
Approximation Algorithms for Constructing
Evolutionary Trees from Rooted Triplets

Kazuya Maemura1 Jesper Jansson1

Hirotaka Ono2 Kunihiko Sadakane2 Masafumi Yamashita2

1,2Dept. of Computer Science and Communication Engineering, Kyushu University
(744 Motooka Nishi-ku Fukuoka 819-0395, Japan
e-mail:1{maemura, jj}@tcslab.csce.kyushu-u.ac.jp,

2{ono, sada, mak}@csce.kyushu-u.ac.jp)

Abstract. We study the evolutionary tree construction from rooted triplets from the viewpoint
of approximation algorithms. An evolutionary tree is a rooted tree structure that represents
the evolutionary interrelationship among various species in which species are represented by
leaves. A triplet is a small evolutionary tree which consists of three leaves. Given a set S of
species, and a set T of triplets whose leaves are from S, we construct a tree preserving (we
say “satisfying”) the evolutional divergence structures in T . It is shown that the problem of
determining whether there exits a tree satisfying all of the triplets in T is polynomially solvable,
while finding a tree that maximizes the number of satisfied triplets in T is NP-hard. For this
maximization problem, Wu proposed simple bottom-up heuristics called Algorithm BPMF [5].
In this paper, we study the performance of BPMF-type algorithms from both theoretical and
simulation-viewpoints.

1 Introduction

It is believed that all of the species on the
Earth evolved from only one common ances-
tor, and they have evolutionary relationship
among them. An evolutionary tree is a tree
structure showing the evolutionary interrela-
tionship among various species. Evolutionary
trees are rooted and unordered trees. The la-
beled leaves in an evolutionary tree represent
species, and the root represents the common
ancestor of all species, and internal nodes rep-
resent ancestors of species. In this paper, we
focus on the case that evolutionary trees are
binary. Figure 1 is an example of evolutionary
trees [6].

For a set of species, a standard way to
construct a evolutionary tree for the set is as
follows. First we construct evolutionary trees
for subsets of the species based on knowledges
of biology. Then we combine the trees into
an evolutionary tree for all the species. Here
we are faced with a difficulty that not all the
trees for the subsets can be combined into an
evolutionary tree due to errors. Therefore, in
this paper we consider a mathematical prob-
lem that given a set of species and a set of
trees for the species, construct an evolutionary
tree for the species which is consistent with as
many of the trees (a formal definition is given
in Section 2). We call the problem Maximum
Rooted Triplets Consistency problem (MRTC)
or the Maximum Inferred Local Consensus Tree
problem (MILCT).

Several studies are done for the MRTC.
Bryant [2] proved that the problem is NP-hard.
Gasieniec et al. [3] gave a factor-3 approxima-

Figure 1: A example of evolutionary tree

tion algorithm. However, because the algo-
rithm outputs only caterpillar trees, actual ap-
proximation ratio is not good. Wu [5] proposed
heuristic algorithms which have better approx-
imation ratios than [3] in practice, though the
worst-case ratios are not analyzed.

The contributions of this paper are:

• We show that one of the six heuristic al-
gorithms proposed in [5] has approxima-
tion ratio 3.

• We give some experimental results on ap-
proximation ratio of the algorithms. The
results show that the algorithm that is
analyzed in this paper has better approx-
imation ratio for real inputs than that
of [3], though they have the same worst-
case ratio.

• We give a heuristic algorithm which im-
proves the approximation ratio in prac-
tice.

The rest of this paper is organized as fol-
lows. In Section 2 we explain triplets and evo-
lutionary tree construction problems. In Sec-
tion 3 we describe heuristic algorithms which
Wu proposed [5]. Section 4 and 5 are our con-
tributions. In Section 4 we show the approx-
imation ratio of Algorithm BPMF, in Section
5we propose improved algorithm of Algorithm
BPMF and show experimental results. Section
6 gives conclusion of this paper.

2 Preliminaries

First we explain rooted triplets and evolution-
ary tree construction problems as preliminar-
ies.

2.1 Rooted Triplet

A rooted triplet is an evolutionary tree which
consists of three leaves. Let x, y and z be
species, rooted triplet is described as Figure 2.
This tree is described such as {x, y} < {x, z}
or {x, y} < {y, z}. In this description, {x, y}
denotes an internal node as the lowest com-
mon ancestor of x and y. {x, z} or {y, z}
also denotes the lowest common ancestors of
x and z or y and z, respectively Moreover

Figure 2: A example of triplet

{x, y} < {x, z} means that {x, y} is a proper
descendant of {x, z} or {y, z}. In other words,
when we think x, y and z on evolutionary pro-
cess, firstly z is divergent from the root and
next x and y are divergent.

{x, y} < {x, z} or {x, y} < {y, z} are de-
scribed as ({x, y}, z) for short.

2.2 Tree Construction Problems

Now we explain evolutionary tree construction
problems. Let S be a finite set of species, and
T be a finite set of rooted triplets whose three
different leaves are elements of S; n denotes
cardinality of S, and m denotes cardinality of
T . As inputs of evolutionary tree construction
problems, we are given two sets, S and T .

We treat the evolutionary interrelationship
of species on triplets in T as constraints for
constructing trees. In our study, our problem
is to construct a tree satisfying constraints in T
made of S. If evolutionary interrelationship of
three species of a triplet Ti in T correspond to
the interrelationship of same species of a con-
structed tree, we say the tree “satisfies” triplet
Ti.

Several studies are done for constructing
evolutionary trees so far. It is shown that the
problem of determining whether there exists a
tree satisfying all of the triplets in T is poly-
nomially solvable [1], while finding a tree that
maximizes the number of satisfied triplets in
T is NP-hard [2, 4]. This problem is called
Maximum Rooted Triplets Consistency prob-
lem (MRTC) or the Maximum Inferred Local
Consensus Tree problem (MILCT), and stud-
ied in the field of approximation algorithm.

3 Algorithm BPMF

In this section, we explain approximation algo-
rithm in [5], named Algorithm Best Pair Merge

First. As the first step in this section we show
a simple process of Algorithm Best Pair Merge
First, we call this Algorithm BPMF for short.

Let τ be a set of trees. In the initial con-
dition of τ , each element of τ is only single
node (it becomes a leaf of trees) labeled x,
where x is an element of S. In other words,
τ contains n nodes uniquely labeled n species.
In Algorithm BPMF, we construct new trees
made from trees in τ . Until τ contains only one
tree, we merge two trees in τ and construct a
new tree at each iteration.

The question is how we choose two trees to
merge from τ . For this purpose author defines
a function e score(V (ta), V (tb)).

Definition3.1: V (ta) denotes set of leaves
which tree ta has.

Let ta, tb be elements of τ , this function
evaluates the score of merging trees ta and tb.
At each iteration, we choose the two trees with
maximum score from τ and merge them. The
details of the algorithm is the following.

Algorithm Best Pair Merge First
(1) τ = {tx|1 ≤ x ≤ n, tx is a single node

labeled x}
(2) while |τ | > 1 do
(2-1) Choose two trees ta and tb from τ which

maximize e score(V (ta), V (tb)) among all
pairs of two trees in τ.

(2-2) Merge ta and tb by adding a root of a
new tree as a common ancestor, and
replace ta and tb by the new tree.

endwhile
(3) Return the tree in τ

Next we show the function e score defined
in [5].

Definition3.2: The function e score is de-
fined as combinations of below three functions.
• w(V (ta), V (tb)) = {({x, y}, z) ∈ T |x ∈ V (ta),
y ∈ V (tb), z ∈ S\(V (ta)∪V (tb))} : this means
the set of triplets satisfying the new tree when
ta and tb are merged.
• p(V (ta), V (tb)) = {({x, z}, y), ({y, z}, x) ∈
T |x ∈ V (ta), y ∈ V (tb), z ∈ S\(V (ta)∪V (tb))}
:this means the set of triplets remaining the
new tree when ta and tb are merged.
• t(V (ta), V (tb)) = {({x, y}, z) ∈ T |x ∈ V (ta),

Ratio-type
if-penalty 0 1 2

0 w w
w+p

w
t

1 w − p w−p
w+p

w−p
t

Table 1: A table of e score for combinations
of parameters.

y ∈ V (tb), z ∈ S}
Author sets two parameter if-penalty and

ratio-type. If-penalty is set 0 or 1: if if-
penalty is 0, we use |w(V (ta), V (tb))|, other-
wise we use |w(V (ta), V (tb))|−|p(V (ta), V (tb))|.
Ratio-type is set 0, 1 or 2: we use respectively
1,|w(V (tx), V (ty))| + |p(V (tx), V (ty))| or
|t(V (tx), V (ty))| for each value. This two pa-
rameters give six scoring functions. For differ-
ent combinations of the two parameters, the
function e score is defined as Table 1. In this
table, |w(V (tx), V (ty))|, |p(V (tx), V (ty))| and
|t(V (tx), V (ty))| are described as w, p and t for
short.

Algorithm BPMF merges two trees in τ
and heuristically constructs a tree which sat-
isfies as many of the triplets as possible in
bottom-up manner. In [5], there are no men-
tions about time complexity and approxima-
tion ratio of Algorithm BPMF. Thus we need
to study about this two topics.

Here we shortly mention the time complex-
ity. At each iteration, the number of times we
compute e score is (|τ |2). Then number of the
iterations is n − 1; this means the number of
internal nodes of constructed trees. Therefore
the total sum of the number of times in all
iterations is

n∑
l=2

(l

2

)
=

1
6
(n − 1)n(n + 1).

The time complexity of computing an e score
is at most O(m). Therefore the time complex-
ity of Algorithm BPMF is O(mn3).

4 Approximation Ratio of
Algorithm BPMF

We pointed out the approximation ratio of Al-
gorithm BPMF is not analyzed in [5]. In this

section, we discuss and compute the approxi-
mation ratio of Algorithm BPMF. We derive
approximation ratio of Algorithm BPMF using
how to compute approximation ratio of Algo-
rithm Heuristic1 [3]. Here we shortly mention
approximation ratio in MRTC.

Definition4.1: Let a function Sat(R) be the
number of triplets tree R which satisfies an
instance S and T .

Let ROpt be the tree of optimal solution,
and RApp be a tree constructed in approxima-
tion algorithm. Then the approximation ratio
of MRTC is max{ Sat(ROpt)

Sat(RApp)}.
We compute the approximation ratio of Al-

gorithm BPMF referring [3]. However, we could
compute approximation ration in the case that
e score is if-penalty=0 and ratio-type=1.

Before discussing the approximation ratio
of Algorithm BPMF, we have some proposi-
tions about the function e score. We use these
propositions later to discuss the approximation
ratio.

Lemma 4.2: We assume that we merge ta and
tb(ta, tb ∈ τ) at an iteration. Then e score af-
ter this iteration does not contain triplets in
e score(V (ta), V (tb)). In other words, it is un-
necessary that we count triplets in
e score(V (ta), V (tb)) to compute e score after
this iteration.
Proof : We use the function e score for evalu-
ation when merging two different trees of τ :
triplets in w(V (ta), V (tb)) or p(V (ta), V (tb))
are contained if a element of V (ta) and a ele-
ment of V (tb) are in different trees of τ . Merg-
ing ta and tb means that V (ta) and V (tb) are
united and become the set of leaves the new
tree has. Therefore, above holds. ¤

For any iteration, let T ′ be the set of triplets
which are contained in e score(V (ta), V (tb))
until all of the trees in τ at this iteration are
constructed. By the definition of w and p, any
triplet in T ′ has at least two leaves from the
same tree of τ . Therefore, by Lemma 4.2 the
following corollary is derived.

Corollary 4.3: Any triplet in T\T ′ consists
of three leaves which belong to different trees
in τ .

Next, we have some definitions.

Definition4.4: For a triplet ({x, y}, z), where
all of the leaves are different, a pair of species
{x, y} is said to be a lower-lower-pair in the
triplet, and {x, z}(or {y, z}) are said to be a
lower-upper-pair in the triplet.
Definition4.5: We define two sets.

LL(k, l; T) := {({k, l}, z) ∈ T}
LU(k, l; T) := {({x, y}, z) ∈ T |(x = k, z = l)

∨(y = k, z = l) ∨ (x = l, z = k)

∨(y = l, z = k)}

Lemma 4.6: For any instance S and T , at
each iteration of the algorithm the following
holds. In initial condition, T ′ is empty set.

P

k,l∈S |LL(k, l; T\T ′)|
P

k,l∈S |LL(k, l; T\T ′)| +
P

k,l∈S |LU(k, l; T\T ′)| =
1

3

Proof : For any triplet, there exists a pair
of species which is a lower-lower-pair and two
pairs of species which are lower-upper-pairs.
Therefore, for all pairs of species in S the ratio
between the total number of triplets in LL(k, l)
and the total number of triplets LU(k, l) is al-
ways 1:2. ¤

In particular, Lemma 4.6 implies that given
a non empty set S and T , at any iteration there
always exists a pair of species for which

|LL(k,l;T\T ′)|
|LL(k,l;T\T ′)|+|LU(k,l;T\T ′)| is equal to or more
than 1

3 .

Lemma 4.7: For any instance S and T , at
any iteration the following holds.

X

k∈V (ta),l∈V (tb)

|LL(k, l; T\T ′)| = |w(V (ta), V (tb))|

X

k∈V (ta),l∈V (tb)

|LU(k, l; T\T ′)| = |p(V (ta), V (tb))|

Proof : First, we discuss above formula. We
can describe |w(V (ta), V (tb))| and∑

k∈V (ta),l∈V (tb)
|LL(k, l; T\T ′)| in detail as the

following.

|w(V (ta), V (tb))|
= |{({x, y}, z) ∈ T |x ∈ V (ta), y ∈ V (tb),

z ∈ S\(V (ta) ∪ V (tb))}|
X

k∈V (ta),l∈V (tb)

|LL(k, l; T\T ′)|

=
X

k∈V (ta),l∈V (tb)

|{({k, l}, z) ∈ T\T ′}|

= |{({x, y}, z) ∈ T\T ′|x ∈ V (ta), y ∈ V (tb)}|

Both w(V (ta), V (tb)) and
∪

k∈V (ta),l∈V (tb)

LL(k, l;T\T ′) are sets of triplets in which the

elements of the lower-lower-pairs are from V (ta)
and V (tb).

Firstly we prove that w(V (ta), V (tb)) ⊆∪
k∈V (ta),l∈V (tb)

LL(k, l; T\T ′). By Corollary-
4.3, T\T ′ contains triplets which consist of three
leaves in three different trees in τ , and triplets
in w(V (ta), V (tb)) consist of three leaves from
three trees in τ . As a result, all the triplets in
w(V (ta), V (tb)) are elements of

∪
k∈V (ta),l∈V (tb)

LL(k, l; T\T ′).
Now we discuss the opposite. By Corol-

lary 4.3, a leaf z of ({x, y}, z) is an element of
S\(V (ta) ∪ V (tb)). As a result, all the triplets
in

∪
k∈V (ta),l∈V (tb)

LL(k, l; T\T ′) are elements
of w(V (ta), V (tb)).

Thus, we can derive
∑

k∈V (ta),l∈V (tb)

|LL(k, l; T\T ′)| = |w(V (ta), V (tb))|.
We can also derive

∑
k∈V (ta),l∈V (tb)

|LU(k, l; T\T ′)| = |p(V (ta), V (tb))|, in the same
way. ¤
Theorem 4.8: Algorithm BPMF(e score is
if-penalty=0 and ratio-type=1) constructs a
tree which satisfies a subset of T whose total
number of triplets satisfied is at least m

3 .
Proof : By Corollary 4.3, we can treat a tree
in τ as a labeled leaf or species. Therefore,
for all the triplets in T\T ′, if both Tk and Tl

(Tk, Tl ∈ T\T ′) have leaves from the same tree
in τ , we can describe the leaves as a leaf equiv-
alent to the tree: for example, x denotes all of
the leaves tx has. Therefore, we can describe∑

k∈V (tx),l∈V (ty) |LL(k, l;T\T ′)| as
|LL(x, y;T\T ′)|，and

∑
k∈V (tx),l∈V (ty)

|LU(k, l; T\T ′)| as |LU(x, y; T\T ′)|.
By Lemma 4.6 ,Lemma 4.7 and how to

choose ta and tb in step (2-1) of the algorithm,
the ratio |w(V (ta),V (tb))|

|w(V (ta),V (tb))|+|p(V (ta),V (tb))| is at least
1
3 . The new tree satisfies all of the triplets
which a pair {x, y} is a lower-lower-pair in T\T ′.

Let T ′′ be the set whose elements are triplets
which consist of x, y and other species in T\T ′.
Thus, every time the algorithm has performed
in step (2-2), the new tree satisfies a subset of
T ′′ whose total number is at least 1

3 · |T ′′|.
Let RBPMF be q tree constructed by Al-

gorithm BPMF. Sat(RBPMF) is the sum of
the size of w at each iteration. Therefore,
Sat(RBPMF) is equal to or more than m

3 . ¤
Algorithm BPMF constructs a tree which

satisfies a subset of T whose total number of
triplets satisfied is equal to or more than m

3 .
Therefore, the approximation ratio of Algo-
rithm BPMF is derived by the following propo-
sition.
Proposition 4.9: The approximation ratio of
Algorithm BPMF (e score is if-penalty=0,
ratio-type=1) is 3.
Proof : Let RBPMF be a tree constructed by
Algorithm BPMF. Sat(ROpt) is at most m,
and Sat(RBPMF) is at least m

3 . Thus, the fol-
lowing holds.

Sat(ROpt)

Sat(RBPMF)
≤ m

m/3
= 3

By above formula, the approximation ratio of
Algorithm BPMF is 3. ¤

At last of this section, we discuss this ap-
proximation ratio in Proposition 4.10.

Proposition 4.10: There exists no tight ex-
ample such that the approximation ratio of Al-
gorithm BPMF (e score is if-penalty=0 and
ratio-type=1) is 3.
Proof : We assume that there is a tight exam-
ple, so Sat(ROpt) =3·Sat(RBPMF) = m

(Sat(ROpt)
3 = Sat(RBPMF) ≥ m

3).
Let two leaves be x and y in the optimal

tree. We discuss w(x, y) and p(x.y) is the fol-
lowing.

w(x, y) = {({x, y}, z) ∈ T |c ∈ S}
p(x, y) = {({x, z}, y), ({y, z}, x) ∈ T |c ∈ S}

From the assumption, e score(x, y) must
be 1

3 . In addition, the optimal tree satisfies all
the triplets in w(x, y) and p(x, y). However,
triplets in w(x, y) conflict triplets in p(x, y),
and there exists no trees which satisfies all the
triplets in e score(x, y). This contradicts the
assumption. ¤

5 Improved Algorithm

In this section, we propose an improved algo-
rithm which we improve Algorithm BPMF. In
addition, we show experimental results for Al-
gorithm BPMF, the improved algorithm and
Heuristic1, which implies a improved algorithm
is equal to or better than original algorithm in
practice.

Figure 3: Examples of trees constructed by
tx, ty and tx.

5.1 Algorithm BPMR

In each iteration of Algorithm BPMF, we cho-
ose the two trees which maximize function the
e score value from τ , and merge them to con-
struct a new tree: in this algorithm we heuris-
tically construct a tree. Consequently, we as-
sume that first tx and ty are merged and next
the tree and tz are merged, so this tree is not
always the tree which satisfies the most triplets.
More accurately, it is possible that a tree in
Figure 3 (2) or (3) is better than a tree Fig-
ure 3(1) constructed in Algorithm BPMF. An
improved algorithm which we propose is an al-
gorithm which this point are considered.

Now we explain the improved algorithm.
The main process of the algorithm is the same
as Algorithm BPMF: a finite set τ and its ini-
tial condition, and function e score to merge
two trees in τ .

At each iteration in the algorithm, we as-
sume that tx and ty are the two trees maximize
e score; tx consists of two subtrees tx1 and tx2,
ty also consists of two subtrees ty1 and ty2. At
this condition, we compute the value of the
function Sat (Definition 4.1) for each tree of
Figure 4. We reconstruct the tree such that
maximum value of Sat in the five trees: in Al-
gorithm BPMF, we can regard only the tree
tα is selected. This improved algorithm re-
constructs trees, so we named this Algorithm

Figure 4: Trees: tα, tβ1, tβ2, tγ1, tγ2

Best Pair Merge with Reconstruction; Algo-
rithm BPMR for short. This algorithm’s more
detailed process is below.

Algorithm Best Pair Merge
with Reconstruction

(1) τ = {tx|1 ≤ x ≤ n, tx is a single node
labeled x}

(2) while |τ | > 1 do
(2-1) Choose two tree ta and tb from τ which

maximize e score(V (ta), V (tb)) among all
pairs of two trees in τ .

(2-2) Compute Sat(tα), Sat(tβ1), Sat(tβ2),
Sat(tγ1) and Sat(tγ2).

(2-3) Construct the tree such that the Sat
value is maximum.

(3) Return the new tree in τ .

We mention the time complexity of Algo-
rithm BPMR. The total number of times that
computations for reconstructing trees is n− 1.
At the worst case of computing Sat value, the
time complexity is O(mn) by trees’ height: in
the case of complete binary tree, it is O(mlogn).
Therefore, by Section3 the time complexity of
Algorithm BPMR is O(mn3).

Proposition 5.1: Let RBPMF or RBPMR be
a tree constructed by Algorithm BPMF or
BPMR. The following holds.

Sat(RBPMF) ≤ Sat(RBPMR)

Proof : At each iteration, we assume that
e score(V (ta), V (tb)) is max. We can consider
the following two cases.
(i) There is no reconstruction.

In this case, tree tα in Figure 4 is con-
structed. It is the same as the tree in Al-
gorithm BPMF, so Sat(RBPMF) is equal to
Sat(RBPMR).
(ii) There is reconstruction.

At each iteration, the two trees which are
constructed in Algorithm BPMF or BPMR are
determined only by the value of function e score.
In addition, the arguments of function e score
are sets of leaves which the two trees have.
It is obvious that V (tα) = V (tβ1) = V (tβ2) =
V (tγ1) = V (tγ2). Therefore, the arguments for
e score are the same whether reconstruct tα or
not. Thus, RBPMR and RBPMF are different
only at the subtree.

The difference between Sat(RBPMF) and
Sat(RBPMR) is the difference between the num-
ber of triplets in the original and reconstructed
trees. We presume that tα is reconstructed, so
Sat(RBPMR) is more than Sat(RBPMF).

By (i) and (ii), we can prove that
Sat(RBPMF) ≤ Sat(RBPMR) holds. ¤

5.2 Experimental Comparison

We had experiments to compare the perfor-
mance of Algorithms BPMF, BPMR and Heuris-
tic1.

For n = 15, we experimented that m =50,
100, 200, 300. We randomly generated integer
numbers from 0 to 14 as species, and made
triplets from groups of three species generated
randomly. We experimented ten times for each
m.

For any instance S and T , ROpt and RApp

respectively denote trees of optimal and the
constructed one by approximation algorithm.
Table 2 and 3 summarize the experimental re-
sults. For example, BPMF01 denotes the al-
gorithm with if-penalty=0 and ratio-type=1.
The each value in Table 2 means the average
value of Sat(ROpt)

Sat(RApp) for the same m of each ap-
proximation algorithms. The each value in Ta-
ble3 means the worst value of
Sat(ROpt)
Sat(RApp) for same m.

m 50 100 200 300
BPMF00 1.199 1.222 1.190 1.199
BPMF10 1.106 1.108 1.094 1.091
BPMF01 1.097 1.117 1.084 1.076
BPMF11 1.103 1.113 1.082 1.077
BPMF02 1.254 1.320 1.254 1.237
BPMF12 1.099 1.120 1.087 1.082
BPMR00 1.190 1.207 1.187 1.194
BPMR10 1.106 1.100 1.083 1.079
BPMR01 1.097 1.111 1.077 1.073
BPMR11 1.103 1.105 1.075 1.076
BPMR02 1.225 1.250 1.186 1.196
BPMR12 1.099 1.111 1.079 1.080
Heuristic1 1.192 1.169 1.137 1.118

Table 2: The comparison of experimental re-
sults(average)

m 50 100 200 300
BPMF00 1.357 1.327 1.306 1.293
BPMF10 1.226 1.173 1.158 1.145
BPMF01 1.226 1.192 1.119 1.114
BPMF11 1.226 1.192 1.119 1.131
BPMF02 1.500 1.452 1.429 1.345
BPMF12 1.188 1.192 1.130 1.167
BPMR00 1.310 1.300 1.306 1.293
BPMR10 1.226 1.173 1.137 1.145
BPMR01 1.226 1.192 1.119 1.114
BPMR11 1.226 1.192 1.119 1.131
BPMR02 1.500 1.370 1.286 1.288
BPMR12 1.188 1.192 1.130 1.167
Heuristic1 1.333 1.283 1.178 1.168

Table 3: The comparison of experimental re-
sults(worst)

We cannot decide which is the best func-
tion of Algorithm BPMF or BPMR, but
e scores of BPMF01 or 11 are roughly bet-
ter function. In the experiments, Algorithm
BPMF01 and 11 perform better than Algo-
rithm Heuristic1 for most instances.

6 Conclusions

In this paper, we computed the approximation
ratio of the approximation algorithm named
Algorithm BPMF proposed in [5], and pro-
posed an improved algorithm of Algorithm BP-
MF named Algorithm BPMR. In addition, we
showed experimental results for the algorithms.
The most important contribution of this paper
is a study of the approximation ratio of Algo-
rithm BPMF which has never been studied so
far. However, there is room for this algorithm
to discussion.

A further direction of this study is analy-
sis of exact approximation ratio. Furthermore,
we will compute approximation ratio of Algo-
rithm BPMF for other e score’s, and propose
other approximation algorithms and analyze
its approximation ratio.

Acknowledgment

This work is supported in part by the Grant-
in-Aid of the Ministry of Education, Science,
Sports and Culture of Japan.

References

[1] A.V.Aho, Y.Sagiv, T.G.Szymanski and
J.D.Ullman, “Inferring a tree from lowest
common ancestors with an application to
the optimization of relational expressions,”
SIAM Journal of Computing, Vol.10, No.3,
pp.405-421, 1981.

[2] D.Bryant, “Building Trees, Hunting for Trees,
and Comparing Trees: Theory and Methods
in Phylogenetic Analysis,” PhD thesis, Uni-
versity of Canterbury , Christchurch, New
Zealand, 1997.

[3] L.Gasieniec, J.Jansson, A.Lingas and
A.Östlin, “On the Complexity of Con-
structing Evolutionary Trees,” Journal of
Combinatorial Optimization, Vol.3, pp.183-
197, 1999.

[4] J.Jansson, “On the Complexity of Inferring
Rooted Evolutionary Trees,” Proceedings of
the Brazilian Symposium on Graphs, Algo-
rithms, and Combinatorics (GRACO 2001),
Electronic Notes in Discrete Mathematics,
Vol. 7, pp. 121-125, Elsevier B.V., 2001.

[5] B.Y.Wu, “Constructing the Maximum Con-
sensus Tree from Rooted Triples,” Journal
of Combinatorial Optimization, Vol.8, No.1,
pp.29-39, 2004.

[6] http://www.christiananswers.net/home.html

