixed and each node is labeled by a symbol from a given alphabet. An
ordered labeled forest is a sequence of ordered labeled trees. Ordered labeled
trees and forests are useful data structures for hierarchical data representation;
for example, XML documents are essentially ordered labeled trees [2] and RNA
molecules’ secondary structures without pseudoknots can be represented by or-
dered labeled forests [4, 7, 11] (see Fig. 1(a)–(c) for an example). Below, we
refer to ordered labeled trees and ordered labeled forests as trees and forests,
respectively.

In this paper, we study the following problem which we call the most similar
subforest problem: Given a forest F (“the target forest”) and a forest G (“the
pattern forest”), find a subforest of F which is the most similar to G. There
are many ways to define “subforest” and “most similar”; here, we consider three
alternative definitions of “subforest” and show how to solve all the resulting
problems efficiently when the forest edit distance [13, 16] is used to measure
similarity. Our techniques combine and extend the techniques of [4] and [16].

The most similar subforest problem generalizes several other problems. For
example, in the well-studied forest inclusion problem, the objective is to deter-
mine whether a given forest G can be obtained from another given forest F by
only deleting nodes from F , and if so, finding the smallest subforest of F in
� Supported by JSPS (Japan Society for the Promotion of Science).

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 377–388, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



378 J. Jansson and Z. Peng

which G is included (this problem and a constrained variant have been studied
in, e.g., [15, 8]). However, in case G is not included in F , one might still need
to find a subforest F ′ of F such that G is very similar to F ′, or to measure
how far from being included in F the pattern forest G is. This is precisely “the
most similar subforest problem”. As another example, consider the string pat-
tern problem: given two strings S and T , find a most similar (using edit distance)
substring of S to T . This problem has many applications to Stringology [3] and
Bioinformatics [12]. Since a string can be represented by a tree in which all non-
leaf nodes have exactly one child, the string pattern problem is just a special
case of the most similar subforest problem. 1

2 Preliminaries

Throughout this paper, we use the following notation and definitions.
Let F be any given forest. Denote the number of nodes in F by |F |, and define

deg(F ) (the degree of F ) as the maximum number of children over all nodes in F ,
and dp(F ) (the depth of F ) as the number of edges on the longest path from a
root node in F to a leaf of F . The set of leaves in F is referred to as L(F ). For
any node i ∈ F , define p(i) as the parent of i, and denote the label of i by label(i).
Any i1, i2 ∈ F are siblings if they have the same parent; if i1 �= i2 also holds then
i1 and i2 are proper siblings. To simplify the presentation, we assume that the
roots of the trees in F share an imaginary parent node, denoted by p(F ), which
is considered to belong to F and which is labeled by a special symbol ‘�’. Define
the key nodes of F as the set K(F ) = {p(F )∪i | i ∈ F has a left proper sibling}.
Clearly, it holds that |K(F )| ≤ |L(F )| (Lemma 6 in [16]).

Assume without loss of generality that the nodes of F are numbered according
to the order in which they are visited by a left-to-right postorder traversal of F .
Then, for any i1, i2 ∈ F , define i1 : i2 as the set of nodes whose numbers are
greater than or equal to i1 and less than or equal to i2. For any siblings i1 and i2
with i1 ≤ i2, define i1 · · i2 as the set of nodes consisting of i1, i2, and every
node which is both a right sibling of i1 and a left sibling of i2 (if i1 > i2, define
i1 · · i2 = ∅). Finally, for any i ∈ F , refer to the leftmost and rightmost siblings
of i by b(i) and e(i), respectively, and define m(i) as the smallest numbered
node in the subtree rooted at i (note that by the left-to-right postordering of
the nodes, m(i) will always be the leftmost leaf in this subtree).

Forest edit distance [13, 16]: Define the following three edit operations on F :
–Relabel: Change the label of any node in F .
–Delete: Delete any node i from F by making all of i’s children (if any) become

children of p(i) and then removing node i and the edge between i and p(i).
– Insert: Insert a new node with any label into F (the inverse operation of

delete).
1 In fact, the running time of our algorithm for finding a most similar simple substruc-

ture in Section 3.1 with parameters |L(F )| = 1 and |L(G)| = 1 matches the fastest
known algorithm for the string pattern problem.



Algorithms for Finding a Most Similar Subforest 379

See, e.g., [1,4,5,13,14,16] for examples of these operations. Next, define an edit
mapping M between two forests F and G as a set of pairs (i, j), where i ∈ F and
j ∈ G, such that for any two pairs (i1, j1), (i2, j2) ∈ M , the following properties
are satisfied: (1) i1 = i2 if and only if j1 = j2; (2) i1 is an ancestor of i2 if and
only if j1 is an ancestor of j2; and (3) i1 < i2 if and only if j1 < j2. For any
(i, j) ∈ M , we say that node i is linked with node j in M . Let M be an edit
mapping between F and G. Define its left-linked set as MF = {i | (i, j) ∈ M}
and its left-unlinked set as RF = F \ MF , and define its right-linked set MG

and right-unlinked set RG analogously. An edit mapping M between F and G
uniquely determines a sequence of delete and relabel operations on F and G such
that the resulting forests F ′ and G′ are identical. More precisely, every i∈RF

means “delete node i from F”, every j∈RG means “delete node j from G”, and
every (i, j)∈M with label(i)�=label(j) means “relabel i with the label of j”.

From here on, we assume that the nodes in the input forests F are G are
labeled by a fixed alphabet Σ where � /∈ Σ (recall that the symbol ‘�’ is already
in use). Moreover, we assume that ‘−’ is a special blank symbol not in Σ and that
we are given a fixed distance function γ : (Σ ∪{�, −})×(Σ∪{�, −}) → 	, where
	 is the set of real numbers and where for any a, b ∈ Σ, it holds that γ(a, a)≤0,
γ(a, b)≥0 if a �=b, γ(a, −)≥0, γ(−, b)≥0, and γ(−, −)>0. We also assume that
γ(a, �) = 0, γ(�, b) = 0, γ(�, �) = 0, γ(�, −) ≥ 0, γ(−, �) ≥ 0. For any i ∈ F
and j ∈ G, define f(i) = label(i) and g(j) = label(j). Then, for any i ∈ F and
j ∈ G, the distance between i and j is defined as γ(i, j)=γ(f(i), g(j)). Finally,
define the cost of an edit mapping M as:

δ(M) =
∑

(i,j)∈M

γ(f(i), g(j)) +
∑

i∈RF

γ(f(i), −) +
∑

j∈RG

γ(−, g(j)).

An optimal edit mapping between two forests F and G is an edit mapping with
the minimum cost: min{δ(M)} over all possible M . This cost is called the forest
edit distance between F and G, and is denoted by δ(F, G).

Subforest definitions: Let F be a forest. We define the following types of
subforests of F . For any node i in F , the subtree of F rooted at i is the subtree
consisting of i and all descendants of i, and is denoted by F [i]. For any siblings
i1, i2, the set of subtrees rooted at i1 · · i2 forms a closed subforest of F (see
also [4]). A simple substructure of F is any connected subgraph of F , and a
sibling substructure of F is a set of disjoint simple substructures of F whose
roots are siblings (not necessarily consecutive) in F . Finally, given any subset S
of the nodes in F , the restricted subforest F‖S is defined as the forest obtained
from F by deleting all nodes not in S. To illustrate these definitions, consider the
forest F in Fig. 1(c) and the subforests of F shown in Fig. 1(d). Here, F1=F‖S

is a restricted subforest for S = {3, 5, 6, 9, 13, 22, 31}, F2 is a simple substructure
of F , F3 is a closed subforest of F , and F4 is a sibling substructure of F .

We say that a most similar subforest (using any one of the above definitions
for “subforest”) of a forest F to a forest G is a subforest F ′ of F that minimizes
the forest edit distance δ(F ′, G) over all possible F ′. The most similar subforest
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Fig. 1. (a) A segment of the primary structure of the cherry small circular viroid-like
RNA molecule (accession number Y12833, GI:2347024) [10], (b) its secondary structure,
(c) a forest representation F of the secondary structure (see, e.g., [4,7,11] for details),
and (d) various types of subforests of F . The so-called Hammerhead motif [10], which
corresponds to the pattern specified by subforest F2, is marked in bold.

problem is: given two forests F and G, find a most similar subforest of F to G
(again, using any one of the above definitions for “subforest”).

Our contributions: In this paper, we show how to solve the most similar
subforest problem efficiently, where “subforest” means “simple substructure”,
“sibling substructure”, or “closed subforest”. The time and space complexities
of our algorithms are summarized in the next table.

Finding a Complexity Section
most similar:
Simple O(|F |·|G|·min{|L(F )|, dp(F )}·min{|L(G)|, dp(G)}) time, 3.1
substructure O(|F |·|G|) space
Sibling O(|F |·|G|·min{|L(F )|, dp(F )}·min{|L(G)|, dp(G)}) time, 3.2
substructure O(|F |·|G|) space
Closed O(|F |·|G|·|L(F )|·min{|L(G)|, dp(G)}) time, 3.3
subforest O(|F |·|G| + |L(F )|·dp(F )·|G| + |F |·|L(G)|·dp(G)) space

Related results: Tai [13] gave the first algorithm for computing the forest edit
distance between two given forests F and G. Zhang and Shasha [16] gave a more
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efficient algorithm for this problem running in O(|F | · |G| · min{|L(F )|, dp(F )} ·
min{|L(G)|, dp(G)}) time and O(|F |·|G|) space. (Actually, these papers assumed
F and G to be trees, but it is simple to extend their methods to forests.) More
recently, Klein [9], Chen [1], and Touzet [14] have developed algorithms that are
faster for certain kinds of inputs. Zhang and Shasha’s algorithm [16] computes
δ(F [i], G[j]) for all i ∈ F , j ∈ G, and can therefore find a subtree rooted at a
node in F which is the most similar to G, i.e., a most similar rooted subtree,
but none of the algorithms from [1,9,13,14,16] can be used directly to efficiently
find, e.g., a most similar simple substructure of F to G (the number of simple
substructures of F may be exponential in |F |, so it is not practical to try them
all separately).

An alternative measure of the similarity between two forests is the forest
alignment distance (see [7] for a formal definition). Although the edit distance
and alignment distance are equivalent for strings, they are not equivalent for
trees and forests [7]. The algorithm of Jiang et al. [7] for computing the forest
alignment distance runs in O(|F | · |G| ·(deg(F )+deg(G))2) time, and its running
time was improved for similar inputs in [5]. Note that the algorithm of Jiang et al.
computes an optimal global alignment between F and G, meaning that all nodes
of F and G contribute to the cost of the final solution. Recently, Höchsmann et
al. [4] gave an algorithm for computing an optimal local alignment between F
and G which finds a closed subforest F ′ of F and a closed subforest G′ of G
having the minimum forest alignment distance; a more efficient algorithm for
this problem (running in O(|F | · |G| · (deg(F ) + deg(G))2) time and O(|F | ·
|G| · (deg(F ) + deg(G))) space) along with some extensions to other types of
subforests were given in [6]. Höchsmann et al. [4] also considered the problem
of finding a closed subforest F ′ of F which minimizes the alignment distance
to G (i.e., the analogue of our “most similar closed subforest problem” but using
alignment distance instead of edit distance), which they called the small-in-large
closed subforest similarity problem, and showed how to solve it in O(|F | · |G| ·
deg(F ) ·deg(G) · (deg(F )+deg(G))) time and O(|F | · |G| ·deg(F ) ·deg(G)) space.

3 Algorithms for the Most Similar Subforest Problem

In this section, we present efficient algorithms for a finding a most similar subfor-
est (simple substructure, sibling substructure, and closed subforest, respectively)
of F to G. As a preprocessing step to all our algorithms below, we calculate and
store K(F ), K(G), L(F ), and L(G) according to their postorders in auxiliary
arrays in linear time. Moreover, m(i) for all i ∈ F , i ∈ G are also precomputed.

3.1 An Algorithm for Finding a Most Similar Simple Substructure

We first introduce some additional terminology. Let F be a forest. Define a new
edit operation called the cut operation on F as follows: for any node i in F ,
cutting node i means removing the entire subtree F [i] (along with the parent
edge of i if i is not a root node) from F at cost 0. Note that the cut operation
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differs from the previously defined delete operation since it removes all the nodes
in a subtree of F and is for free. For any two nodes u and v in F with u �= v,
we say that u and v are consistent if u is not a descendant of v and v is not a
descendant of u. A set C of nodes from F is consistent if every pair of nodes in C
is consistent. Denote the set of all consistent sets of nodes in F by C(F ), and for
any C ∈ C(F ), let F �C be the forest obtained from F by cutting all nodes in C.

Suppose F ′ is a simple substructure of F rooted at a node i. By definition, F ′

is a connected subgraph of F [i], which means that F ′ can be obtained from F [i]
by cutting all nodes in some (possibly empty) consistent set. We have:

Lemma 1. Let i be a node in a forest F . F ′ is a simple substructure of F rooted
at i if and only if F ′ = F [i] � C for some C ∈ C(F [i]).

To locate a most similar simple substructure of F to G, we look for a most
similar simple substructure of F [i] to G among all i ∈ F . By Lemma 1, this
is equivalent to finding a C ∈ C(F [i]) such that δ(F [i] � C, G) is minimized
since the cut operations do not contribute to the total cost of an edit mapping
between F [i] and G. (Observe that we are only allowed to cut nodes in F , and
not in G by the problem definition.) For any given forests F ′ and G′, define
Ψ(F ′, G′) = minC∈C(F ′){δ(F ′ � C, G′)}. Then the goal of our algorithm is to
compute mini∈F Ψ(F [i], G). Below, we extend the techniques of [16] to derive
some useful recurrences for computing certain values of Ψ .

First of all, it is easy to show that:

Lemma 2. Ψ(∅, ∅) = 0; Ψ(F, ∅) = 0; Ψ(∅, G) =
∑

j∈G γ(−, g(j)).

Proof. The first case is obvious since there is no cost for the empty mapping
between two empty forests. For the second case, suppose F = 〈T1, . . . , Tt〉. We
know that F � {r(T1), . . . , r(Tt)}) = ∅, where r(T ) for any tree T refers to the
root of T , so Ψ(F, ∅) = δ(∅, ∅) = 0. In the third case, we cannot cut any nodes,
so Ψ(∅, G) =

∑
j∈G γ(−, g(j)). ��

Next, because of the left-to-right postordering of the nodes, we have F [i] =
F‖m(i):i and G[j] = G‖m(j):j . To compute Ψ(F [i], G[j]), we compute Ψ(F‖m(i):x,
G‖m(j):y) for all x ∈ {m(i), . . . , i} and y ∈ {m(j), . . . , j}. Intuitively, when
considering nodes x and y, if the subtree F [x] is very dissimilar to G[y] then
it will be better to cut x (i.e., remove the entire subtree F [x] at once at no
additional cost), in which case F‖m(i):x becomes just F‖m(i):m(x)−1. On the
other hand, if F [x] is similar to G[y] then x and y should be linked, or one of x
and y should be deleted, and then the remaining parts of F [x] and G[y] linked.

Lemma 3. For any i ∈ F , j ∈ G, x ∈ {m(i), . . . , i}, and y ∈ {m(j), . . . , j},

Ψ(F‖m(i):x, G‖m(j):y) = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ψ(F‖m(i):m(x)−1, G‖m(j):y);
Ψ(F‖m(i):x−1, G‖m(j):y) + γ(f(x), −);
Ψ(F‖m(i):x, G‖m(j):y−1) + γ(−, g(y));
Ψ(F‖m(i):m(x)−1, G‖m(j):m(y)−1)+

Ψ(F‖m(x):x−1, G‖m(y):y−1) + γ(f(x), g(y)).
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Proof. Let C ∈ C(F‖m(i):x) be a consistent set that minimizes δ(F‖m(i):x � C,
G‖m(j):y), i.e., such that δ(F‖m(i):x �C, G‖m(j):y) = Ψ(F‖m(i):x, G‖m(j):y), and
let M be an optimal edit mapping between F‖m(i):x �C and G‖m(j):y. Consider
nodes x and y and the set C:

– x ∈ C: In this case, x is cut and so the whole subtree F [x] is removed at no
cost. We get Ψ(F‖m(i):x, G‖m(j):y) = Ψ(F‖m(i):m(x)−1, G‖m(j):y).

– x �∈ C: In this case, x is either deleted or linked with a node in G‖m(j):y,
and analogously for node y. There are three possible subcases:

• x �∈ MF : Then x is deleted from F‖m(i):x in the optimal solution given
by M , so Ψ(F‖m(i):x, G‖m(j):y) = Ψ(F‖m(i):x−1, G‖m(j):y) + γ(f(x), −).

• y �∈ MG: Then y is deleted from G‖m(j):y in the optimal solution given
by M , so Ψ(F‖m(i):x, G‖m(j):y) = Ψ(F‖m(i):x, G‖m(j):y−1) + γ(−, g(y)).

• x ∈ MF and y ∈ MG: Then nodes x and y are linked in the optimal
solution given by M . We get Ψ(F‖m(i):x, G‖m(j):y) = Ψ(F‖m(i):m(x)−1,
G‖m(j):m(y)−1) + Ψ(F‖m(x):x−1, G‖m(y):y−1) + γ(f(x), g(y)). ��

To simplify the implementation of the algorithm described below, rewrite the
recurrence relation in Lemma 3 as follows so that Ψ(F‖m(i):x, G‖m(j):y) can be
computed without needing to access the value of Ψ(F‖m(x):x−1, G‖m(y):y−1).

Lemma 4. For any i ∈ F , j ∈ G, x ∈ {m(i), . . . , i}, and y ∈ {m(j), . . . , j},
1. if m(i) = m(x) and m(j) = m(y) then:

Ψ(F‖m(i):x, G‖m(j):y) = min

⎧
⎪⎪⎨

⎪⎪⎩

Ψ(F‖m(i):m(x)−1, G‖m(j):y);
Ψ(F‖m(i):x−1, G‖m(j):y) + γ(f(x), −);
Ψ(F‖m(i):x, G‖m(j):y−1) + γ(−, g(y));
Ψ(F‖m(i):x−1, G‖m(j):y−1) + γ(f(x), g(y)).

2. else:

Ψ(F‖m(i):x, G‖m(j):y)= min

⎧
⎪⎪⎨

⎪⎪⎩

Ψ(F‖m(i):m(x)−1, G‖m(j):y);
Ψ(F‖m(i):x−1, G‖m(j):y) + γ(f(x), −);
Ψ(F‖m(i):x, G‖m(j):y−1) + γ(−, g(y));
Ψ(F‖m(i):m(x)−1, G‖m(j):m(y)−1) + Ψ(F [x], G[y]).

Proof. We prove this lemma by showing that the new recurrences are equivalent
to the one in Lemma 3. Note that in both cases, only the fourth term inside the
min-bracket differs from Lemma 3.

1. Since m(i) = m(x) and m(j) = m(y), we have {m(i), . . . , m(x)−1} = ∅ and
{m(j), . . . , m(y) − 1} = ∅, and hence Ψ(F‖m(i):m(x)−1, G‖m(j):m(y)−1) = 0.

2. The definition of Ψ implies that Ψ(F‖m(i):x, G‖m(j):y) ≤ Ψ(F‖m(i):m(x)−1,
G‖m(j):m(y)−1) + Ψ(F [x], G[y]). Thus, inserting the right-hand side of this
inequality into the min-expression in Lemma 3 does not affect its value,
i.e., Ψ(F‖m(i):x, G‖m(j):y) = min{. . . , Ψ(F‖m(i):m(x)−1, G‖m(j):m(y)−1) +
Ψ(F [x], G[y])} where . . . denotes the four terms in Lemma 3. Now, by case 1
above, Ψ(F [x], G[y]) ≤ Ψ(F‖m(x):x−1, G‖m(y):y−1) + γ(f(x), g(y)), so the
fourth term in the new min-expression is redundant and can be deleted. ��
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Main loop:
Input: A target forest F and a pattern forest G.
1: Ψ(∅, ∅) := 0.
2: for i1 := 1, . . . , |K(F )|} do
3: for j1 := 1, . . . , |K(G)| do
4: i := K(F )[i1]; j := K(G)[j1]; Call Compute Psi(i, j).
5: return mini∈F Ψ(F [i], G).

Procedure Compute Psi(i, j):
1: for x := m(i), . . . , i do Ψ(F‖m(i):x, ∅) := 0.
2: for y := m(j), . . . , j do Ψ(∅, G‖m(j):y) := Ψ(∅, G‖m(j):y−1) + γ(−, g(y)).
3: for x := m(i), . . . , i do
4: for y := m(j), . . . , j do
5: Calculate Ψ(F‖m(i):x, G‖m(j):y) according to Lemma 4.

Algorithm 1. Algorithm for finding a most similar simple substructure of F to G

For each i ∈ F , define A(i) (the nearest key node ancestor of i) as follows. If
i ∈ K(F ) then let A(i) = i; otherwise, let A(i) be the nearest ancestor of i which
belongs to K(F ). Define A(j) for any node j ∈ G analogously. We have:

Lemma 5. For any i ∈ F , m(i) = m(A(i)). For any j ∈ G, m(j) = m(A(j)).

We now describe the main algorithm (Algorithm 1) of this subsection. It calcu-
lates the minimum cost of an edit mapping between a simple substructure of F
and G. The main loop considers all pairs of indices i ∈ K(F ) and j ∈ K(G)
in bottom-up order, and for each such pair of indices (i, j), it calls a procedure
named Compute Psi to obtain Ψ(F‖m(i):x, G‖m(j):y) for all x ∈ {m(i), . . . , i}
and y ∈ {m(j), . . . , j} based on Lemmas 2 and 4. Finally, Algorithm 1 returns
mini∈F Ψ(F [i], G). The next theorem proves the correctness of this approach.

Theorem 1. Algorithm 1 correctly computes the cost of an optimal solution.

Proof. The correctness of all computed values follows from Lemmas 2 and 4. Let
x be a node in F such that the cost of an optimal solution is given by Ψ(F [x], G).
We need to prove that the algorithm is guaranteed to compute Ψ(F [x], G) even
if x �∈ K(F ). Observe that Ψ(F [x], G) = Ψ(F‖m(x):x, G) = Ψ(F‖m(A(x)):x, G) by
Lemma 5, and that x ∈ {m(A(x)), . . . , A(x)} because m(A(x)) = m(x) ≤ x and
x ≤ A(x). Since A(x) ∈ K(F ) by the definition of A(x) and since p(G) ∈ K(G),
the algorithm will always compute Ψ(F [x], G). ��

Theorem 2. Algorithm 1 can be implemented to run in O(|F |·|G|·min{|L(F )|,
dp(F )}·min{|L(G)|, dp(G)}) time and O(|F |·|G|) space.

Proof. Store Ψ(F [i], G[j]) for every i ∈ F and j ∈ G as soon as it is computed in
a table M1 of size |F |·|G|. Also, allocate (|F |+1)·(|G|+1) additional space M2 for
Compute Psi to temporarily store the computed values of Ψ(F‖m(i):x, G‖m(j):y)
for all x ∈ {m(i) − 1, . . . , i} and y ∈ {m(j) − 1, . . . , j} for its current (i, j).



Algorithms for Finding a Most Similar Subforest 385

(M2 is reused by successive calls to Compute Psi.) In total, the space complexity
is O(|F | · |G|).

To analyze the running time of this implementation, we first show that Step 5
in Compute Psi (evaluating the expression in Lemma 4) for any Ψ(F‖m(i):x,
G‖m(j):y) always takes O(1) time. Whenever Step 5 is performed, the values
of Ψ(F‖m(i):m(x)−1, G‖m(j):y), Ψ(F‖m(i):x−1, G‖m(j):y), Ψ(F‖m(i):x, G‖m(j):y−1),
Ψ(F‖m(i):x−1, G‖m(j):y−1), and Ψ(F‖m(i):m(x)−1, G‖m(j):m(y)−1) are already
stored in M2. Therefore, we can directly evaluate the expression in O(1) time if
m(i) = m(x) and m(j) = m(y). If m(i) < m(x) or m(j) < m(y), we also need
Ψ(F [x], G[y]) in O(1) time. This value has already been computed and stored
in M1 because m(i) < m(x) implies m(i) < m(A(x)) by Lemma 5 which in turn
implies A(x) < i, and m(j) < m(y) similarly implies A(y) < j; since at least one
of these two conditions is true, the algorithm will have called Compute Psi(A(x),
A(y)) previously and hence already have computed Ψ(F [x], G[y]). Thus, Step 5
in Compute Psi takes O(1) time, which means that the algorithm’s total running
time is O(

∑
i∈K(F )

∑
j∈K(G) |F [i]| · |G[j]|). By Lemma 7 in [16], this sum can be

rewritten as O(|F | · |G| ·min{|L(F )|, dp(F )}·min{|L(G)|, dp(G)}). The theorem
follows. ��

We remark that Algorithm 1 computes the cost of an optimal solution. Standard
traceback techniques can be applied to also return a corresponding optimal edit
mapping within the same asymptotic running time and space bounds.

3.2 An Algorithm for Finding a Most Similar Sibling Substructure

An algorithm for finding a most similar sibling substructure of F to G is given
here. It is based on Algorithm 1 since finding a most similar sibling substructure
is closely related to finding a most similar simple substructure, as shown next.

Suppose that F ′ = 〈T1, . . . , Ts〉 is a most similar sibling substructure of F
to G, where {T1, . . . , Ts} are simple substructures of F with roots {i1, . . . , is},
and where F ′ is non-empty. Then {i1, . . . , is} are siblings in F . Let S(i1) be the
set consisting of i1 and all siblings of i1 in F , and define C = S(i1)\ {i1, . . . , is}.
Note that C is a consistent set, i.e., C ∈ C(F ), using the notation from Sec-
tion 3.1. Consider the closed subforest F‖m(b(i1)):e(i1). It is clear that F ′ is also
a most similar sibling substructure of F‖m(b(i1)):e(i1) to G. (This claim comes
from cutting all nodes belonging to C from F‖m(b(i1)):e(i1) at zero cost.) So
δ(F ′, G) = Ψ(F‖m(b(i1)):e(i1), G), and the problem turns into finding the mini-
mum of Ψ(F‖m(b(i1)):e(i1), G) over all i1 ∈ F . By the left-to-right postordering
of the nodes, this is equivalent to computing mini∈F Ψ(F‖m(i):i−1, G). 2

We modify the implementation of Algorithm 1 given in the proof of
Theorem 2 as follows. Allocate O(|F |) extra space M3 to also store the values of
Ψ(F‖m(i):i−1, G) for all i ∈ F as they are computed. Then, change Step 5 of the
main loop to return the value mini∈F Ψ(F‖m(i):i−1, G) (found by checking M3)
instead. Clearly, the asymptotic time and space complexities are the same as for
2 In contrast, recall from Section 3.1 that finding a most similar simple substructure

is equivalent to computing mini∈F Ψ(F‖m(i):i, G).
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Algorithm 1. To prove the correctness of the modified algorithm, we show that
all values of Ψ(F‖m(i):i−1, G) for i ∈ F are indeed computed. Let i be any node
in F . Recall that A(i) is the nearest key node ancestor of i. Then m(i) = m(A(i))
by Lemma 5, and i ≤ A(i) and A(i) ∈ K(F ). According to the proof of The-
orem 2, for any k ∈ K(F ), the algorithm will compute Ψ(F‖m(k):x, G) for all
x ∈ {m(k), . . . , k}. Now, select k = A(i) and x = i − 1. We obtain:

Theorem 3. Given a target forest F and a pattern forest G, we can find a
most similar sibling substructure of F to G over all sibling substructures of F in
O(|F |·|G|·min{|L(F )|, dp(F )}·min{|L(G)|, dp(G)}) time and O(|F |·|G|) space.

3.3 An Algorithm for Finding a Most Similar Closed Subforest

We now provide an algorithm for finding a most similar closed subforest of F
to G. The algorithm of [16] as well as Algorithm 1 from Section 3.1 are not
suitable for this variant of the problem because if i1 and i2 are siblings in F with
i1 < i2, i1 ∈ K(F ) then the value of δ(F‖m(i1):i2 , G) is not calculated, whereas
F‖m(i1):i2 = F [i1 · · i2] might in fact be a most similar closed subforest of F
to G. Therefore, we develop a different technique in this subsection. The proofs
of Lemma 6, Lemma 7, and Theorem 4 below are similar to those of Lemma 2,
Lemmas 3–4, and Theorems 1– 2, respectively, and have been omitted due to
space constraints.

For any forest F , any leaf l ∈ L(F ), and any node x ∈ F , write l � x if l
is a descendant of x in F , and l �� x otherwise. Since m(x) is precomputed, we
can immediately test if l � x simply by checking if m(x) ≤ l ≤ x is true. The
next lemmas state how to efficiently calculate δ(F‖l:x, G‖m(j):y) where l ∈ L(F ),
x ∈ {l, . . . , |F |}, j ∈ K(G), and y ∈ {m(j), . . . , j}.

Lemma 6. δ(∅, ∅)=0; δ(F, ∅)=
∑

i∈F γ(f(i), −); δ(∅, G)=
∑

j∈Gγ(−, g(j)).

Lemma 7. For any l ∈ L(F ), j ∈ K(G), x ∈ {l, . . . , |F |}, y ∈ {m(j), . . . , j},
δ(F‖l:x, G‖m(j):y) is equal to the minimum of the following three values:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(F‖l:x−1, G‖m(j):y) + γ(f(x), −);
δ(F‖l:x, G‖m(j):y−1) + γ(−, g(y));⎧
⎪⎪⎨

⎪⎪⎩

δ(F‖l:x−1, G‖m(j):y−1) + γ(f(x), g(y)), if l � x and m(j) � y;
δ(∅, G‖m(j):m(y)−1) + δ(F‖l:x, G[y]), if l � x and m(j) �� y;
δ(F‖l:m(x)−1, ∅) + δ(F [x], G‖m(j):y), if l �� x and m(j) � y;
δ(F‖l:m(x)−1, G‖m(j):m(y)−1) + δ(F [x], G[y]), if l �� x and m(j) �� y.

Now we are ready to describe Algorithm 2 for finding a most similar closed sub-
forest of F to G. Its overall structure resembles that of Algorithm 1. For each
leaf l ∈ L(F ) and node j ∈ K(G), it calls a procedure named Compute Delta
which uses Lemma 7 to calculate δ(F‖l:x, G‖m(j):y) for all x ∈ {l, . . . , |F |} and
y ∈ {m(j), . . . , j}. To enable each evaluation of Lemma 7 to be performed in O(1)
time, the algorithm temporarily stores the computed values of δ(F‖l:x, G‖m(j):y)
for all x ∈ {l, . . . , |F |} and y ∈ {m(j), . . . , j} until the next call to Compute Delta
using O(|F | · |G|) space; on the other hand, all computed values of the form
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Main loop:
Input: A target forest F and a pattern forest G.
1: δ(∅, ∅) := 0.
2: for l1 := |L(F )|, . . . , 1 do
3: for j1 := 1, . . . , |K(G)| do
4: l := L(F )[l1]; j := K(G)[j1]; Call Compute Delta(l, j).
5: return min{δ(F‖m(i1):i2 , G) | i1, i2 are siblings in F}.

Procedure Compute Delta(l, j):
1: for x := l, . . . , |F | do δ(F‖l:x, ∅) := δ(F‖l:x−1, ∅) + γ(f(x), −).
2: for y := m(j), . . . , j do δ(∅, G‖m(j):y) := δ(∅, G‖m(j):y−1) + γ(−, g(y)).
3: for x := l, . . . , |F | do
4: for y := m(j), . . . , j do
5: Calculate δ(F‖l:x, G‖m(j):y) according to Lemma 7.

Algorithm 2. Algorithm for finding a most similar closed subforest of F to G

δ(F [x], G[y]), δ(F [x], G‖m(j):y) with m(j) � y, and δ(F‖l:x, G[y]) with l � x
are stored throughout the entire execution of the algorithm using an additional
O(|F |·|G| + |F |·|K(G)|·dp(G) + |L(F )|·dp(F )·|G|) space. Finally, the algorithm
returns min{δ(F‖m(i1):i2 , G) | i1 and i2 are siblings in F}.

Theorem 4. Given a target forest F and a pattern forest G, we can find a most
similar closed subforest of F to G over all closed subforests of F in O(|F |·|G|·
|L(F )|·min{|L(G)|, dp(G)}) time and O(|F |·|G|+ |L(F )|·dp(F )·|G|+ |F |·|L(G)|·
dp(G)) space.

4 Concluding Remarks

It is straightforward to generalize our algorithms to find a subforest F ′ of F and
a subforest G′ of G that are the most similar for any combination of the types
of subforests considered above. For example, if both F ′ and G′ should be simple
substructures then we can modify Algorithm 1 to allow nodes in G to be cut too.

An open question is: Is it possible to extend the algorithms in this paper to
other types of subforests? For example, one might consider gapped subforests
(introduced in [6]), where a gapped subforest of F is obtained by removing from
any closed subforest F ′ of F a set C of closed subforests such that no two closed
subforests in C have the same parent in F ′.
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