
Theoretical Computer Science 838 (2020) 238–249
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Exact algorithms for the repetition-bounded longest common

subsequence problem ✩

Yuichi Asahiro a, Jesper Jansson b, Guohui Lin c, Eiji Miyano d,∗, Hirotaka Ono e,
Tadatoshi Utashima d

a Kyushu Sangyo University, Fukuoka, Japan
b The Hong Kong Polytechnic University, Kowloon, Hong Kong
c University of Alberta, Edmonton, Canada
d Kyushu Institute of Technology, Iizuka, Japan
e Nagoya University, Nagoya, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 April 2020
Received in revised form 18 June 2020
Accepted 29 July 2020
Available online 4 August 2020

Keywords:
Repetition-bounded longest common
subsequence problem
Repetition-free
Exponential-time exact algorithms
Dynamic programming
NP-hardness
APX-hardness

In this paper, we study exact, exponential-time algorithms for a variant of the classic
Longest Common Subsequence problem called the Repetition-Bounded Longest Common
Subsequence problem (or RBLCS, for short): Let an alphabet S be a finite set of symbols
and an occurrence constraint Cocc be a function Cocc : S → N , assigning an upper bound
on the number of occurrences of each symbol in S . Given two sequences X and Y over
the alphabet S and an occurrence constraint Cocc , the goal of RBLCS is to find a longest
common subsequence of X and Y such that each symbol s ∈ S appears at most Cocc(s)
times in the obtained subsequence. The special case where Cocc(s) = 1 for every symbol
s ∈ S is known as the Repetition-Free Longest Common Subsequence problem (RFLCS)
and has been studied previously; e.g., in [1], Adi et al. presented a simple (exponential-
time) exact algorithm for RFLCS. However, they did not analyze its time complexity in
detail, and to the best of our knowledge, there are no previous results on the running
times of any exact algorithms for this problem. Without loss of generality, we will assume
that |X| ≤ |Y | and |X | = n. In this paper, we first propose a simpler algorithm for RFLCS
based on the strategy used in [1] and show explicitly that its running time is O (1.44225n).
Next, we provide a dynamic programming (DP) based algorithm for RBLCS and prove
that its running time is O (1.44225n) for any occurrence constraint Cocc , and even less in
certain special cases. In particular, for RFLCS, our DP-based algorithm runs in O (1.41422n)

time, which is faster than the previous one. Furthermore, we prove NP-hardness and APX-
hardness results for RBLCS on restricted instances.

© 2020 Elsevier B.V. All rights reserved.

✩ A preliminary version of the paper appeared in Proceedings of the 13th Annual International Conference on Combinatorial Optimization and
Applications (COCOA 2019), Vol. 11949 of Lecture Notes in Computer Science, Springer, pp. 1–12 (2019).

* Corresponding author.
E-mail addresses: asahiro@is.kyusan-u.ac.jp (Y. Asahiro), jesper.jansson@polyu.edu.hk (J. Jansson), guohui@ualberta.ca (G. Lin), miyano@ces.kyutech.ac.jp

(E. Miyano), ono@nagoya-u.jp (H. Ono), utashima.tadatoshi965@mail.kyutech.jp (T. Utashima).
https://doi.org/10.1016/j.tcs.2020.07.042
0304-3975/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2020.07.042
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2020.07.042&domain=pdf
mailto:asahiro@is.kyusan-u.ac.jp
mailto:jesper.jansson@polyu.edu.hk
mailto:guohui@ualberta.ca
mailto:miyano@ces.kyutech.ac.jp
mailto:ono@nagoya-u.jp
mailto:utashima.tadatoshi965@mail.kyutech.jp
https://doi.org/10.1016/j.tcs.2020.07.042

Y. Asahiro et al. / Theoretical Computer Science 838 (2020) 238–249 239
X = T G AC T C T GT GC A

Y = T GC T C AGT GC AC

Z = T GC T C GT A

Z ′ = T G AC

Fig. 1. If two sequences X and Y , and an occurrence constraint Cocc(A) = 1, Cocc(C) = Cocc(G) = 2 and Cocc(T) = 3 are given as input, then Z is a repetition-
bounded longest common subsequence satisfying the occurrence constraint Cocc . As another example, if Cocc(A) = Cocc(C) = Cocc(G) = Cocc(T) = 1, then Z ′
is a solution (i.e., Z ′ is repetition-free).

1. Introduction

1.1. Longest Common Subsequence problems

An alphabet S is a finite set of symbols. Let X be a sequence over the alphabet S and |X | be the length of the sequence
X . For example, X = 〈x1, x2, · · · , xn〉 is a sequence of length n, where xi ∈ S for 1 ≤ i ≤ n, i.e., |X | = n. For a sequence
X = 〈x1, x2, · · · , xn〉, another sequence Z = 〈z1, z2, · · · , zc〉 is a subsequence of X if there exists a strictly increasing sequence
〈i1, i2, · · · , ic〉 of indices of X such that for all j = 1, 2, · · · , c, we have xi j = z j . Then, we say that a sequence Z is a common
subsequence of X and Y if Z is a subsequence of both X and Y . Given two sequences X and Y as input, the goal of the
Longest Common Subsequence problem (LCS) is to find a longest common subsequence of X and Y .

LCS is a fundamental problem and has a long history [5,12,16,27]. The comparison of sequences via a longest common
subsequence has been applied in several contexts where we want to find the maximum number of symbols that appear in
the same order in two sequences. LCS is considered to be an important computational primitive in a variety of applications
such as bioinformatics [3,4,20,22], data compression [26], spelling correction [21,27], and file comparison [2] since LCS
plays a key role in measuring various types of sequence similarity.

LCS has been deeply investigated, and polynomial-time algorithms are well-known [16,17,22,23,27]. It is possible to
generalize LCS to a set of three or more sequences; the goal is to compute a longest common subsequence of all input
sequences. If the number of sequences is part of the input, then LCS of multiple sequences is NP-hard even on binary
alphabet [19] and it is not approximable within factor O (n1−ε) on arbitrary alphabet for sequences of length n and any
constant ε > 0 [20]. Furthermore, some researchers introduced a constraint on the number of symbol occurrences in the
solution. Bonizzoni et al. considered the Exemplar Longest Common Subsequence problem (ELCS) [10,24]. In ELCS, the
alphabet S of symbols is divided into the mandatory alphabet Sm and the optional alphabet So , and ELCS restricts the
numbers of symbol occurrences in Sm and So in the obtained solution. ELCS is APX-hard even for instances of two se-
quences [10]. In [11], Bonizzoni et al. proposed the following Doubly-Constrained Longest Common Subsequence problem
(DCLCS): Let a sequence constraint C be a set of sequences over an alphabet S and let an occurrence constraint Cocc be a
function Cocc : S →N , assigning an upper bound on the number of occurrences of each symbol in S . Given two sequences
X and Y over the alphabet S , a sequence constraint C , and an occurrence constraint Cocc , the goal of DCLCS is to find
a longest common subsequence Z of X and Y such that each sequence in C is a subsequence of Z and Z contains at
most Cocc(s) occurrences of each symbol s ∈ S . Bonizzoni et al. showed that DCLCS is NP-hard over an alphabet of three
symbols [11].

Adi et al. introduced the Repetition-Free Longest Common Subsequence problem (RFLCS) [1]: Given two sequences X
and Y over an alphabet S , the goal of RFLCS is to find a “repetition-free” longest common subsequence of X and Y , where
each symbol appears at most once in the obtained subsequence. In [1], Adi et al. proved that RFLCS is APX-hard even if
each symbol appears at most twice in each of the given sequences.

1.2. Our new results

In this paper we study exact, exponential-time algorithms for RFLCS and its general form, called the Repetition-

Bounded Longest Common Subsequence problem (RBLCS for short): Let S = {s1, s2, · · · , sk} be an alphabet of k symbols.
Recall that Cocc is an occurrence constraint Cocc : S →N , assigning an upper bound on the number of occurrences of each
symbol in S . Given two sequences X and Y over the alphabet S and an occurrence constraint Cocc , the goal of RBLCS is
to find a “repetition-bounded” longest common subsequence of X and Y , where each symbol si appears at most Cocc(si)

times in the obtained subsequence for i = 1, 2, · · · , k. See Fig. 1 for examples. The special case where Cocc(si) = r for every
i = 1, 2, · · · , k is referred to as the r-Repetition-Bounded Longest Common Subsequence problem (r-RBLCS for short). Note
that the special case 1-RBLCS is identical to RFLCS. Also, it is easy to see that RBLCS is a special case of DCLCS where
the sequence constraint C satisfies C = ∅. In [1], Adi et al. presented a simple (exponential-time) exact algorithm for 1-
RBLCS, whose basic strategy is to enumerate all the subsequences consisting of representative symbols. However, they did
not analyze its time complexity in detail as their focus was on establishing polynomial-time solvability and polynomial-time
approximability. To the best of our knowledge, there are no previous results on the running times of any exact algorithms
for this problem.

Without loss of generality, we will assume that |X | ≤ |Y | and |X | = n. The contributions of this paper are summarized as
follows:

240 Y. Asahiro et al. / Theoretical Computer Science 838 (2020) 238–249
1. We propose a simple algorithm for RFLCS based on the strategy used in [1] and show explicitly that its running time
is O (1.44225n).

2. We provide a dynamic programming (DP) based algorithm for RBLCS and prove that its running time is O (1.44225n)

for any occurrence constraint Cocc , and even less in certain special cases. In particular, for RFLCS, our DP-based algo-
rithm runs in O (1.41422n) time, which is faster than the previous one.

3. The NP-hardness of RFLCS implies that RBLCS is NP-hard in general. In this paper we prove that for any integer r ≥ 2,
r-RBLCS remains NP-hard even if each symbol appears exactly r or r + 1 times in each of the given two sequences.
Furthermore, we prove that r-RBLCS is APX-hard if every symbol appears exactly r or 2r times in each of the given
two sequences.

1.3. Related work

Although this paper focuses on the exact exponential algorithms, we here make a brief survey on previous results for
RFLCS, from the viewpoints of heuristic, approximation and parameterized algorithms. In [1], Adi et al. introduced first
heuristic algorithms for RFLCS. After that, several (meta)heuristic algorithms for RFLCS were proposed in [7,8,13,25]. A
detailed comparison of those metaheuristic algorithms was given in [9]. As for the approximability of RFLCS, Adi et al.
showed [1] that RFLCS admits an occmax-approximation algorithm, where occmax is the maximum number of occurrences
of each symbol in one of the two input sequences. In [6], Blin et al. presented a randomized fixed-parameter algorithm
for RFLCS parameterized by the size of the solution. In [15], Fernandes and Kiwi studied the asymptotic behavior of the
length of a repetition-free longest common subsequence of two random sequences such that each symbol appears randomly,
uniformly and independently.

1.4. Organization

The rest of the paper is organized as follows: Section 2 introduces notation which will be used throughout the paper,
and then gives the formal definition of RBLCS. In Section 3, we present simple exact algorithms based on the strategy
used in [1] for RFLCS and r-RBLCS and analyze their running times in detail. Then, we design the O (1.44225n)-time DP-
based algorithm for RBLCS in Section 4. Section 5 shows the NP-hardness and the APX-hardness of r-RBLCS on restricted
instances. Finally, we conclude the paper in Section 6. The notation used throughout the paper is summarized in the
appendix.

2. Preliminaries

Let S = {s1, s2, · · · , sk} be an alphabet, i.e., a finite set of k symbols. Let X = 〈x1, x2, · · · , xn〉 and Y = 〈y1, y2, · · · , yn〉
be the given two sequences as input of RBLCS and Z be a common subsequence of X and Y . For the sequence X , the
subsequence 〈xi, · · · , x j〉 is denoted by Xi.. j . Then, we define the ith prefix of X , for i = 1, · · · , n, as X1..i = 〈x1, x2, · · · , xi〉.
Also, we define the ith suffix of X , for i = 1, · · · , n, as Xi..n = 〈xi, xi+1, · · · , xn〉. X1..n is X . Similarly, we define the jth prefix
and the jth suffix of Y , for j = 1, · · · , m, as Y1.. j = 〈y1, y2, · · · , y j〉 and Y j..n = 〈y j, y j+1, · · · , ym〉, respectively.

Without loss of generality, we assume that both X and Y have all k symbols in S . Let occ(X, si), occ(Y , si) and occ(Z , si)

be the numbers of occurrences of si in X , Y , and Z , respectively, and thus occ(X, si) ≥ 1 and occ(Y , si) ≥ 1 for every symbol
si . Let Cocc be an occurrence constraint. The Repetition-Bounded Longest Common Subsequence problem (RBLCS) can be
formally defined as follows:

Repetition-Bounded Longest Common Subsequence problem (RBLCS)

Input: A pair of sequences X and Y , and an occurrence constraint Cocc .
Goal: Find a longest common subsequence Z of X and Y such that occ(Z , s) ≤ Cocc(s) is satisfied for every s ∈ S .

We call such a sequence Z a repetition-bounded longest common subsequence. The special case where Cocc(si) = r for every
i = 1, 2, · · · , k is referred to as the r-Repetition-Bounded Longest Common Subsequence problem (r-RBLCS). Also, 1-RBLCS
is often called the Repetition-Free Longest Common Subsequence problem (RFLCS).

When presenting the time complexity of algorithms, we often round the base of exponential functions up to the fifth
digit after the decimal point. That is, for example, the running time O ((

√
2)n) is written as O (1.41422n) since

√
2 =

1.414213562... and thus
√

2 < 1.41422. Furthermore, since (
√

2)n poly(n) is sandwiched between 1.41421n and 1.41422n

for every polynomial poly(n) of n and sufficiently large n, we write O ((
√

2)n poly(n)) as O (1.41422n).

3. Warm-up algorithms

In this section, we first focus on RFLCS, i.e., 1-RBLCS. The following brute-force exact algorithm for RFLCS obvi-
ously runs in O (2n · n · m) time for two sequences X and Y where |X | = n, |Y | = m, and |X | ≤ |Y |: (i) First create all the
subsequences of X , denoted by X1 through X2n . Then, (ii) obtain a longest common subsequence of Xi and Y for each i

Y. Asahiro et al. / Theoretical Computer Science 838 (2020) 238–249 241
(1 ≤ i ≤ 2n) by using an O (|Xi | ·m)-time algorithm for LCS [22,23,27]. Finally, (iii) find a repetition-free longest subsequence
among those 2n common subsequences obtained in (ii) and output it.

In [1], Adi et al. presented the following algorithm for RFLCS, which is more sophisticated than the naive algorithm
above: Let S be an alphabet of symbols. Suppose that each symbol in S X ⊆ S appears in X fewer times than Y , and S X =
{s1, s2, · · · , s|S X |}. Also, let SY = S \ S X and SY = {s|S X |+1, s|S X |+2, · · · , s|S|}. (i) The algorithm creates all the subsequences X1
through XN X of the input sequence X such that all the symbols in S X occur exactly once, but all the occurrences of symbols
in SY are kept in Xi for every 1 ≤ i ≤ N X . Also, the algorithm creates all the subsequences Y1 through Y NY of the input
sequence Y such that all the symbols in SY occur exactly once, but all the occurrences of symbols in S X are kept in Y j for
every 1 ≤ j ≤ NY . Then, (ii) obtain a longest common subsequence of Xi and Y j for every pair of i and j (1 ≤ i ≤ N X and
1 ≤ j ≤ NY) by using an O (|Xi | · |Y j|)-time algorithm for the original LCS. Finally, (iii) find the longest subsequence among
N X · NY common subsequences obtained in (ii), which must be repetition-free, and output it. Clearly, the running time of
this method is O (N X · NY · n · m). In [1], Adi et al. only claimed that if the number of symbols which appear twice or more
in X and Y is bounded above by some constant, say, c, then the running time is O (mc · n · m), i.e., RFLCS is solvable in
polynomial time. However, no upper bound on N X · NY was given in [1].

3.1. Repetition-free LCS

In this subsection we consider an algorithm called ALG, based on the same strategy as the one in [1] for RFLCS: (i) First
create all the subsequences X1 through XN of the input sequence X such that every symbol appears exactly once in Xi
for 1 ≤ i ≤ N in O (N · n) time. Then, (ii) obtain a longest common subsequence of Xi and Y in O (n · m) time for each
i (1 ≤ i ≤ N). Finally, (iii) find a repetition-free longest subsequence among N common subsequences obtained in (ii) and
output it. Therefore, the running time of ALG is O (N · n · m). It is important to note that ALG is identical to Adi et al.’s
algorithm in [1] if S X = S and thus SY = ∅.

A very simple argument gives us the first upper bound on N and the running time of ALG:

Theorem 1. The running time of ALG is O (1.44467n) for RFLCS on two sequences X and Y where |X | = n, |Y | = m, and |X | ≤ |Y |.

Proof. Recall that X has k symbols, s1 through sk , and si occurs occ(X, si) times in X for each integer i, 1 ≤ i ≤ k. Since
the number N of subsequences in X created in (i) of ALG is bounded by the number of combinations of k symbols, the
following is satisfied:

N ≤
k∏

i=1

occ(X, si). (1)

From the inequality of arithmetic and geometric means, we have:

N ≤
(

k∑
i=1

occ(X, si)/k

)k

≤ (n/k)k.

Here, by setting p def= n/k ∈R+ , we have:

N ≤ (p)n/p = (p1/p)n.

Note that the value of p1/p becomes the maximum when p = e, where e denotes Euler’s number. That is, N is bounded
above by en/e < 1.444668n . Therefore, the running time of ALG is O (1.444668n · n · m) = O (1.44467n). �

A more refined estimate yields a smaller upper bound on N , which gives us the improved running time of ALG:

Theorem 2. The running time of ALG is O (1.44225n) for RFLCS on two sequences X and Y where |X | = n, |Y | = m, and |X | ≤ |Y |.

Proof. Let max1≤i≤k {occ(X, si)} = occmax . Also, let Si = {s j | occ(X, s j) = i} for 1 ≤ i ≤ occmax . That is, Si is a set of symbols
which appear exactly i times in X . Let ni = i × |Si |. Since each symbol in Si appears i times in X , the following equality
holds:

occmax∑
i=1

ni = n. (2)

In the following, we show a smaller upper bound on N than that in the proof of Theorem 1. From the fact that ni =
i × |Si |, one sees that the following equality holds:

242 Y. Asahiro et al. / Theoretical Computer Science 838 (2020) 238–249
Table 1
Occurrence occ and running time T .

occ 2 3 4 5 6 7 8

T 1.41422n 1.44225n 1.41422n 1.37973n 1.34801n 1.32047n 1.29684n

k∏
i=1

occ(X, si) =
occmax∏

i=1

ini/i . (3)

Here, from the inequality of arithmetic and geometric means, the following is obtained:(
occmax∏

i=1

(
i1/i

)ni

)1/
∑occmax

i=1 ni

≤
∑occmax

i=1

(
i1/i

) · ni∑occmax
i=1 ni

. (4)

From the equations (1), (2), (3), and (4), we get:

N ≤
(∑occmax

i=1

(
i1/i

) · ni

n

)n

. (5)

Now, it is important to note that i ∈N , i.e., i is a positive integer while p = n/k is a positive real in the proof of the previous
theorem. Therefore, by a simple calculation, one can verify that the following is true:

max
i∈N

{
i1/i

}
= 31/3. (6)

Hence, we can bound the number N of all the possible repetition-free common subsequences as follows:

N ≤
(∑occmax

i=1 31/3 · ni

n

)n

=
(

31/3 ·∑occmax
i=1 ni

n

)n

=
(

31/3
)n

< 1.4422496n.

As a result, the running time of our algorithm is O (1.4422496n · n · m) = O (1.44225n). This completes the proof. �
Corollary 1. There is an O (occn/occ · n · m)-time algorithm to solve RFLCS for two sequences X and Y where |X | = n, |Y | = m, and
|X | ≤ |Y | when every symbol occurs in X exactly occ times.

Proof. By the assumption, occ× |Socc| = n and thus |Socc’| = 0 for occ = occ′ . From the inequality (5), one can easily
obtain the following:

N ≤ (
occ1/occ)n

. �
Table 1 shows the running time T for each occ = 2, 3, · · · , 8.

3.2. r-repetition-bounded LCS, r ≥ 2

In this subsection we consider exact exponential algorithms for r-RBLCS. First, by a straightforward extension of the
algorithm for RFLCS, we can design the following algorithm for r-RBLCS, named ALGr : First, (i) create all the subsequences
X1 through XN of the input sequence X such that each symbol s appears exactly r times in Xi for 1 ≤ i ≤ N if X has more
than r s’s; otherwise, all the occurrences of s in X are included in Xi . Each subsequence Xi can be created in O (n) time
and thus the total running time of (i) is O (N · n). Then, (ii) obtain a longest common subsequence of Xi and Y in O (n · m)

time for each i (1 ≤ i ≤ N). Finally, (iii) find a longest subsequence among N common subsequences obtained in (ii), which
has at most r occurrences of every symbol, and output it. Therefore, the running time is O (N · n · m).

Again, suppose that X has k symbols, s1, s2, · · · , sk , and si occurs occ(X, si) times in X for each integer i, 1 ≤ i ≤ k, and
max1≤i≤k {occ(X, si)} = occmax . Let Si = {s j | occ(X, s j) = i} for 1 ≤ i ≤ occmax and ni = i ×|Si|. Then, we estimate an upper
bound on N for each r:

Y. Asahiro et al. / Theoretical Computer Science 838 (2020) 238–249 243
Table 2
N(r) and i for each r.

r 2 3 4 5 6 7 8 9 10

N(r) 1.58884 1.66852 1.72013 1.75684 1.78453 1.80630 1.82394 1.83856 1.85091
i 5 7 9 11 13 15 17 19 21

Theorem 3. For r-RBLCS on two sequences X and Y where |X | = n, |Y | = m, and |X | ≤ |Y |, the running time of ALGr is as follows:

O

⎛
⎝
⎛
⎝max

i∈N

⎧⎨
⎩
(

i − r−1
2

(r!)1/r

)r/i
⎫⎬
⎭
⎞
⎠n

× n · m

⎞
⎠ .

Proof. First, the total number N of sequences created in (i) of ALGr can be expressed as follows:

N =
k∏

i=1

(
occi

r

)
=

occmax∏
i=r+1

(
i

r

)ni/i

.

From the inequality of arithmetic and geometric means, we can obtain the following inequality:

(i(i − 1)(i − 2) · · · (i − r + 1))1/r ≤ (2i − r + 1)r/2

r
= i − r − 1

2
.

Therefore, N is bounded:

occmax∏
i=r+1

(
i

r

)ni/i

≤
occmax∏
i=r+1

(
(i − r−1

2)r

r!

)ni/i

=
occmax∏
i=r+1

⎛
⎝(

i − r−1
2

(r!)1/r

)r/i
⎞
⎠ni

≤
⎛
⎝max

i∈N

⎧⎨
⎩
(

i − r−1
2

(r!)1/r

)r/i
⎫⎬
⎭
⎞
⎠n

.

This completes the proof. �

We have obtained the specific values of maxi∈N

{(
i− r−1

2
(r!)1/r

)r/i
}

, denoted by N(r), and i for r-RBLCS by its empirical

implementation. Table 2 shows N(r) and i for each r = 2, 3, · · · , 10.

4. Dynamic programming algorithms for RBLCS

In this section we design a DP-based algorithm named DP for RBLCS.

4.1. Original LCS

In this subsection, we briefly review the dynamic programming paradigm for the original LCS. For more details, e.g.,
see [14]. Let Z1..h = 〈z1, z2, · · · , zh〉 be any longest common subsequence of the ith prefix X1..i of X and the jth prefix
Y1.. j of Y . It is well known that LCS has the following optimal-substructure property: (1) If xi = y j , then zh = xi = y j and
Z1..h−1 is a longest common subsequence of X1..i−1 and Y1.. j−1. (2) If xi = y j , then (a) zh = xi implies that Z1..h is a longest
common subsequence of X1..i−1 and Y1.. j ; (b) zh = y j , then Z1..h is a longest common subsequence of X1..i and Y1.. j−1.

We define L(i, j) to be the length of a longest common subsequence of X1..i and Y1.. j . Then, the above optimal substruc-
ture of LCS gives the following recursive formula:

L(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

0 if i = 0 or j = 0,

L(i − 1, j − 1) + 1 if i, j > 0 and xi = y j ,

max {L(i, j − 1), L(i − 1, j)} if i, j > 0 and xi = y j .

The DP algorithm for the original LCS computes each value of L(i, j) and stores it into a two-dimensional table L of size
(n + 1) × (m + 1) in row-major order.

244 Y. Asahiro et al. / Theoretical Computer Science 838 (2020) 238–249
In the case of RBLCS, we have to count the number of occurrences of every symbol in the prefix of Z . In the following
we show a modified recursive formula and a DP-based algorithm for RBLCS.

4.2. Repetition-bounded LCS

A trivial implementation of a dynamic programming approach might be to use the DP-based algorithm for LCS for
multiple sequences: For RFLCS, we first generate all the permutations of k symbols, i.e., k! repetition-free sequences of k
symbols, say, X1 through Xk! and then obtain a longest common subsequence of Xi , X , and Y for each i (1 ≤ i ≤ k!) by using
an O (|Xi | · n · m)-time DP-based algorithm solving LCS for multiple (three) sequences proposed in [18]. Therefore, the total
running time is O (k! ·k ·n ·m). For RBLCS, we first generate all the permutation of

∑k
i=1 Cocc(si) multiple symbols and then

obtain a longest common subsequence Z such that occ(Z , si) ≤ Cocc(si) is satisfied for every si ∈ S . Let N = ∑k
i=1 Cocc(si).

Then, the running time is O (N! · N · n · m), which is polynomial if N is constant.
In the following we design a faster DP-based algorithm DP. Let S>Cocc = {si | occ(X, si) > Cocc(si)}. Now suppose that

|S>Cocc | = � and, without loss of generality, S>Cocc = {s1, s2, · · · , s�}. Then, we prepare an “occurrence” vector of length
�, denoted by v = (v1, v2, · · · , v�), where the pth component v p corresponds to the pth symbol sp for 1 ≤ p ≤ � and
v p ∈ {0, 1, · · · , Cocc(sp)}. Roughly speaking, DP uses the occurrence vector v as an upper bound of occurrences of every
symbol in an intermediate solution, in order not to break the occurrence constraint; it can therefore compute a subproblem
of finding a repetition-bounded longest common subsequence of X1..i and Y1.. j . Note that the number of possibilities in the
occurrence vector is

∏�
i=1(Cocc(si) + 1).

For the occurrence vector v = (v1, v2, · · · , v p−1, v p, v p+1 · · · , v�), we define a new vector v|p=q = (v1, v2, · · · , v p−1, q,

v p+1, · · · , v�). Note that if v p = q in v , then v|p=q = v . Let 0 be an �-dimensional 0-vector, i.e., the length of 0 is � and all
� components are 0. Also, let C occ be an �-dimensional vector such that the length of C occ is � and the pth component is
Cocc(sp) for 1 ≤ p ≤ �.

Similarly to the previous subsection, we define L(i, j, v) to be the length of a repetition-bounded longest common
subsequence of X1..i and Y1.. j satisfying the occurrence vector v , i.e., the length of the subsequence which does not break
the occurrence constraint. Our algorithm for RBLCS computes each value of L(i, j, v) and stores it into a three-dimensional
table L of size (n + 1) × (m + 1) ×∏�

i=1(Cocc(si) + 1).

Theorem 4 (Optimal substructure of RBLCS). Consider the ith prefix X1..i of X and the jth prefix Y1.. j of Y . Suppose that
S>Cocc = {s1, s2, · · · , s�} be a set of � symbols such that each si occurs at least Cocc(si) + 1 times in X. Let Z1..h = 〈z1, z2, · · · , zh〉
be any repetition-bounded longest common subsequence of X1..i and Y1.. j satisfying an occurrence vector v . Then, the followings are
satisfied:

(1) If xi = y j = sp and sp /∈ S>Cocc , then zh = sp and Z1..h−1 is a repetition-bounded longest common subsequence of X1..i−1 and
Y1.. j−1 satisfying v .

(2) If xi = y j = sp , sp ∈ S>Cocc and v p > 0, then zh = sp implies that Z1..h−1 is a repetition-bounded longest common subsequence
of X1..i−1 and Y1.. j−1 satisfying v|p=v p−1 .

(3) If xi = y j = sp , sp ∈ S>Cocc and v p = 0, then zh = sp and Z1..h is a repetition-bounded longest common subsequence of X1..i−1
and Y1.. j−1 satisfying v .

(4) If xi = y j , then
(a) zh = xi implies that Z1..h is a repetition-bounded longest common subsequence of X1..i−1 and Y1.. j satisfying v;
(b) zh = y j implies that Z1..h is a repetition-bounded longest common subsequence of X1..i and Y1.. j−1 satisfying v .

Proof. We will verify (1) through (4):
(1) If zh = xi , then by appending xi = y j = sp to Z1..h , we can obtain a repetition-bounded common subsequence of X1..i

and Y1.. j of length h + 1 satisfying v since the number of sp ’s in Z is at most Cocc(sp) − 1 from the condition sp /∈ S>Cocc .
This contradicts the assumption that Z1..h is a repetition-bounded longest common subsequence of X1..i and Y1.. j satisfying
v . Therefore, zh = xi = y j holds. What we have to do is to prove that the prefix Z1..h−1 is a repetition-bounded longest
common subsequence of X1..i−1 and Y1.. j−1 with length h − 1 satisfying v . For the purpose of obtaining a contradiction,
suppose that there exists a repetition-bounded common subsequence Z ′ of X1..i−1 and Y1.. j−1 with length greater h − 1
satisfying v . Then, by appending xi = y j = sp , we obtain a repetition-bounded common subsequence of X1..i and Y1.. j whose
length is greater than h satisfying v , which is a contradiction.

(2) If zh = xi = y j = sp , then Z1..h−1 is a repetition-bounded common subsequence of X1..i−1 and Y1.. j−1 such that sp
appears at most v p − 1 times in Z1..h−1. Suppose that there exists a repetition-bounded common subsequence Z ′ of X1..i−1
and Y1.. j−1 with length greater than h −1 satisfying v|p=v p−1. Since the pth component of v|p=v p−1 is v p −1, by appending
xi = y j = sp to Z ′ , we obtain a repetition-bounded common subsequence of X1..i and Y1.. j whose length is greater than h
satisfying v , which contradicts the assumption that Z1..h is a repetition-bounded longest common subsequence of X1..i and
Y1.. j satisfying v .

(3) Suppose that there exists a repetition-bounded common subsequence Z ′ of X1..i−1 and Y1.. j−1 with length greater
than h satisfying v . From zh = sp , Z ′ is also a repetition-bounded common subsequence of X1..i and Y1.. j satisfying v ,

Y. Asahiro et al. / Theoretical Computer Science 838 (2020) 238–249 245
which again contradicts the assumption that Z1..h is a repetition-bounded longest common subsequence of X1..i and Y1.. j
satisfying v .

(4)(a) ((b), resp.) If there is a repetition-bounded common subsequence Z ′ of X1..i−1 and Y1.. j (X1..i and Y1.. j−1, resp.)
with length greater than h satisfying v , then Z ′ would also be a repetition-bounded common subsequence of X1..i and Y1.. j
satisfying v , contradicting the assumption that Z is a repetition-bounded longest common subsequence of X1..i and Y1.. j
satisfying v . �

Then, we can obtain the following recursive formula:

L(i, j, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 0 or j = 0,

L(i − 1, j − 1, v) + 1 if i, j > 0, xi = y j = sp , and sp /∈ S>Cocc (Case (1)),

L(i − 1, j − 1, v|p=v p−1) + 1 if i, j > 0, xi = y j = sp , sp ∈ S>Cocc , and v p > 0 (Case (2)),

L(i − 1, j − 1, v) if i, j > 0, xi = y j = sp , sp ∈ S>Cocc , and v p = 0 (Case (3)),

max {L(i − 1, j, v), L(i, j − 1, v)} otherwise (Case (4)).

Here is an outline of our algorithm DP, which computes each value of L(i, j, v) and stores it into a three-dimensional
table L of size (n + 1) × (m + 1) × ∏�

i=1(Cocc(si) + 1): Initially, we set L(i, j, v) = 0 and pre(i, j, v) = null for every i, j,
and v . Then, the algorithm DP fills entries from L(1, 1, 0) to L(1, 1, C occ), then from L(1, 2, 0) to L(1, 2, C occ), next from
L(1, 3, 0) to L(1, 3, C occ), etc. After filling all the entries in the first “two-dimensional plane” L(1, j, v), the algorithm fills
all the entries in the second two-dimensional plane L(2, j, v), and so on. Finally, DP fills all the entries in the nth plane.
The algorithm DP also maintains a three dimensional table pre of size (n + 1) × (m + 1) × ∏�

i=1(Cocc(si) + 1) to help us
construct an optimal repetition-bounded longest subsequence. The entry pre(i, j, v) points to the table entry corresponding
to the optimal subproblem solution chosen when computing L(i, j, v).

Algorithm DP

Input: Two sequences X = 〈x1, x2, · · · , xn〉 and Y = 〈y1, y2, · · · , ym〉, and an occurrence constraint Cocc .

Output: Repetition-bounded longest common subsequence Z of X and Y .

Initialization: Find S>Cocc = {s1, s2, · · · , sk} and then set L(i, j, v) = 0 and pre(i, j, v) = null for each i, j, and v .

1. for i = 1 to n
2. for j = 1 to m
3. for v = 0 to C occ
4. /* Case (1) */
5. if xi == y j == sp and sp /∈ S>Cocc

6. L(i, j, v) = L(i − 1, j − 1, v) + 1
7. pre(i, j, v) = “(i − 1, j − 1, v)”
8. /* Case (2) */
9. elseif xi == y j == sp , sp ∈ S>Cocc , and v p > 0

10. L(i, j, v) = L(i − 1, j − 1, v|p=v p−1) + 1
11. pre(i, j, v) = “(i − 1, j − 1, v|p=v p−1)”
12. /* Case (3) */
13. elseif xi == y j == sp , sp ∈ S>Cocc and v p = 0
14. L(i, j, v) = L(i − 1, j − 1, v)

15. pre(i, j, v) = “(i − 1, j − 1, v)”
16. /* Case (4)(a) */
17. elseif L(i − 1, j, v) ≥ L(i, j − 1, v)

18. L(i, j, v) = L(i − 1, j, v)

19. pre(i, j, v) = “(i − 1, j, v)”
20. /* Case (4)(b) */
21. else L(i, j, v) = L(i, j − 1, v)

22. pre(i, j, v) = “(i, j − 1, v)”

Termination: Construct a repetition-bounded longest common subsequence Z based on two tables L and pre, and then output Z .

We bound the running time of DP:

Theorem 5. The running time of DP is O (
∏�

i=1(Cocc(si) + 1) · n · m) for RBLCS on two sequences X and Y where |X | = n, |Y | = m,
and |X | ≤ |Y |.

Proof. The algorithm DP for RBLCS computes each value of L(i, j, v) and stores it into the three-dimensional table L of
size (n + 1) × (m + 1) × ∏�

i=1(Cocc(si) + 1). Clearly, each table entry takes O (1) time to compute. As a result, the running
time of DP is O (

∏�
i=1(Cocc(si) + 1) · n · m). �

246 Y. Asahiro et al. / Theoretical Computer Science 838 (2020) 238–249
Table 3
Running time T of DP for r-RBLCS.

r 2 3 4 5 6 7 8

T 1.44225n 1.41422n 1.37973n 1.34801n 1.32047n 1.29684n 1.27652n

By showing that
∏�

i=1(Cocc(si) + 1) ≤ (
31/3

)n
is satisfied, we obtain the following corollary:

Corollary 2. The running time of DP is O (1.44225n) for RBLCS on two sequences X and Y where |X | = n, |Y | = m, and |X | ≤ |Y |.

Proof. Let |S>Cocc | = � again. Recall that for every si ∈ S>Cocc , occ(X, si) > Cocc(si). That is, occ(X, si) ≥ Cocc(si) + 1 since
both occ(X, si) and Cocc(si) are integers. Therefore, the following is satisfied:

�∑
i=1

(Cocc(si) + 1) ≤
�∑

i=1

occ(X, si) ≤ n. (7)

Let Cmax = maxsi∈S>Cocc
{Cocc(si)} be the maximum of the occurrence constraint. Also, let ui = |{s j | occ(X, s j) = i}| be the

number of symbols which appear exactly i times in X for 1 ≤ i ≤ Cmax . One sees that the term
∏�

i=1(Cocc(si) + 1) in the
running time of DP can be rewritten as follows:

�∏
i=1

(Cocc(si) + 1) =
Cmax+1∏

i=2

((i − 1) + 1)ui−1 =
Cmax+1∏

i=2

iui−1 =
Cmax+1∏

i=2

i
V i
i , (8)

where the rightmost equality holds by setting V i
def= i × ui−1. Then, we can show the following upper bound of the summa-

tion from V 2 to V Cmax+1 from the above inequality (7):

Cmax+1∑
i=2

V i =
�∑

i=1

(Cocc(si) + 1) ≤ n. (9)

By combining the (in)equalities (6), (8), and (9), we can obtain the following upper bound on
∏�

i=1(Cocc(si) + 1):

�∏
i=1

(Cocc(si) + 1) ≤
Cmax+1∏

i=2

3
V i
3 =

(
31/3

)∑Cmax+1
i=2 V i ≤

(
31/3

)n
.

Therefore, the running time of DP is O (1.44225n) for RBLCS. �
The algorithm DP works a little bit faster for RFLCS:

Corollary 3. The running time of DP is O (1.41422n) for RFLCS on two sequences X and Y where |X | = n, |Y | = m, and |X | ≤ |Y |.

Proof. It is enough to prepare the three-dimensional table L of size (n + 1) × (m + 1) × 2� for RFLCS. Clearly, each table
entry takes O (1) time to compute. As a result, the running time of DP is O (2� · n · m). Recall that the number |S>Cocc | of
symbols which appear at least twice in X is defined to be �. This implies that � ≤ n

2 . Therefore, 2� ≤ 2n/2 < 1.414214n is
satisfied; the running time is O (1.41422n) for RFLCS. �

The running time for r-RBLCS is as follows:

Corollary 4. The running time of DP is O ((r + 1)n/(r+1) · n · m) for r-RBLCS on two sequences X and Y where |X | = n, |Y | = m, and
|X | ≤ |Y |.

Proof. We prepare a three-dimensional table L of size (n + 1) × (m + 1) × (r + 1)� and each table entry takes O (1) time to
compute. Clearly � ≤ n

r+1 , i.e., (r + 1)� ≤ (r + 1)n/(r+1) holds. �
Table 3 shows the running time T of DP for r-RBLCS, r = 2, 3, · · · , 8.

Y. Asahiro et al. / Theoretical Computer Science 838 (2020) 238–249 247
5. Hardness of RBLCS

The NP-hardness (or the APX-hardness) of RFLCS implies that RBLCS on general instances is also NP-hard. In this
section, we investigate the computational complexity of RBLCS on restricted instances. First, we consider r-RBLCS where
the instance is a pair of sequences X and Y such that each symbol appears exactly r or r + 1 times for any integer r ≥ 2.
We can show the following hardness result:

Theorem 6. For any integer r ≥ 2, r-RBLCS is NP-hard even if occ(X, si) ∈ {r, r + 1} and occ(Y , si) ∈ {r, r + 1} hold for every symbol
si ∈ S.

Proof. We prove that the NP-hardness of r-RBLCS by providing the polynomial-time reduction from RFLCS to r-RBLCS.
Suppose that a pair of sequences X = 〈x1, x2, · · · , xn〉 and Y = 〈y1, y2, · · · , ym〉 is an instance of RFLCS such that every
symbol appears at most twice in each of two sequences. Recall that RFLCS is NP-hard even if each symbol appears at most
twice in each of the given two sequences [1]. Let S = {s1, s2, · · · , sk}. Then, we construct the following pair of sequences Xr

and Y r as an instance of r-RBLCS:

Xr = 〈x1, x2, · · · , xn,

r−1︷ ︸︸ ︷
s1, · · · , s1,

r−1︷ ︸︸ ︷
s2, · · · , s2, · · · ,

r−1︷ ︸︸ ︷
sk, · · · , sk〉

Y r = 〈y1, y2, · · · , ym,

r−1︷ ︸︸ ︷
s1, · · · , s1,

r−1︷ ︸︸ ︷
s2, · · · , s2, · · · ,

r−1︷ ︸︸ ︷
sl, · · · , sk〉

That is, the nth prefix of Xr
1..n (mth prefix of Y r

1..m , resp.) is X (Y , resp.), the next r − 1 symbols of Xr (Y r , resp.) are r − 1
duplicates of s1, the next r − 1 symbols of Xr (Y r , resp.) are r − 1 duplicates of s2, etc. This completes the reduction, which
can be clearly done in polynomial time. One sees that every symbol appears exactly r or r + 1 times in each of the two
sequences Xr and Y r .

In the following, we show that there is a repetition-free common subsequence Z of X and Y of length at least c if and
only if there is a common subsequence Zr of Xr and Y r such that the length |Zr | is at least c +k(r −1) under the constraint
occ(Zr, si) ≤ r for every symbol si ∈ S .

(Only-if part) Suppose that Z = 〈z1, z2, · · · , zc〉 is an optimal solution for RFLCS when its instance is the pair of se-
quences X and Y . Clearly,

Zr = 〈z1, z2, · · · , zc,

r−1︷ ︸︸ ︷
s1, · · · , s1,

r−1︷ ︸︸ ︷
s2, · · · , s2, · · · ,

r−1︷ ︸︸ ︷
sk, · · · , sk〉

is a common subsequence of Xr and Y r such that occ(Zr , si) ≤ r since the cth prefix of Zr is repetition-free. The length of
Zr is (at least) c + k(r − 1).

(If part) Suppose that Z∗ is a repetition-bounded longest common subsequence such that occ(Z∗, si) ≤ r for every symbol
si ∈ S and the length of Z∗ is at least c + k(r − 1). If the number of symbols whose r occurrences are included in Z∗ is at
most c − 1, then the length of Z∗ must be less than c + k(r − 1) by the following calculation (since the remaining k − c + 1
symbols appear at most r − 1 times):

r(c − 1) + (r − 1)(k − c + 1) = c + k(r − 1) − 1 < c + k(r − 1).

That is, there are at least c symbols whose r occurrences are included in Z∗ . Suppose that s∗
1 through s∗

c appear r times in
Z∗ . Observe that each of the (n + 1)st suffix Xr

n+1..n+k(r−1)
of Xr and the (m + 1)st suffix Y r

m+1..m+k(r−1)
has exactly r − 1

occurrences of every symbol si ∈ S . This implies that the nth prefix Xr
1..n of Xr and the mth prefix Y r

1..m of Y r has one or
two s∗

i ’s for i = 1, 2, · · · , c. Suppose, for example, that c = 5, and Xr
1..n and Y r

1..m have the following structure:

Xr
1..n = 〈· · · , s∗

1, · · · · · · , s∗
2, · · · , s∗

1, · · · , s∗
3, s∗

4, · · · , s∗
2, · · · , s∗

5〉
Y r

1..m = 〈· · · , s∗
1, · · · , s∗

2, s∗
1, · · · · · · , s∗

3, · · · · · · , s∗
4, · · · · · · , s∗

2, s∗
5, · · · · · · 〉

Then, the seventh prefix of Z∗ must be Z∗
1..7 = 〈s∗

1, s
∗
2, s

∗
1, s

∗
3, s

∗
4, s

∗
2, s

∗
5〉. Here, one sees that (at least) the leftmost occurrence

of every s∗
i for i = 1, 2, · · · , c must be included in both the nth prefix Xr

1..n of Xr and the mth prefix Y r
1..m of Y r . As a result,

we can obtain a repetition-free common subsequence of Xr
1..n = X and Y r

1..m = Y of length at least c. For the above example,
a repetition-free subsequence 〈s∗

1, s
∗
2, s

∗
3, s

∗
4, s

∗
5〉 of length c = 5 can be obtained from X and Y by removing the second s∗

1
and the second s∗

2 from Z∗
1..7. This completes the proof. �

If every symbol appears more times, then we can prove the APX-hardness of r-RBLCS by providing a gap-preserving
reduction from RFLCS to r-RBLCS:

Theorem 7. For a pair of sequences X and Y and any integer r ≥ 2, r-RBLCS is APX-hard even if occ(X, si) ∈ {r, 2r} and occ(Y , si) ∈
{r, 2r} hold for every symbol si ∈ S.

248 Y. Asahiro et al. / Theoretical Computer Science 838 (2020) 238–249
Proof. Again, suppose that a pair of sequences X = 〈x1, x2, · · · , xn〉 and Y = 〈y1, y2, · · · , ym〉 is an instance of RFLCS such
that every symbol appears either once or twice in each of the two sequences. Then, we construct the following pair of
sequences Xr and Y r as an instance of r-RBLCS, which are different from the previous Xr and Y r in the proof of Theorem 6:

Xr = 〈
r︷ ︸︸ ︷

x1, x1, · · · , x1,

r︷ ︸︸ ︷
x2, x2, · · · , x2, · · · ,

r︷ ︸︸ ︷
xn, xn, · · · , xn〉

Y r = 〈
r︷ ︸︸ ︷

y1, y1, · · · , y1,

r︷ ︸︸ ︷
y2, y2, · · · , y2, · · · ,

r︷ ︸︸ ︷
yn, yn, · · · , ym〉

That is, the first r symbols in Xr (Y r , resp.) are r duplicates of x1 (y1, resp.), the next r symbols in Xr (Y r , resp.) are r
duplicates of x2 (y2, resp.), etc. This completes the reduction, which can be clearly done in polynomial time. One sees that
every symbol appears exactly r or 2r times in each of the two sequences Xr and Y r .

Let Z and Zr be optimal solutions of RFLCS and r-RBLCS for the pairs (X, Y) and (Xr, Y r), respectively. Also, let
�(n, m) be a parameter function of the instance pair (X, Y) such that � : N × N → N . Next, we show that the above
reduction satisfies the two conditions of gap-preserving reductions: (i) If |Z | ≥ �(n, m), then |Zr | ≥ r × �(n, m), and (ii)
if |Z | < (1 − ε)�(n, m) for a fixed small positive constant ε > 0, then |Zr | < r × (1 − ε)�(n, m). In the following let Z =
〈z∗

1, z
∗
2, · · · , z∗

c 〉 be an optimal solution for RFLCS when its instance is the pair of sequences X and Y .
(i) Suppose that |Z | = c, i.e., c ≥ �(n, m) holds. Then, we consider the following sequence Z ′ when its instance is the

pair of sequences Xr and Y r :

Z ′ = 〈
r︷ ︸︸ ︷

z∗
1, z∗

1, · · · , z∗
1,

r︷ ︸︸ ︷
z∗

2, z∗
2, · · · , z∗

2, · · · ,

r︷ ︸︸ ︷
z∗

c , z∗
c , · · · , z∗

c 〉
From the above reduction, it is clear that Z ′ is a common subsequence of Xr and Y r such that each symbol z∗

i appears at
most r times and thus the length of Z ′ is r × c. Hence, |Zr | ≥ r × c = r × �(n, m) holds.

(ii) Suppose that the length |Z | = c of the optimal solution Z of RFLCS is less than (1 − ε)�(n, m). Also, suppose for the
purpose of obtaining a contradiction that Zr consists of at least c + 1 different symbols, say, z∗

1 through z∗
c+1. For example,

suppose that c = 8 and Zr consists of nine symbols z∗
1 through z∗

9 as follows:

Zr = 〈z∗
1, z∗

2, z∗
3, z∗

1, z∗
4, z∗

2, z∗
5, z∗

4, z∗
6, z∗

7, z∗
8, z∗

7, z∗
9〉

We can assume that the leftmost occurrence of each z∗
i appears in the subscript order in Zr , i.e., the first sym-

bol is z∗
1, the second symbol is z∗

2, etc, as shown above. Then, one can verify that the above sequence Zr includes
〈z∗

1, z
∗
2, z

∗
3, z

∗
4, z

∗
5, z

∗
6, z

∗
7, z

∗
8, z

∗
9〉 as a repetition-free subsequence. More generally, the sequence Z ′′ = 〈z∗

1, z
∗
2, · · · , z∗

c+1〉 of
length c + 1 must be a repetition-free common subsequence of X and Y , which is a contradiction.

If the optimal solution Zr of r-RBLCS has at most c different symbols, then the length of Zr is at most r × c, which is
less than r × (1 − ε)�(n, m). This completes the proof. �
6. Conclusion

We have studied a new variant of the Longest Common Subsequence problem, called the Repetition-Bounded Longest
Common Subsequence problem (RBLCS), and its special problem, called the r-Repetition-Bounded Longest Common Sub-

sequence problem (r-RBLCS). For r = 1, 1-RBLCS is known as the Repetition-Free Longest Common Subsequence problem.
We first showed that for 1-RBLCS there is a simple exact algorithm whose running time is O (1.44225n). Then, for RBLCS,
we designed a DP-based exact algorithm whose running time is O (1.44225n). In particular, the DP-based algorithm can
solve 1-RBLCS in O (1.41422n) time. To see that reducing the time complexity from O (1.44225n) to O (1.41422n) can be
of practical importance, consider for example the case of n = 100 and observe that 1.41422100 is seven times smaller
than 1.44225100. Hence, a promising direction for future research is to design faster exact exponential-time algorithms for
RBLCS. Another challenge is to develop efficient approximation algorithms for RBLCS.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work was partially supported by PolyU Fund 1-ZE8L, the Natural Sciences and Engineering Research Council of
Canada, JST CREST JPMJR1402, and Grants-in-Aid for Scientific Research of Japan (KAKENHI) Grant Numbers JP17K00016,
JP17K00024, JP17K19960 and JP17H01698.

Y. Asahiro et al. / Theoretical Computer Science 838 (2020) 238–249 249
Appendix. Summary of notation

Note: Some symbols that appear only in a restricted context are not listed.

S an alphabet, i.e., a finite set of symbols
X, Y two input sequences of symbols
Z a common subsequence of the given two sequences
n the length |X | of X

m the length |Y | of Y

X1..i the ith prefix of a sequence X

X j..n the jth suffix of a sequence X

C a sequence constraint, i.e., a set of sequences over an alphabet S

Cocc(s) an occurrence constraint, i.e., a function assigning an upper bound on the number of occurrences of each symbol
s ∈ S

occ(X, s) the number of occurrences of symbol s ∈ S in X

occmax the maximum number of occurrences of all the symbols s ∈ S in X , i.e., occmax = maxs∈S {occ(X, s)}
Si a set of every symbol s which appears exactly i times in X , i.e., Si = {s | occ(X, s) = i}
S>Cocc a set of every symbol s which appears more than Cocc(s) times in X , i.e., S>Cocc = {s | occ(X, s) > Cocc(s)}
e Euler’s number
R+ a set of positive reals
N a set of positive integers

References

[1] S.S. Adi, M.D.V. Braga, C.G. Fernandes, C.E. Ferreira, F.V. Martinez, M.-F. Sagot, M.A. Stefanes, C. Tjandraatmadja, Y. Wakabayashi, Repetition-free longest
common subsequence, Discrete Appl. Math. 158 (2010) 1315–1324.

[2] A. Aho, J. Hopcroft, J. Ullman, Data Structures and Algorithms, Addison-Wesley, 1983.
[3] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool, J. Mol. Biol. 215 (3) (1990) 403–410.
[4] R. Beal, T. Afrin, A. Farheen, D. Adjeroh, A new algorithm for “the LCS problem” with application in compressing genome resequencing data, in: Proc.

BIBM, 2015, pp. 69–74.
[5] L. Bergroth, H. Hakonen, T. Raita, A survey of longest common subsequence algorithms, in: Proc. SPIRE, 2000, pp. 39–48.
[6] G. Blin, P. Bonizzoni, R. Dondi, F. Sikora, On the parameterized complexity of the repetition free longest common subsequence problem, Inf. Process.

Lett. 112 (7) (2012) 272–276.
[7] C. Blum, M.J. Blesa, B. Calvo, Beam-ACO for the repetition-free longest common subsequence problem, in: Proc. EA 2013, 2014, pp. 79–90.
[8] C. Blum, M.J. Blesa, Construct, merge, solve and adapt: application to the repetition-free longest common subsequence problem, in: Proc. EvoCOP2016,

2016, pp. 46–57.
[9] C. Blum, M.J. Blesa, A comprehensive comparison of metaheuristics for the repetition-free longest common subsequence problem, J. Heuristics 24 (3)

(2018) 551–579.
[10] P. Bonizzoni, G. Della Vedova, R. Dondi, G. Fertin, R. Rizzi, S. Vialette, Exemplar longest common subsequence, IEEE/ACM Trans. Comput. Biol. Bioinform.

4 (4) (2007) 535–543.
[11] P. Bonizzoni, G. Della Vedova, R. Dondi, Y. Pirola, Variants of constrained longest common subsequence, Inf. Process. Lett. 110 (20) (2010) 877–881.
[12] L. Bulteau, F. Hüffner, C. Komusiewicz, R. Niedermeier, Multivariate algorithmics for NP-hard string problems: the algorithmics column by Gerhard J

Woeginger, Bull. Eur. Assoc. Theor. Comput. Sci. 114 (2014).
[13] M. Castelli, S. Beretta, L. Vanneschi, A hybrid genetic algorithm for the repetition free longest common subsequence problem, Oper. Res. Lett. 41 (6)

(2013) 644–649.
[14] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd ed., The MIT Press, 2009.
[15] C.G. Fernandes, M. Kiwi, Repetition-free longest common subsequence of random sequences, Discrete Appl. Math. 210 (2016) 75–87.
[16] D.S. Hirschberg, Algorithms for the longest common subsequence problem, J. ACM 24 (4) (1977) 664–675.
[17] D.S. Hirschberg, A linear space algorithm for computing maximal common subsequences, Commun. ACM 18 (6) (1975) 341–343.
[18] S.Y. Itoga, The string merging problem, BIT 21 (1) (1981) 20–30.
[19] D. Maier, The complexity of some problems on subsequences and supersequences, J. ACM 25 (2) (1978) 322–336.
[20] T. Jiang, M. Li, On the approximation of shortest common supersequences and longest common subsequences, SIAM J. Comput. 24 (5) (1995)

1122–1139.
[21] H.L. Morgan, Spelling correction in systems programs, Commun. ACM 13 (2) (1970) 90–94.
[22] S.B. Needleman, C.D. Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins, J. Mol. Biol. 48 (3)

(1970) 443–453.
[23] D. Sankoff, Matching sequences under deletion/insertion constraints, Proc. Natl. Acad. Sci. USA 69 (1) (1972) 4–6.
[24] D. Sankoff, Genome rearrangement with gene families, Bioinformatics 15 (11) (1999) 909–917.
[25] R.S. Mincu, A. Popa, Better heuristic algorithms for the repetition free LCS and other variants, in: Proc. SPIRE, 2018, pp. 297–310.
[26] J.A. Storer, Data Compression: Methods and Theory, Computer Science Press, 1988.
[27] R.A. Wagner, M.J. Fischer, The string-to-string correction problem, J. ACM 21 (1) (1974) 168–173.

http://refhub.elsevier.com/S0304-3975(20)30423-0/bib8A523B524F36933E71F78492EF3F2FE8s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib8A523B524F36933E71F78492EF3F2FE8s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib618C4576601C70A572AB7D023BB4B317s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib1BC49257D2A2ACEDF41EAD95AEDB2BBFs1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib8D569DB85D68910D6705C4C4A151DEC3s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib8D569DB85D68910D6705C4C4A151DEC3s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bibF7C9420D6F9562DDD1B645CDBC102C37s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bibFFB186D7276F8540F7321D20650C81D4s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bibFFB186D7276F8540F7321D20650C81D4s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bibA53EC3F3028214245AEEAF8A52C5A60Bs1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bibE48FFE7588146B2082CFDADB7D8766CAs1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bibE48FFE7588146B2082CFDADB7D8766CAs1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib9D38DA622335516DA4B2A689B2AF55DDs1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib9D38DA622335516DA4B2A689B2AF55DDs1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib287ED04A7C2F507A7B3F43C87A094399s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib287ED04A7C2F507A7B3F43C87A094399s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bibE5E8BBAC5F16700F76AD85811D899C26s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib00196FF382495F0467B1DA2F2061A02As1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib00196FF382495F0467B1DA2F2061A02As1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib61C6C6809FF5FB686A4E96B9A72A49B9s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib61C6C6809FF5FB686A4E96B9A72A49B9s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib682F8EA8E6B417E9D573270BF59CE0D2s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bibB9D9741F257C78ADED2624AA024B8DB7s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib158188FC5CE63D4DA339020C605CC555s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bibF82BD333B3C49215B3447FB08A216FD7s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bibF7F633D2D99E87A4BCDBFE955C7F845As1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib522A74953CD4A4E106856941823A64EFs1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib46E4AA4787571390238246CC35495391s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib46E4AA4787571390238246CC35495391s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bibBDC9F141020F620758D668EDFEFED38Bs1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib7B1BCA0FB8FFE34BA84E24DA9DED90A3s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib7B1BCA0FB8FFE34BA84E24DA9DED90A3s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib99FB2B10D8A6482A795D0B239501DA19s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib1EC02E9A0F42C85A9EEDEBD7BB9DCBDCs1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib65F3FA20075E649228B0170D3EEE7674s1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib7B557FC95F4470300EE7CF1FAA2F00AAs1
http://refhub.elsevier.com/S0304-3975(20)30423-0/bib8A68B1BD835D825EA54B0169A44C5F2Cs1

	Exact algorithms for the repetition-bounded longest common subsequence problem
	1 Introduction
	1.1 Longest Common Subsequence problems
	1.2 Our new results
	1.3 Related work
	1.4 Organization

	2 Preliminaries
	3 Warm-up algorithms
	3.1 Repetition-free LCS
	3.2 r-repetition-bounded LCS, r≥2

	4 Dynamic programming algorithms for RBLCS
	4.1 Original LCS
	4.2 Repetition-bounded LCS

	5 Hardness of RBLCS
	6 Conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix Summary of notation
	References

