
Algorithmica (2018) 80:136–154
https://doi.org/10.1007/s00453-016-0247-3

3D Rectangulations and Geometric Matrix
Multiplication

Peter Floderus1 · Jesper Jansson2 ·
Christos Levcopoulos3 · Andrzej Lingas3 ·
Dzmitry Sledneu1

Received: 14 September 2015 / Accepted: 5 November 2016 / Published online: 16 November 2016
© Springer Science+Business Media New York 2016

Abstract The problem of partitioning an orthogonal polyhedron P into a minimum
number of 3D rectangles is known to be NP-hard. In this paper, we first develop a
4-approximation algorithm for the special case of the problem in which P is a 3D
histogram. It runs in O(m logm) time, where m is the number of corners in P . We
then apply it to exactly compute the arithmetic matrix product of two n × n matrices
A and B with nonnegative integer entries, yielding a method for computing A × B in
Õ(n2 +min{rArB, n min{rA, rB}}) time, where Õ suppresses polylogarithmic (in n)
factors and where rA and rB denote the minimum number of 3D rectangles into which
the 3D histograms induced by A and B can be partitioned, respectively.

An extended abstract of this article appeared in Proceedings of the 25th International Symposium on
Algorithms and Computation (ISAAC 2014), volume 8889 of Lecture Notes in Computer Science,
pp. 65–78, Springer International Publishing Switzerland, 2014.

B Jesper Jansson
jj@kuicr.kyoto-u.ac.jp

Peter Floderus
pflo@maths.lth.se

Christos Levcopoulos
Christos.Levcopoulos@cs.lth.se

Andrzej Lingas
Andrzej.Lingas@cs.lth.se

Dzmitry Sledneu
Dzmitry@maths.lth.se

1 Centre for Mathematical Sciences, Lund University, 22100 Lund, Sweden

2 Laboratory of Mathematical Bioinformatics, Institute for Chemical Research, Kyoto University,
Gokasho, Uji, Kyoto 611-0011, Japan

3 Department of Computer Science, Lund University, 22100 Lund, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0247-3&domain=pdf

Algorithmica (2018) 80:136–154 137

Keywords Decomposition problem · Minimum rectangulation · Orthogonal
polyhedron · Matrix multiplication · Time complexity

1 Introduction

This paper considers two intriguing and at a first glance unrelated problems.
The first problem lies at the heart of three-dimensional computational geometry. It

belongs to the class of polyhedron decomposition problems, whose applications range
from data compression and database systems to pattern recognition, image process-
ing, and computer graphics [7,14]. The problem is to partition an input orthogonal
polyhedron into a minimum number of 3D rectangles. Dielissen and Kaldewaij [4]
have shown this problem to be NP-hard. (Formally, the NP-hardness proof by [4] is
for polyhedra with holes, but the authors remark that the proof should also work for
simple polyhedra.) To the best of our knowledge, no non-trivial approximation fac-
tors for minimum rectangular partitions of simple orthogonal polyhedra are known,
even in restricted non-trivial cases such as that of a 3D histogram, a straightforward
generalization of a planar histogram; see Sect. 2 below for the definition. In contrast,
the problem of partitioning an orthogonal (planar) polygonal region into a minimum
number of 2D rectangles admits a polynomial-time solution [7,11].

The second problem we consider is that of multiplying two n × n matrices. There
exist fast algorithms that do so in substantially subcubic time, e.g., a recent one due to
LeGall runs in O(n2.3728639) time [8], but they suffer fromvery large overheads.On the
positive side, input matrices in real world applications often belong to quite restricted
matrix classes, so a natural approach is to design faster algorithms for such special
cases. Indeed, efficient algorithms for sparse matrix multiplication have been known
for long time. In the Boolean case, despite considerable efforts by the algorithms
community, the fastest known combinatorial algorithms for Boolean n × n matrix
multiplication barely run in subcubic time (in O(n3(log log n)2/(log n)9/4)) time [1],
to be precise), but much faster algorithms for Boolean matrix product for restricted
classes of Boolean matrices have been developed [2,5,9]. For example, when at least
one of the input Boolean matrices admits an exact covering of its ones by a relatively
small number of rectangular submatrices, theBooleanmatrix product can be computed
efficiently [9]. Similarly, if the rows of the first input Boolean matrix or the columns
of the second input Boolean matrix can be represented by a relatively cheap minimum
cost spanning tree in the Hamming metric (or its generalization to include blocks
of zeros or ones) then the Boolean matrix product can be computed efficiently by a
randomized combinatorial algorithm [2,5].

1.1 New Results

Our first contribution is an O(m logm)-time, 4-approximation algorithm for comput-
ing a minimum 3D rectangular partition of an input 3D histogram with m corners. It
works by projecting the input histogram onto the base plane, partitioning the resulting
planar straight-line graph into a number of 2D rectangles not exceeding its number of
vertices, and transforming the resulting 2D rectangles into 3D rectangles of appropri-

123

138 Algorithmica (2018) 80:136–154

ate height. Importantly, the known algorithms for minimum partition of an orthogonal
polygon with holes into 2D rectangles [7,11] do not yield the aforementioned upper
bound on the number of rectangles in the more general case of planar straight-line
graphs.

Our second contribution is a new technique for multiplying two matrices with
nonnegative integer entries.We interpret thematrices as 3Dhistograms and decompose
them into blocks that can be efficiently manipulated in a pairwise manner using the
interval tree data structure. Let A and B be two n × n matrices with nonnegative
integer entries, and let rA and rB denote the minimum number of 3D rectangles into
which the 3D histograms induced by A and B can be partitioned. By applying our
4-approximation algorithm above, we can compute A × B in Õ(n2 + rArB) time,
where Õ suppresses polylogarithmic (in n) factors. Next, by using another idea of
slicing the histogram of A (or B) into parts corresponding to rows of A (or columns
of B) and measuring the cost of transforming a slice into a consecutive one, we obtain
an upper bound of Õ(n2 + n min{rA, rB}). We also give a generalization of the latter
upper bound in terms of the minimum cost of a spanning tree for the slices, where the
distance between a pair of slices corresponds to the cost of transforming one slice into
the other.

We remark that rA = O(n2) and rB = O(n2) always hold. For inputswhere rArB =
Õ(n2), the worst-case running time of our first algorithm for matrix multiplication is
Õ(n2), which is almost optimal and much better than that of the currently fastest one
for the general case [8]. Furthermore, when at least one of rA and rB is Õ(n), the
worst-case running times of our second and third algorithms are almost optimal.

1.2 Organization of the Paper

Section 2 presents our 4-approximation algorithm for a partition of a 3D histogram
into a minimum number of 3D rectangles. Section 3 presents our algorithms for the
arithmetic matrix product. Section 4 concludes with some final remarks.

2 Rectangular Partitions of 3D Histograms

A 2D histogram is a polygon with an edge e, which we call the base of the histogram,
having the following property: for every point p in the interior of histogram, there
is a (unique) line segment perpendicular to e, connecting p to e and lying totally in
the interior of the histogram. In this paper, we consider orthogonal histograms only.
For simplicity, we consider the base of a histogram as being horizontal, and all other
edges of the histogram lying above the base. In this way, a 2D histogram can also be
thought of as the union of rectangles standing on the base of the histogram.

A 3D histogram is a natural generalization of a 2D histogram. To define a 3D
histogram, we need the concept of the “base plane”, which for simplicity we define as
the horizontal plane containing two of the axes in the Euclidean space. A 3D histogram
can then be thought of as the union of (internally disjoint) orthogonal 3D rectangles,
standing on the base plane. The base of the histogram is the union of the lower faces
(also called bases) of all these rectangles.

123

Algorithmica (2018) 80:136–154 139

Definition 2.1 A 3D histogram is a union of a finite setC of orthogonal 3D rectangles
such that: (i) each element in C has a face on the horizontal base plane; and (ii) all
elements in C are located above the base plane.

(In the literature, what we call a 3D histogram is sometimes termed a 2D histogram
or a 1D histogram when used to summarize 2D or 1D data, respectively [13].)

By a rectangular partition (or rectangulation) of a 3D histogram P , we mean an
orthogonal partition of P into 3D rectangles. In Sect. 2.2 below, we consider the
problem of finding a rectangular partition of a given 3D histogram P into as few
3D rectangles as possible. We present a 4-approximation algorithm for this problem
with time complexity O(m logm), where m denotes the number of vertices in P .
The algorithm partitions P into less than m′ 3D rectangles, where m′ is the number
of vertices in the vertical projection of P (i.e., m′ < m), by applying a subroutine
described in Sect. 2.1 that partitions any orthogonal planar straight-line graph (PSLG)
with m′ vertices into less than m′ 2D rectangles.

2.1 Partitioning an Orthogonal PSLG into 2D Rectangles

The problem of partitioning an orthogonal polygon in two dimensions into as few rec-
tangles as possible has been well studied in the literature [7,11], and polynomial-time
algorithms for this problem exist (see [7,11] and the references therein). However, for
our purposes, it is not necessary to compute an optimal solution for the 2-dimensional
problem. Instead, we just need a partition of a planar straight-line graph (PSLG) into
less than m′ rectangles, where m′ denotes the number of vertices in the input PSLG.
We will show that a simple algorithm, which is faster than the optimal algorithms
in [7,11], suffices to obtain this (not always optimal) upper bound.

Since this subsection considers 2D only, we use the term “horizontal” for line
segments parallel to the X -axis. By “vertical” lines, we mean lines or line segments
parallel to the Y -axis. Each vertex in the planar graphs in our application has degree
2, 3, or 4.

Definition 2.2 A planar straight-line graph (PSLG) PG = (V, E), as used in this
paper, is a planar graph where every vertex has an x- and a y-coordinate. Each edge
is drawn as a straight line segment, all edges meet at right angles, and each vertex has
degree 2, 3, or 4. A rectangular partition of PG is a partition R = (V ∪ VR, E ∪ ER)

that adds edges and vertices to PG so that R is still a PSLG while every face in R is a
rectangle.

Given a PSLG PG, we denote m′ = |V |. We say that a vertex v of PG is concave if
it has degree 2, its two adjacent edges are perpendicular to each other, and the corner
at v which is of 270 degrees does not lie in the outer, infinite face of PG. Any vertex
which is not concave is called convex.

We use a sweep line approach to generate a partition into less than m′ rectangles.
We perform a horizontal sweep with a vertical sweep line [3], using the vertices of
PG as event points. Whenever the sweep line reaches a concave vertex v, we insert
into the graph PG a vertical line segment s connecting v to the closest edge of PSLG
upwards or downwards, thus canceling the concavity at v and transforming v into a

123

140 Algorithmica (2018) 80:136–154

convex vertex of degree 3. Hence, if there was already an edge of PG below v, then
the new segment s is inserted above v, otherwise it is inserted below v. To preserve
the property that the resulting graph is still a PSLG, the other endpoint of s may have
to become a new vertex of the PSLG. (This is a standard procedure for trapezoidation;
see, e.g., [3] for more details.) After the sweep is complete, all concave vertices have
been eliminated. (It may happen that two concave vertices with the same x-coordinate
are connected by a single vertical segment that is disjoint from the rest of the input
PSLG. In this case, the plane sweep algorithm will produce this segment. Thus, no
two segments produced by the algorithm overlap or touch each other.)

The correctness of the algorithm is easy to see: it eliminates all concave corners of
PG by adding vertical line segments. Hence, in the resulting PSLG, each face, except
for the outer face, is a rectangle. The running time of this algorithm is dominated by
the cost of the plane sweep, which is O(m′ logm′) according to well-known methods
in computational geometry; see, e.g., [3].

The next lemma relates the resulting number of 2D rectangles to the number of
vertices in the input PSLG.

Lemma 2.3 Any PSLG PG = (V, E) with |V | = m′ and minimum vertex degree 2
can be partitioned into b rectangles with b < m′ in O(m′ logm′) time.

Proof Let R denote the set of rectangles in the rectangular partition produced by
the plane sweep algorithm described above. We use a “charging scheme” to prove
the stated inequality. The charging scheme starts by giving each vertex v ∈ V four
tokens; thus, a total of 4m′ tokens are used. Each vertex v then distributes its tokens
in a certain way to the rectangles in R that are adjacent to v. We will show that every
rectangle in R receives at least four tokens. Since we started by giving a total of 4m′
tokens to the vertices, this will prove that there exist at most m′ rectangles, and thus
b ≤ m′. Moreover, vertices adjacent to the outer face do not give away more than
three tokens. We will thus obtain the strict inequality b < m′.

Now we describe the details of the charging scheme. Let v be any vertex of V . The
vertex v gives one token to each rectangle r in R which in anyway is adjacent to it, with
one exception. The exception occurs when v is a concave vertex; then, v is partitioned
by a vertical segment er added by the algorithm. This segment partitions the three
quadrants at the concave corner around the vertex so that one rectangle occupies one

Fig. 1 A concave corner v and a vertical segment (dashed) added by the algorithm. One of the rectangles
receives two tokens, and the other one receives one token. If there had existed an additional rectangle with
v as a corner, it would also have received one token

123

Algorithmica (2018) 80:136–154 141

Fig. 2 An example of two rectangles r2 and r3 that are only adjacent to two vertices (v2, v4 and v3, v5,
respectively). The dashed line segments indicate vertical line segments added by the algorithm, while the
full line segments indicate edges of PG. The rectangle r1 is adjacent to three vertices from PG, and will
get two tokens from v1 and one from v2 and v3 each. r2 and r3 will receive two tokens from each adjacent
vertex

quadrant and one occupies the two others. Then v distributes two tokens to the new
rectangle occupying only one quadrant, which therefore has a corner at v, and only
one token to each one of the other rectangles of R adjacent to v. See Fig. 1; in this
example, v distributes only three of its four tokens, because v happens to be adjacent
to the outer face.

We now show that each rectangle receives at least four tokens. Let r be any rectangle
in R. First note that each vertical segment added by the algorithm has at least one
endpoint at a vertex in V . Moreover, for any rectangle r in R, each of the vertical sides
of r includes at least one vertex of V . Therefore, each rectangle is adjacent to at least
two vertices of V . We distinguish three cases, depending on the number of vertices of
V adjacent to r . Observe that the adjacencies are not necessarily at the corners of r .

– Case 1: r is adjacent to at least four vertices of V . Since r will receive at least one
token from each of them we are done.

– Case 2: r is adjacent to precisely three vertices of V . Then at one of the vertical
sides of r there is only one vertex of V . Moreover, this vertex v must be at a corner
of r and fulfills the criteria for giving two tokens to r . The remaining two adjacent
vertices of V give at least one token each, so we are done. See Fig. 2.

– Case 3: r is adjacent to precisely two vertices of V . This must mean that both ver-
tical sides of r are segments added by the algorithm, and that one of the endpoints
of each of these sides is a vertex of V at a corner of r . This corresponds to the
condition for receiving two tokens mentioned earlier. So in total, r receives four
tokens from the two corners, and we are done. See Fig. 2. ��

123

142 Algorithmica (2018) 80:136–154

Fig. 3 aDisplays a 3D histogram and the direction in which we do the projection. bDisplays the projected
figure on the plane with corresponding vertices labeled

2.2 Partitioning a 3D Histogram into 3D Rectangles

Wenow explain how to construct a projected PSLGPP from any input 3D histogram P
and how to apply the fast 2D rectangular partition algorithm from Sect. 2.1 to PP to
obtain a good partition of P into 3D rectangles.

Definition 2.4 The planar projection PP is an orthogonal projection of the input 3D
histogram P along the “down” direction onto the base plane in Definition 2.1.

See Fig. 3 for an illustration.
We can interpret PP as a PSLG where each corner and each subdividing point on a

line segment corresponds to a vertex. The edges naturally correlate to the connecting
line segments between vertices. Each vertex in PP is the vertical projection of at least
two vertices of P . Two edges of the 3D histogram may partially overlap in the 2D
projection, but the edges in the 2D projection are considered as non-overlapping. Thus,
an edge of the 3D histogram may split into several edges in the 2D projection, since
vertices should only appear as endpoints of edges.

Every vertex in PP must have at least two neighbors. This follows from the fact
that each vertex of P (and of any orthogonal polyhedron) has at least two incident
horizontal edges, i.e., edges parallel to the base plane. It may happen that some vertex
of PP is the vertical projection of up to four vertices of P , so those four vertices of
P may have a total of eight neighbors in P . But since PP is an orthogonal PSLG, no
vertex of PP has more than four neighbors.

Now we are ready to show the main theorem of this section.

Theorem 2.5 For any 3D histogram P with m corners, a 4-approximation R of a
partition of P into as few 3D rectangles as possible can be computed in O(m logm)

time.

123

Algorithmica (2018) 80:136–154 143

Proof We let PP be the planar projection of P as in Definition 2.4, assign PG := PP,
and apply the algorithm from Lemma 2.3 to compute a planar partition R′ of PG. The
final 3D partition R is obtained from R′ by reversing the projection so that each 2D
rectangle corresponds to the top of a 3D rectangle in R.

To analyze the approximation factor, denote the number of 3D rectangles in an
optimal solution Ropt byOPT, the number of 3D rectangles produced by the algorithm
described above by b, and the number of vertices in PP by m′. Every vertex of P is
adjacent to at least one vertical edge (i.e., edge perpendicular to the base plane) of
a 3D rectangle in Ropt , which means that every vertex in PP has to be the vertical
projection of at least one such vertical edge. Next, every 3D rectangle in Ropt has 4
vertical edges, so the total number of vertical edges in Ropt (some of which may be
projected onto the same vertex in PP) is 4OPT. Thus, m′ ≤ 4OPT. By Lemma 2.3,
we have b < m′ and it follows that b < 4OPT.

Since the projection can be obtained by contracting each vertex in P and all of its
vertical neighbors into one vertex, the projection can be implemented in O(m) time.
Thus, the O(m logm)-term from Lemma 2.3 will dominate the time complexity. ��

3 Geometric Algorithms for the Arithmetic Matrix Product

In this section, we present our three geometric or in part geometric algorithms for
arithmetic matrix product.

3.1 Geometric Data Structures and Notation

Our algorithms for arithmetic matrix multiplication use some data structures for inter-
val and rectangle intersection.An interval tree is a search tree that supports intersection
queries for a set Q of closed intervals on the real line, i.e., queries asking for reporting
the intervals in Q overlapping with the query interval, as follows:

Fact 1 (see Lemmas 2, 3 on pages 193, 195, respectively in [12]). Suppose that the
left endpoints of the intervals in a set Q belong to a subset U of real numbers of
size l and |Q| = q. An interval tree T of depth O(log l) for Q can be constructed in
O(l +q log lq) time using O(l +q) space. The insertion or deletion of an interval with
left endpoint in U into T takes O(log l + log q) time. The intersection query asking
for listing all stored intervals that overlap with the query interval is supported by T
in O(log l + r) time, where r is the number of reported intervals.

We also need an efficient data structure based on a segment tree for answering
weight queries asking for the total weight of stored weighted intervals containing the
query point.

Lemma 3.1 There is a data structure, a weighted segment tree, that supports the inser-
tions and deletions of weighted intervals with endpoints in {0, 1, . . . , n} in O(log n)

time, and the weight query asking for the total weight of “stored” intervals containing
the query point also in O(log n) time. The data structure can be initialized in O(n)

time and it uses O(n) space for a sequence of nO(1) insertions and deletions.

123

144 Algorithmica (2018) 80:136–154

Proof The data structure is just amodified segment tree T for the elementary segments
induced by {0, 1, . . . , n}, i.e., [0, 0], (0, 1), . . . , [n, n] (see pp. 212–221 in [12]). The
segment tree T is initialized as the standard segment tree for the aforementioned ele-
mentary segments. The only difference is that a weight counter set to zero is initialized
at each node instead of an initially empty list of intervals. Since T is basically a binary
search tree with O(n) nodes, the initialization takes O(n) time.

Now, when an interval is inserted into T then instead of inserting it into the lists
of appropriate nodes as in the standard segment tree, its weight is just added to the
weight counters at the same nodes. Recall that the appropriate nodes have their interval
range included in the inserted interval while their parents do not have this property
(see [12]).

Now it is sufficient to insert into T the intervals to be inserted into our data structure
with their original weights, and the intervals to be deleted from the data structure with
their weights multiplied by −1, in order to answer the weight queries.

The cost of the insertions and the “ deletions” is asymptotically the same as that of
an interval insertion in the standard segment tree under the assumption that an insertion
into a list (in our case updating the weight counter) takes O(1) time (see Theorem 6
on page 214 in [12]). Thus, it is logarithmic in n.

By traversing T with a query point p from the root to a leaf, we just sum the values
of weight counters in order to obtain the total weight of intervals containing p, inserted
into T . Hence, since the depth of T is O(log n) (see Theorem 6 on page 214 in [12]),
the weight query asking for the total weight of intervals containing p can be answered
in O(log n) time. ��

Finally, we shall use the following data structure, easily obtained by computing all
prefix sums:

Fact 2 For a sequence of integers a1, a2, . . . , an, one can construct a data structure
that supports a query asking for reporting the sum

∑ j
k=i ak for 1 ≤ i ≤ j ≤ n in

O(1) time. The construction takes O(n) time.

In the rest of the paper, A and B denote two n×n matrices with nonnegative integer
entries, and C stands for their matrix product A × B. We also need the following
concepts:

• For any n×n matrix D with nonnegative integer entries, consider the [0, n]×[0, n]
integer gridwhoseunit cells are in one-to-one correspondencewith the entries of D.

More precisely, the grid cell between the horizontal lines i − 1 and i (counting
from the top) and vertical lines j −1 and j (counting from the left) corresponds to
Di, j (see Fig. 4a). Then, his(D) stands for the 3D histogram whose base consists
of all unit cells of the [0, n] × [0, n] integer grid corresponding to positive entries
of D and whose height over the cell corresponding to Di, j is the value of Di, j (see
Fig. 4b).

• For any n × n matrix D, nonnegative integers 1 ≤ i1 ≤ i2 ≤ n, 1 ≤ k1 ≤
k2 ≤ n, and h1, h2, where h1 < h2 ≤ Di, j for i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2,
recD(i1, i2, k1, k2, h1, h2) is the 3D rectangle with the corners (i1−1, k1−1, hl),

(i1 − 1, k2, hl), (i2, k1 − 1, hl), (i2, k2, hl), where l = 1, 2, lying within his(D).

123

Algorithmica (2018) 80:136–154 145

3 3 2 2
2 2 2 3

2 1 1 1
1 1 0 0

0 1 2 3 4

1

2

3

4

(a)

3 3

2 2
2 2 2

3

2

1 1 1
1 1

0 0

(b)

Fig. 4 a A matrix D on a grid, and b its corresponding histogram his(D)

• For any n × n matrix D, rD denotes the minimum number of 3D rectangles
recD(i1, i2, k1, k2, h1, h2) which form a partition of his(D).

Note that rD ≤ n2 for any n × n matrix D, as his(D) can be trivially partitioned into
at most n2 3D rectangles, each covering one grid cell.

3.2 Algorithm 1

We shall denote the cardinality of a set S (e.g., S = [k1, k2] ∩ [k′
1, k′

2]) by #S.

Our first geometric algorithm for nonnegative integer matrix multiplication relies
on the following key lemma:

Lemma 3.2 Let PA be a partition of the matrix A into 3D rectangles
recA(i1, i2, k1, k2, h1, h2), and let PB be a partition of the matrix B into 3D rectangles
recB(k′

1, k′
2, j1, j2, h′

1, h′
2). For any 1 ≤ i ≤ n, 1 ≤ j ≤ n, the entry Ci, j of the matrix

product C of A and B is equal to the sum of (h2−h1)(h′
2−h′

1)×#[k1, k2]∩[k′
1, k′

2] over
rectangle pairs recA(i1, i2, k1, k2, h1, h2) ∈ PA, recB(k′

1, k′
2, j1, j2, h′

1, h′
2) ∈ PB

satisfying i ∈ [i1, i2] and j ∈ [j1, j2].
Proof For 1 ≤ l1 < l2 ≤ n and 1 ≤ m1 < m2 ≤ n, let I (l1, l2, m1, m2) be the
n × n 0 − 1 matrix where I (l1, l2, m1, m2)i,k = 1 if and only if l1 ≤ i ≤ l2 and
m1 ≤ k ≤ m2.

Clearly, we have A = ∑
recA(i1,i2,k1,k2,h1,h2)∈PA

(h2−h1)I (i1, i2, k1, k2).Similarly,
we have B = ∑

recB (k′
1,k

′
2, j1, j2,h′

1,h
′
2)∈PB

(h′
2 − h′

1)I (k′
1, k′

2, j1, j2).
It follows that C = A × B is the sum over pairs recA(i1, i2, k1, k2, h1, h2) ∈

PA, recB(k′
1, k′

2, j1, j2, h′
1, h′

2) ∈ PB of (h2 − h1)(h′
2 − h′

1) × I (i1, i2, k1, k2) ×
I (k′

1, k′
2, j1, j2). It remains to observe that (I (i1, i2, k1 + 1, k2) × I (k′

1, k′
2, j1 +

1, j2))i, j = #[k1, k2] ∩ [k′
1, k′

2] if i1 < i ≤ i2 and j1 < j ≤ j2 and it is equal
to zero otherwise. ��

See Fig. 5 for a visualization of Lemma 3.2. The following algorithm relies on
Lemma 3.2 that basically says that for each pair of 3D rectangles,

123

146 Algorithmica (2018) 80:136–154

Fig. 5 An example of how Lemma 3.2 works. The two input matrices correspond to recA(2, 3, 2, 5, 2, 4)
and recB (3, 4, 3, 5, 4, 5), respectively

recA(i1, i2, k1, k2, h1, h2) ∈ PA and recB(k′
1, k′

2, j1, j2, h′
1, h′

2) ∈ PB ,Ci, j should be
increased by (h2−h1)×(h′

2−h′
1)×#[k1, k2]∩[k′

1, k′
2] for i ∈ [i1, i2] and j ∈ [j1, j2].

In Step 4, two identical intervals [i1, i2] corresponding to the left and right edge of the
submatrix of C whose entries should be increased by the aforementioned value are
inserted in the lists Start j1 and End j2 , respectively. In both cases, they are weighted
by the aforementioned value. In Step 5, in iteration j1, the weighted interval [i1, i2]
from Start j1 is inserted into the weighted segment tree U , and in iteration (j2 + 1),
it is removed from U as its copy is in End j2 . In the iterations j = j1, . . . , j2 in Step
5, when the interval [i1, i2] is kept in the weighted segment tree U and the entries of
the submatrix Ci, j , i1 ≤ i ≤ i2, j1 ≤ j ≤ j2, are evaluated, the weight of the interval
contributes to their value.

Algorithm 1 Input: Two n × n matrices A, B with nonnegative integer entries.
Output: The arithmetic matrix product C of A and B.

1. Compute a partition PA of his(A) into 3D rectangles recA(i1, i2, k1, k2, h1, h2)

whose number is within O(1) of the minimum.
2. Compute a partition PB of his(B) into 3D rectangles recB(k′

1, k′
2, j1, j2, h′

1, h′
2)

whose number is within O(1) of the minimum.
3. Initialize an interval tree S on the k- and k′-coordinates of the rectangles in PA and

PB . For each 3D rectangle recA(i1, i2, k1, k2, h1, h2) ∈ PA, insert [k1, k2] with a
pointer to recA(i1, i2, k1, k2, h1, h2) into S.

4. Initialize interval lists Start j , End j , for j = 1, . . . , n. For each rectangle
recB(k′

1, k′
2, j1, j2, h′

1, h′
2) ∈ PB report all intervals [k1, k2] in S that intersect

[k′
1, k′

2]. For each such [k1, k2] with a pointer to recA(i1, i2, k1, k2, h1, h2), insert
the interval [i1, i2] with the weight (h2 − h1) × (h′

2 − h′
1) × #[k1, k2] ∩ [k′

1, k′
2]

into the lists Start j1 and End j2 .

5. Initialize the weighted segment tree U on endpoints 1, . . . , n. For j = 1, . . . , n,

iterate the following steps. For j > 1, remove all weighted intervals [i1, i2] on the
list End j−1 from U. Insert all weighted intervals [i1, i2] on the list Start j into U.

For i = 1, . . . , n, set Ci, j to the value returned by U in response to the weight
query for i (see also Fig. 6).

Lemma 3.3 Let int (PA, PB)be the number of pairs recA(i1, i2, k1, k2, h1, h2) ∈ PA,

recB(k′
1, k′

2, j1, j2, h′
1, h′

2) ∈ PB, for which [k1, k2] ∩ [k′
1, k′

2] 	= ∅. Algorithm 1 runs
in Õ(n2 + int (PA, PB)) = Õ(n2 + rArB) time.

Proof To implement steps 1 and 2 in Õ(n2) time, use the algorithm from Theorem 2.5
in Sect. 2.2. Step 3 can be implemented in Õ(n +rA +rB) = O(n2) time by Fact 1. In

123

Algorithmica (2018) 80:136–154 147

Fig. 6 Illustrating how to fill in
the entries of C column-wise in
Step 5 of Algorithm 1 by
sweeping and updating the
weighted segment tree U from
the left to the right. In particular,
[i1, i2] ∈ Start j2 ∩ End j3
holds

Step 4, the intersection queries to S take Õ(int (PA, PB)) time by Fact 1. In Step 5, the
initialization of the weighted segment tree U takes Õ(n) time by Lemma 3.1. Next,
the updates of the weighted segment tree U take Õ(int (PA, PB)) time by Lemmas
3.1 and 3.2, while computing all columns of C takes Õ(n2) time by Lemma 3.1. ��
Theorem 3.4 The matrix product of two n×n matrices A, B with nonnegative integer
entries can be computed in Õ(n2 + rArB) time.

Proof Algorithm 1 yields the theorem. Its correctness follows from Lemma 3.2 by
the description preceding its pseudocode. The upper time bound follows from Lemma
3.3. ��

3.3 Algorithm 2

When only one of the matrices A and B admits a partition of its 3D histogram into
relatively few 3D rectangles and we have to assume the trivial partition of the other
one into at most n2 3D rectangles, the upper bound of Theorem 3.4 in terms of rA, rB

and n seems too weak. In this case, an upper bound in terms of int (PA, PB) and n
in Lemma 3.3 may be much better. To derive a better upper bound in terms of just
min{rA, rB} and n, we shall design another algorithm based on the slicing of the 3D
histogram admitting a partition into relatively few 3D rectangles. Intuitively, the new
algorithm goes over vertical consecutive slices of the 3D histogram corresponding to
the rows of the input matrix A. It records the changes between two consecutive slices
by identifying the so called differentiating strips for them. Our definitions ensure that
the total number of changes is bounded by O(rA) which allows a running time of
Õ(n(n + rA)).

Weneed now to formalize the newapproach. For an n×n matrix D with nonnegative
integer entries and i = 1, . . . , n, let slicei (D) stand for the part of his(D) between
the two planes perpendicular to the Y -axis whose intersection with the XY plane are
the horizontal lines i − 1 and i on the [0, n]× [0, n] grid. In other words, slicei (D) is
a 3D histogram for the i-th row. Note that if we allow an orthogonal 2D histogram to
have some non-base edges overlapping with its base then slicei (D) can be identified

123

148 Algorithmica (2018) 80:136–154

0 1 2 3 4

3 3

2 2

(a)
0 1 2 3 4

2 2 2

3

(b)

Fig. 7 Let slice1(D) be the 2D histogram on the left and slice2(D) the 2D histogram on the right.
Differentiating strips are shaded. Here, gd(slice1(D), slice2(D)) = 2

with an orthogonal 2D histogram whose non-base edges overlapping with the base
correspond to maximal sequences of consecutive zero entries in the i th row of D. See
Fig. 7 for an example.

By a vertical strip, we shall mean the closed part of the XY plane bounded by
two vertical straight-lines. For a vertical strip s and a slicei (D), k1(s) stands for the
lowest column number of D such that the projection of the cube corresponding to
the entry Di,k1(s) (see Fig. 4) on the XY plane is fully contained in s. Symmetrically,
k2(s) stands for the largest column number of D such that the projection of the cube
corresponding to the entry Di,k2(s) on the XY plane is fully contained in s.

Finally, a vertical strip s is differentiating for two orthogonal histograms H1 and
H2 on the XY plane with a common horizontal (i.e., parallel to the X -axis) base if
it passes through single edges of H1 and H2, that are parallel to the base and do not
overlap. More precisely,

1. for i = 1, 2, s contains exactly one maximal subsegment ei of an edge of Hi

different from and parallel to the base of the histograms, and
2. the subsegments e1 and e2 do not overlap.

We shall also denote the difference between the Y coordinates of e2 and e1 by h(s).
The idea behind our concept of geometric distance between two orthogonal his-

tograms H1 and H2 with a common horizontal base is to capture the number of changes
necessary to transform H1 into H2 or vice versa. It can be regarded as a generalization
of the Hamming distance between two binary sequences. We define the geometric dis-
tance between the two histograms as the number of maximal differentiating (vertical)
strips for the histograms. Next, for slicei (D) and slicek(D), we define the geometric
distance gd(slicei (D), slicek(D)) as that for the corresponding orthogonal 2D his-
tograms placed on the XY plane above the X -axis and to the right of the Y -axis such
that the interval [0, n] on the X -axis forms their common base.

Lemma 3.5 For an n × n matrix D with nonnegative integer entries,∑n−1
i=1 gd(slicei (D), slicei+1(D)) = O(rD) holds.

Proof Consider the partition of hist (D) into at most 4rD 3D rectangles produced by
our 4-approximation algorithm given in the preceding section. Note that assuming that

123

Algorithmica (2018) 80:136–154 149

Fig. 8 An example of how Algorithm 2 fills in the entries in a column of the output matrix

the XY plane is the base plane for hist (D), each face of a 3D rectangle in the partition
that is parallel to the X Z plane, lies on a vertical plane bounding one or two slices of
hist (D).

Next, for any pair of consecutive slices of hist (D), consider the vertical plane
which separates them. In the aforementioned rectangular partition of D, the number
of vertical and/or horizontal edges of the 3D rectangles in the partition which lie on
this separating plane has to be at least proportional to the geometric distance gd(,)

between the two slices. Since any 3D rectangle can contribute with at most four such
vertical and four such horizontal edges lying on the bounding planes between slices,
the lemma follows. (Analogous bounds may also be obtained by using the arguments
from the proof of Theorem 2.5.) ��

Now the idea of our second algorithm is simple. First we precompute differentiating
strips for each pair of consecutive slices of the matrix A. Next,for each column j of
the matrix B, we compute the first entry C1, j in the j-th column of the output matrix
C from scratch. Then, we compute the consecutive Ci+1, j entry by updating the
previous Ci, j entry on the basis of the precomputed differentiating strips. The total
cost of updates for the column j will be proportional to O(rA) by Lemma 3.5.

Algorithm 2 Input: Two n × n matrices A and B with nonnegative integer entries.
Output: The matrix product C of A and B.

1. For i = 1, . . . , n −1, find the differentiating strips for slicei (A) and slicei+1(A),
and for each such strip s determine the indices k1(s) and k2(s), and the differ-
ence h(s). (Note that the interval of entries Ai,k1(s), . . . , Ai,k2(s) in the i-th row
of A is “covered” by s, and h(s) is the difference between the common value
of each entry in Ai,k1(s), . . . , Ai,k2(s) and the common value of each entry in
Ai+1,k1(s), . . . , Ai+1,k2(s)).

2. For j = 1, . . . , n, iterate the following steps:
(a) Initialize a data structure Tj that for a pair k1, k2 of indices reports

∑k2
k1

Bk, j ,

using Fact 2.
(b) Compute C1, j .
(c) For i = 1, . . . , n − 1, iterate the following steps:

i. Set Ci+1, j to Ci, j .
ii. For each differentiating strip s for slicei (A) and slicei+1(A), compute

∑k2(s)
k=k1(s)

Bk, j using Tj and setCi+1, j toCi+1, j +h(s)
∑k2(s)

k=k1(s)
Bk, j (see

Fig. 8 for an illustration).

Lemma 3.6 Algorithm 2 runs in Õ(n(n + rA)) time.

123

150 Algorithmica (2018) 80:136–154

Proof Step 1 can be easily implemented in O(n2) time. Step 2 (a) takes Õ(n) time
according to Fact 2while Step 2 (b) can be trivially implemented in O(n) time. Finally,
based on Step 1, Step 2 (c)-ii takes Õ(gd(slicei (D), slicei+1(D)) time. It follows
that Step 2 (c) can be implemented in Õ(

∑n−1
i=1 gd(slicei (A), slicei+1(A))) time, i.e.,

in Õ(rA) time by Lemma 3.5. Consequently, Step 2 takes Õ(n(n + rA)) time. ��
Theorem 3.7 The arithmetic matrix product of two n × n matrices A, B with non-
negative integer entries can be computed in Õ(n(n + min{rA, rB})) time.

Proof The correctness of Algorithm 2 follows from the observation that a differen-
tiating strip s for slicei (A) and slicei+1(A) yields the difference h(s)

∑k2(s)
k=k1(s)

Bk, j

between Ci+1, j and Ci, j just on the fragment corresponding to Ai,k1(s), . . . , Ai,k2(s)

and Ai+1,k1(s), . . . , Ai+1,k2(s), respectively.
Lemma3.6 yields the upper bound Õ(n(n+rA)) on the running time. The analogous

bound Õ(n(n+rB)) follows from the equalities AB = (BT AT)T , his(B) ≡ his(BT),

and consequently rB = rBT . ��

3.4 Algorithm 3

In Algorithm 2, the linear order in which the Ci, j are updated to Ci+1, j for i =
1, . . . , n − 1, along the row order of the matrix A is not necessarily optimal. The
total number of updates of Ci, j to Ci+1, j for i = 1, . . . , n − 1 is proportional to the
sum of geometric distances between consecutive slices of hist (A), which is O(rA)

by Lemma 3.5. We can think about the latter sum as the cost of a particular line
spanning tree in a complete undirected graph whose vertices are in one-to-one cor-
respondence with the slices of his(A) and where each edge {i, j} in is assigned the
weight gd(slicei (A), slice j (A)). Following the Boolean case [2,5], it may be more
efficient to update Ci, j while traversing a minimum spanning tree for the slices of
his(A) under the geometric distance. Note that the cost of the minimum spanning tree
and hence the total number of updates of entries in the j-th column of C might be
substantially smaller than the cost of the aforementioned line tree and it will never
exceed O(rA). Here, however, we encounter the difficulty of constructing such an
optimal spanning tree or a close approximation in substantially subcubic time. The
next lemma will be useful.

Lemma 3.8 Consider the family of orthogonal planar histograms with the base [0, n]
for any n ≥ 2 and integer coordinates of its vertices in [0, 2K − 2], where K =
O(log n). There is an O(n)-time transformation of any histogram H in the family
into a 0 − 1 string t (H) such that, for any H1 and H2 in the family, gd(H1, H2) ≤
hd(t (H1), t (H2)) ≤ K · gd(H1, H2), where hd(,) stands for the Hamming distance.

Proof Any histogram H in the family is uniquely represented by the vector
(H [1], . . . , H [n]) ∈ {1, . . . , 2K − 1}n , where H [1], . . . , H [n] are the values of Y
coordinates of the points on the “roof” of H increased by one with X coordinates
0.5, 1.5, . . . , n − 0.5 respectively.

For any y ∈ {0, . . . , 2K − 1} denote its binary representation of length exactly K
(padded with leading zeros if necessary) as bin(y).

123

Algorithmica (2018) 80:136–154 151

Let f (H, i) =
{
bin(H [i]), i = 1 ∨ i > 1 ∧ H [i] 	= H [i − 1]
bin(0), otherwise.

The transformation t is then defined as t (H) = f (H, 1) · · · f (H, n). We have
hd(t (H1), t (H2)) = ∑n

i=1 hd(f (H1, i), f (H2, i)) and

gd(H1, H2) =
{
1, H1[1] 	= H2[1]
0, otherwise

+
n∑

i=2

{
1, (H1[i] 	= H1[i − 1] ∨ H2[i] 	= H2[i − 1]) ∧ (H1[i] 	= H2[i])
0, otherwise.

Consider all possibilities that contribute exactly one to gd(H1, H2):

1. H1[1] 	= H2[1]. In this case f (H1, 1) = bin(H1[1]), f (H2, 1) = bin(H2[1]) and
1 ≤ hd(bin(H1[1]), bin(H2[1])) ≤ K .

2. 2 ≤ i ≤ n ∧ H1[i] 	= H1[i −1]∧ H2[i] = H2[i −1]∧ H1[i] 	= H2[i]. In this case
f (H1, i) = bin(H1[i]), f (H2, i) = bin(0) and 1 ≤ hd(bin(H1[i]), bin(0)) ≤ K .

3. 2 ≤ i ≤ n ∧ H1[i] = H1[i − 1] ∧ H2[i] 	= H2[i − 1] ∧ H1[i] 	= H2[i]. See case
2.

4. 2 ≤ i ≤ n ∧ H1[i] 	= H1[i − 1] ∧ H2[i] 	= H2[i − 1] ∧ H1[i] 	= H2[i]. See case
1.

To complete the proof, observe that in all other cases hd(f (H1, i), f (H2, i)) = 0. ��
Fact 3 (Section 3.3 in [6]). For ε > 0, a (1+ε)-approximate minimum spanning tree
for a set of n points in Rd with integer coordinates in O(1) under the L1 or L2 metric
can be computed by a Monte Carlo algorithm in O(dn1+1/(1+ε)) time.

By combining the transformation of Lemma 3.8with Fact 3 applied to the L1 metric
in {0, 1}n and selecting ε = log n, we obtain the following lemma.

Lemma 3.9 Let A be an n × n matrix with nonnegative integer entries in [0, nO(1)].
An O(log2 n)-approximate minimum spanning tree for the set of slices of his(A) under
the gd() distance can be constructed by a Monte Carlo algorithm in Õ(n2) time.

By using Lemma 3.9, we obtain the following generalization of Algorithm 2.

Algorithm 3 Input: Two n × n matrices A and B with nonnegative integer entries in
[0, nO(1)].
Output: The matrix product C of A and B.

1. Find an O(log2 n)-approximate spanning tree S for slicei (A), i = 1, . . . , n, under
the geometric distance and a traversal (i.e., a non-necessarily simple path visiting
all vertices) U of S.

2. For any pair (slicei (A), slicel(A)), where the latter slice follows the former in the
traversal, find the differentiating strips for slicei (A) and slicel(A), and for each
such strip s the indices k1(s) and k2(s), and the difference h(s).

3. For j = 1, . . . , n, iterate the following steps:

123

152 Algorithmica (2018) 80:136–154

(a) Initialize a data structure Tj that for a pair k1, k2 of indices reports
∑k2

k1
Bk, j ,

using Fact 2.
(b) Compute Cq, j where q is the index of the slice from which the traversal U of

S starts.
(c) While following U , iterate the following steps:

i. Set i, l to the indices of the previously traversed slice and the currently
traversed slice, respectively.

ii. Set Cl, j to Ci, j .
iii. For each differentiating strip s for slicei (A) and slicel(A), compute

∑k2(s)
k=k1(s)

Bk, j using Tj and set Cl, j to Cl, j + h(s)
∑k2(s)

k=k1(s)
Bk, j .

Definition 3.10 For an n ×n matrix D with non-negative integer entries in [0, nO(1)],
let MD stand for the minimum cost of a spanning tree of slicei (D), i ∈ [1, n].
Lemma 3.11 Algorithm 3 runs in Õ(n(n + MA)) with high probability.

Proof The approximate minimum spanning tree S in Step 1 can be constructed by
a Monte Carlo algorithm in Õ(n2) time by Lemma 3.9. Its traversal can be easily
found in O(n) time. Since the length of the traversal is linear in n, Step 2 can be
easily implemented in O(n2) time analogously as the corresponding Step 1 in Algo-
rithm 2. Finally, based on Step 2, Step 3 (c)-ii takes Õ(gd(slicei (D), slicel(D)))

time analogously as Step 2 (c)-ii in Algorithm 2. Let U stand for the set of directed
edges forming the traversal of the spanning tree S. It follows that Step 3 (c) can be
implemented in Õ(

∑
(i,l)∈U gd(slicei (A), slicel(A))) time, i.e., in Õ(MA) time by

Lemma 3.9. Consequently, Step 3 takes Õ(n(n + MA)) time. ��
By Lemma 3.11 and a proof analogous to that of Theorem 3.7, we obtain a ran-

domized generalization of Theorem 3.7 for matrices with nonnegative polynomially
bounded integer entries.

Theorem 3.12 Let A, B be two n × n matrices A, B with nonnegative integer
entries in [0, nO(1)]. The arithmetic matrix product of A and B can be computed by a
randomized algorithm in Õ(n(n + min{MA, MBT })) time with high probability.

Proof The correctness of Algorithm 3 analogously as that of Algorithm 2 follows
from the observation that a differentiating strip s for slicei (A) and slicei+1(A) yields
the difference h(s)

∑k2(s)
k=k1(s)

Bk, j between Ci+1, j and Ci, j just on the fragment corre-
sponding to Ai,k1(s), . . . , Ai,k2(s) and Ai+1,k1(s), . . . , Ai+1,k2(s), respectively. Lemma
3.11 yields the upper bound Õ(n(n + MA)). The symmetric one Õ(n(n + MBT))

follows from the equality AB = (BT AT)T . ��

4 Final Remarks

A natural question is: In Theorem 2.5 in Sect. 2.2, would it help to replace the fast
but suboptimal algorithm from Lemma 2.3 by a (slower) algorithm that optimally
rectangulates the 2D projection? The answer is that it may yield improved results in

123

Algorithmica (2018) 80:136–154 153

certain cases, but it would not give a better approximation factor than 4 in general. An
example of this is when the optimal 3D partition consists of k cubes of decreasing sizes
lying on top of each other. Then the 2D projection is k concentric squares of different
sizes and an optimal rectangulation of the corresponding 2D projection consists of
4k − 3 rectangles. Here, the approximation factor tends to 4 as k increases, and we
conclude that the fast algorithm from Lemma 2.3 is good enough.

As mentioned in Sect. 1, the general problem of computing a minimum 3D rec-
tangular partition of an unrestricted orthogonal polyhedron is NP-hard [4]. However,
it is unknown whether the problem is NP-hard or not in the special case where the
input is a 3D histogram. Although the existence of a polynomial-time algorithm for
this particular problem variant would not affect the time complexity of our matrix
multiplication algorithms (because the constant-factor approximations of rA and rB

incurred by Theorem 2.5 are absorbed into the asymptotic running times anyway), it
might be an interesting theoretical issue to resolve.

The 4-approximation algorithm for minimum rectangular partition of a 3D his-
togram in case the histogram is his(D) for an input n × n matrix D with nonnegative
integer entries can be implemented in O(n2) time. Also note that the resulting parti-
tion of his(D) can be used to form a compressed representation of D requiring solely
Õ(rD) bits if the values of the entries in D are nO(1)-bounded.

Our geometric algorithms for integer matrix multiplication can also be applied to
derive faster (1+ε)-approximation algorithms for integer matrix multiplication; if the
range of an input matrix D is [0, nO(1)], then round each entry to the smallest integer
power of (1 + ε) that is not less than the entry. The resulting matrix D′ has only a
logarithmic number of different entry values and hence rD′ may be much less than rD .

We also note that our algorithms and upper time-bounds for integer n × n-matrix
multiplication can be extended to integer rectangular matrix multiplication in a
straightforward way. In particular, if the input matrices A, B have sizes p × q and
q × r, respectively, then the upper time-bounds of Theorems 3.4, 3.7 generalize to
Õ(pq + qr + min{rAr, rB p, rArB}).

The parameters rD and MD can be seen as far-going generalizations of the concept
of matrix sparsity. Note that if D has at most s non-zero entries then rD = O(s). If
rD is low then D can be partitioned into relatively few rectangular blocks of entries
with uniform values. Matrices roughly describing some country or urban landscape
(e.g., in graphics) can have this property. Hence, our algorithms for geometric matrix
multiplications would be especially efficient in implementation of linear transforma-
tions of the aforementioned descriptions. Another example are adjacency matrices D
of uniform disk graphs, induced by point sets of bounded density within a unit square,
for which MD is known to be substantially subquadratic (see Lemma 8 in [10]).

Finally, our geometric algorithms for matrix multiplication can be adapted to com-
pute other matrix product of two integer n × n matrices, e.g., their distance product,
i.e., the matrix product of thematrices over the semi-ring (Z,min,+),within the same
asymptotic complexity. In the case of Algorithm 1, we need to assume that the rec-
tangular partitions of the matrices consist solely of 3D rectangles placed on the base
plane. Then in step 4 of the adapted Algorithm 1, h′

1 = h1 = 0, and we just assign the
weight h1+h2 to the interval [i1, i2].We need also to adapt the weighted segment tree
U in step 5, by assigning to each node of the data structure theminimum (instead of the

123

154 Algorithmica (2018) 80:136–154

sum) of the weights of the intervals it represents. Thus, the answer to a weight query
becomes the minimum of the weights of intervals covering the query point. Since
our 4-approximation algorithm for minimum rectangular partition of a 3D histogram
produces solely partitions satisfying the aforementioned additional assumption, the
asymptotic complexity of the adapted algorithm remains the same. For Algorithms 2
and 3, we need just to replace sums with minima and multiplications with additions
(in step 2(c)-ii of Algorithm 2 and step 3(c)-iii of Algorithm 3, respectively). Also, the
data structure Tj needs to be modified to return the values of partial minima instead
of partial sums in both cases.

Acknowledgements J.J. was funded by The Hakubi Project at Kyoto University. C.L. was supported in
part by Swedish Research Council Grant 621-2011-6179.

References

1. Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. Theory Comput. 8(1),
69–94 (2012)

2. Björklund, A., Lingas, A.: Fast Booleanmatrixmultiplication for highly clustered data. In: Proceedings
of WADS 2001, LNCS, vol. 2125, pp. 258–263

3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and
Applications, 3rd edn. Springer, Santa Clara (2008)

4. Dielissen, V.J., Kaldewaij, A.: Rectangular partition is polynomial in two dimensions but NP-complete
in three. Inf. Process. Lett. 38(1), 1–6 (1991)

5. Ga̧sieniec, L., Lingas, A.: An improved bound on boolean matrix multiplication for highly clustered
data. In: Proceedings of WADS 2003, LNCS, vol. 2748, pp. 329–339

6. Indyk, P.: High-dimensional Computational Geometry. PhD dissertation, Stanford University, Septem-
ber (2000)

7. Keil, J.M.: Polygon Decomposition. Dept. Comput. Sc. Univ. Saskatchewan, Survey (1996)
8. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th ISSAC 2014,

pp. 296–303
9. Lingas, A.: A geometric approach to Boolean matrix multiplication. In: Proceedings of ISAAC 2002,

LNCS, vol. 2518, pp. 501–510
10. Lingas, A., Sledneu, D.: A combinatorial algorithm for all-pairs shortest paths in directed vertex-

weighted graphs with applications to disc graphs. In: Proceedings of SOFSEM 2012, LNCS, pp.
373–384

11. Lipski, W.: Finding a Manhattan path and related problems. Networks 13(3), 399–409 (1983)
12. Mehlhorn, K.: Data Structures and Algorithms 3: Multi-dimensional Searching and Computational

Geometry. EATCS Monographs on Theoretical Computer Science. Springer, Berlin (1984)
13. Muthukrishnan, S., Poosala, V., Suel, T.: On rectangular partitionings in two dimensions: algorithms,

complexity, and applications. In: Proceedings of ICDT’99, LNCS Vol. 1540, pp. 236–256
14. Sack, J.-R., Urrutia, J. (eds.): Handbook of Computational Geometry. Elsevier, Amsterdam (2000)

123

	3D Rectangulations and Geometric Matrix Multiplication
	Abstract
	1 Introduction
	1.1 New Results
	1.2 Organization of the Paper

	2 Rectangular Partitions of 3D Histograms
	2.1 Partitioning an Orthogonal PSLG into 2D Rectangles
	2.2 Partitioning a 3D Histogram into 3D Rectangles

	3 Geometric Algorithms for the Arithmetic Matrix Product
	3.1 Geometric Data Structures and Notation
	3.2 Algorithm 1
	3.3 Algorithm 2
	3.4 Algorithm 3

	4 Final Remarks
	Acknowledgements
	References

