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Abstract
We combine two fundamental, previously studied optimization problems related to the construction
of phylogenetic trees called maximum rooted triplets consistency (MAXRTC) and minimally resolved
supertree (MINRS) into a new problem, which we call q-maximum rooted triplets consistency
(q-MAXRTC). The input to our new problem is a set R of resolved triplets (rooted, binary
phylogenetic trees with three leaves each) and the objective is to find a phylogenetic tree with
exactly q internal nodes that contains the largest possible number of triplets from R. We first prove
that q-MAXRTC is NP-hard even to approximate within a constant ratio for every fixed q ≥ 2, and
then develop various polynomial-time approximation algorithms for different values of q. Next, we
show experimentally that representing a phylogenetic tree by one having much fewer nodes typically
does not destroy too much triplet branching information. As an extreme example, we show that
allowing only nine internal nodes is still sufficient to capture on average 80% of the rooted triplets
from some recently published trees, each having between 760 and 3081 internal nodes. Finally, to
demonstrate the algorithmic advantage of using trees with few internal nodes, we propose a new
algorithm for computing the rooted triplet distance between two phylogenetic trees over a leaf label
set of size n that runs in O(qn) time, where q is the number of internal nodes in the smaller tree,
and is therefore faster than the currently best algorithms for the problem (with O(n log n) time
complexity [SODA 2013, ESA 2017]) whenever q = o(log n).
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1 Introduction

Background. Phylogenetic trees are used in biology to represent evolutionary relationships.
The leaves in such a tree correspond to species that exist today and internal nodes to ancestor
species that existed in the past. An important problem when studying the evolution of
species is, given some data describing the species, to construct a phylogenetic tree that
supports the input data as much as possible. The supertree approach [3] deals with the
challenging problem of constructing a reliable phylogenetic tree for a large set of species by
combining several accurate trees for small, overlapping subsets of the species into one final
tree. Depending on the type of data that is available and the type of trees that we want to
construct, we obtain several variants of the same problem.
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Figure 1 Let L = {1, 2, 3, 4, 5} and R = {45|3, 25|3, 13|5, 24|5, 23|1}. In this example no tree T

such that |R ∩ rt(T )| = 5 exists. Left figure: optimal solution for MAXRTC with value 4. Right
figure: optimal solution for 3-MAXRTC with value 3.

Problem Definition. A rooted phylogenetic tree is a rooted unordered tree in which every
leaf has a distinct label and every internal node has at least two children. In this article, for
simplicity we use the word “tree” to refer to a “rooted phylogenetic tree”. A resolved triplet
is a binary tree with three leaves. The resolved triplet with leaf labels x, y, and z where z is
closest to the root is denoted by xy|z. From now on when referring to a “triplet” we mean a
“resolved triplet”. Let T be a tree on a leaf label set L of size n. For a node u ∈ T , deg(u) is the
number of children of u and T (u) is the subtree induced by u and all the proper descendants
of u. For two nodes u and v in T , lca(u, v) is the lowest common ancestor node of u and v in T .
We say that the triplet xy|z is induced by T if lca(x, z) = lca(y, z) and lca(x, y) 6= lca(x, z).
Let rt(T ) be the set of all triplets induced by T . Given a set R of triplets, we say that R is
consistent with T , or equivalently T is consistent with R, if R ⊆ rt(T ).

Given a set R of triplets on a leaf label set L of size n, in the q-maximum rooted triplets
consistency problem, denoted q-MAXRTC, the goal is to find a tree T with exactly q internal
nodes such that |R∩ rt(T )| is maximized, i.e., the total number of triplets induced by T that
are also in R is as large as possible. An example can be seen in Figure 1.

Let A be an algorithm for any maximization problem. Given an input instance I,
let opt(I) be the value of an optimal solution and A(I) the value of the solution returned
by A. Let 0 ≤ r ≤ 1. We say that A is an r-approximation algorithm with relative ratio r,
ifA(I) ≥ r·opt(I) for any I. Similarly, A is an r-approximation algorithm with absolute ratio r,
if A(I) ≥ r · |I| for any I. In particular, for q-MAXRTC we have that A(I) ≥ r · |R|. From
here on and unless otherwise stated, when we refer to any ratio r, we imply an absolute ratio.

Previous Work. Aho et al. [1] proposed a polynomial-time algorithm, called BUILD, that
can determine if there exists a tree inducing all triplets from an input R, and if such a tree
exists, output it. As observed by Bryant [6], the BUILD algorithm does not always produce a
tree with the minimal number of internal nodes. In fact, BUILD might return a tree with Ω(n)
more internal nodes than needed [12], which is undesirable because unnecessary internal nodes
may suggest false groupings of the leaves, also known as spurious novel clades [3]. Moreover,
scientists typically look for the simplest possible explanation for some given observations and
would prefer a tree that makes as few additional statements as possible about evolutionary
relationships that are not supported by the input data. This motivates the minimally resolved
phylogenetic supertree (MINRS) problem, where the output is a tree (if one exists) inducing
all triplets from R while having the minimum number of internal nodes. The decision version
of MINRS is NP-complete for q ≥ 4 and polynomial-time solvable for q ≤ 3 [12], where q is
the total number of internal nodes in the output tree. An exact exponential-time algorithm
for MINRS and experimental results for the non-optimality of BUILD for MINRS were given
in [14]. For the special case of caterpillar trees (trees in which every internal node has at
most one non-leaf child), MINRS is polynomial-time solvable for any q [12].

The above problems only consider finding trees that induce all triplets from R. How-
ever, in situations where such a tree cannot be constructed, e.g., due to a single error in
the input triplets, it is still useful to build a tree that induces as many of the triplets
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from R as possible. This has been formalized as the maximum rooted triplets consistency
problem (MAXRTC). Bryant [6] showed that MAXRTC is NP-hard and Ga̧sieniec et al. [10]
proposed a polynomial-time top-down 1

3 -approximation algorithm that always returns a
caterpillar tree. Byrka et al. [8] showed that a bottom-up algorithm by Wu [21] can be mod-
ified to also obtain a polynomial-time 1

3 -approximation algorithm. In [7], Byrka et al. gave
a 1

3 -approximation algorithm by derandomizing a randomized algorithm. In Section 3 below,
we refer to the algorithm in [10] as One-Leaf-Split (OLS) and the algorithm in [8] as Wu’s
algorithm (WU). For more results related to the computational complexity of MAXRTC, see [8].

Motivation. The existing approximation algorithms for MAXRTC typically produce trees
with an arbitrary number of internal nodes. For example, the algorithms in [7, 8] always
produce a tree with n − 1 internal nodes and the algorithm in [10], n − 1 for certain R.
However, due to the issue of spurious novel clades [3] mentioned above, biologists may prefer
to build a supertree with few internal nodes that is still consistent with a large number of
input triplets, which leads to the new problem q-MAXRTC introduced in this paper. More
precisely, q-MAXRTC can be regarded as a combination of MINRS and MAXRTC that
models how well the triplet branching information contained in the set of input triplets can
be preserved while forcing the size of the output tree to be bounded by a user-specified
parameter q. On a high level, q-MAXRTC is related to the problem of compressing a large
data file into a small data file; as an analogy, consider the widely used JPEG compression
method for images. Both JPEG and q-MAXRTC are examples of lossy compression where
the user controls a parameter yielding a trade-off between the size of the compressed data (the
number of bits for JPEG and the number of internal nodes for q-MAXRTC) and the amount
of preserved information (the image quality for JPEG and the number of induced triplets
in R for q-MAXRTC). Finally, in the design of phylogenetic tree comparison algorithms,
trees with fewer internal nodes sometimes admit faster running times. For example, given two
trees built on the same leaf label set of size n, the fastest known algorithms for computing
the so-called rooted triplet distance between the two trees takes O(n logn) time [4, 5], but
if at least one of the input trees has O(1) internal nodes then the time complexity can be
reduced to O(n); see Section 5. As the available published trees get larger and larger (the
total number of species on Earth was recently estimated to be 1 trillion [17]), to make their
comparison practical, it may become necessary to approximate them using trees with fewer
internal nodes while keeping enough triplet branching structure to represent them accurately.

New Results and Outline of the Article. Section 2 shows that q-MAXRTC is NP-hard
for every fixed q ≥ 2 and gives some inapproximability results. Section 3 describes our new
approximation algorithms. Section 4 provides implementations and our experimental results.
Section 5 presents a new algorithm for computing the rooted triplet distance between two
trees. Finally, Section 6 contains some open problems. For a summary of previous and new
results related to q-MAXRTC refer to the table below. Due to space constraints, some proofs
and experimental results have been deferred to the journal version.

Year Reference Deterministic q Approximation Type

1999 Ga̧sieniec et al. [10] yes unbounded 1/3 absolute
2010 Byrka et al. [7, 8] yes n− 1 1/3 absolute
2019 new [Section 3.1] no 2 1/2 relative
2019 new [Section 3.1] yes 2 1/4 relative
2019 new [Theorem 7] yes 2 4/27 absolute
2019 new [Theorem 9] yes q ≥ 3 1/3− 4/(3(q + q mod 2)2) absolute

WABI 2019



1:4 Building a Small and Informative Phylogenetic Supertree

2 Computational Complexity of q-MAXRTC

In this section, we study the computational complexity of q-MAXRTC. We first address the
NP-hardness of q-MAXRTC, and then present some inapproximability results.

I Theorem 1. q-MAXRTC is NP-hard for every fixed q ≥ 2.

Proof. We consider the known NP-hard problem MAX q-CUT [15], in which the input is an
undirected graph G = (V,E) and the goal is to find a partition (A1, A2, . . . , Aq) of V such
that the total number of edges connecting two nodes residing in different sets, i.e., the size
of the cut, is maximized. We prove that q-MAXRTC is NP-hard by reducing MAX q-CUT
to q-MAXRTC as follows: let L = V ∪ {z} and R = {xz|y, yz|x : {x, y} ∈ E}. We claim
that there exists a cut (A1, A2, . . . , Aq) of size k in G if and only if there exists a solution
to q-MAXRTC that is consistent with k triplets from R. We now prove the claim.

First, assume that there exists a cut (A1, A2, . . . , Aq) of size k in G. We construct a
tree T that is rooted at the vertex a1 with additional internal nodes a2, . . . , aq such that ai+1
is a child of ai for 1 ≤ i ≤ q− 1. For i ∈ {1, 2, . . . , q}, we attach |Ai| leaves bijectively labeled
by Ai as children of ai, and the vertex z is added as a child of aq. Consider any edge {x, y}
in the cut. By the definition of a cut, x ∈ Ai and y ∈ Aj for two different i, j ∈ {1, 2, . . . , q}.
If i < j, then yz|x will be consistent with T , since lca(y, z) = aj is a proper descendant
of lca(x, y) = lca(x, z) = ai. Similarly, if i > j, then xz|y will be consistent with T . For
every edge in the cut, exactly one triplet will be consistent with T , so T will be consistent
with exactly k triplets from R.

Conversely, assume that there exists a tree T with q internal nodes a1, a2, . . . , aq that
is consistent with k triplets from R. Let Ai = {x : x is a child of ai} \ {z, a1, a2, . . . , aq}
for 1 ≤ i ≤ q. Define S = R ∩ rt(T ). For each xz|y ∈ S, clearly x and y belong to
different sets Ai and Aj for some i, j ∈ {1, 2, . . . , q}, and thus the corresponding edge {x, y}
contributes one to the size of the cut, making the size of the cut |S| = k. J

From the inapproximability of MAXCUT [11], we obtain the following corollary:

I Corollary 2. Unless P=NP, 2-MAXRTC cannot be approximated in polynomial time within
a relative ratio of 16/17 + ε, for any constant ε > 0.

From the inapproximability of MAX q-CUT [15], we obtain the following corollary:

I Corollary 3. Unless P=NP, for any q ≥ 3, it holds that q-MAXRTC cannot be approximated
in polynomial time within a relative ratio of 1− 1/(34q) + ε, for any constant ε > 0.

3 Approximability of q-MAXRTC

Intuitively, a tree with a larger number of internal nodes should be able to induce more
triplets from a given R. The next lemma shows that this is indeed so, and upper bounds the
total number of triplets that can be induced. Define opt(q) to be the maximum number of
triplets that can be consistent with a tree T with q internal nodes.

I Lemma 4. Let 2 ≤ q′ ≤ q ≤ n− 1. We have that opt(q′) ≤ opt(q) ≤ d q−1
q′−1eopt(q′).

Proof. We start by showing that opt(q′) ≤ opt(q). Let T ′ be the tree with q′ internal nodes
that induces opt(q′) triplets from R. We can create a tree T with q internal nodes that
induces at least as many triplets from R as follows. Let T = T ′. While T does not have q
internal nodes, let u ∈ T such that deg(u) > 2 and u1, u2 be two children of u. Create an
internal node u12, make u1 and u2 the children of u12 and u12 the child of u.
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Figure 2 An example. Let T be the tree on the left with 9 internal nodes. The tree T ′ on the
right with 3 internal nodes is created by deleting all internal nodes in T except W = {a, d, g}.

To show the second half of the inequality, proceed as follows. Define the delete operation
on any non-root node u in a tree as the operation of making the children of u become children
of the parent of u, and then removing u and all edges incident to u. Let T be the tree that
induces opt(q) triplets from R. Let t = ab|c be a triplet induced in T that is also in R.
Anchor t in lca(a, b). Let W = {u1, u2, . . . , uq′} be any set of q′ internal nodes in T such
that the root of T is included in W . Create a tree T ′ with q′ internal nodes by letting T ′ be
a copy of T and applying the delete operation to every internal node of T ′ not in W . Note
that for a node u in T such that u ∈ W , every triplet anchored in u will also be induced
by T ′. An example can be found in Figure 2.

Let T ′1, T ′2, . . . , T ′λ be trees that are built like T ′, but in a way such that every internal
node u ∈ T except r(T ), corresponds to an internal node of exactly one such tree. Observe
that λ = d q−1

q′−1e.We can create these trees with the following procedure:
Store all internal nodes of T except r(T ) in the ordered set S, in any order from left to
right and set j = 1.
If |S| ≥ q′ − 1, pick and remove from S the first q′ − 1 internal nodes to define W , and
construct T ′j . Otherwise, pick the remaining nodes in S to define W and create T ′j just
like T ′ but with |S| = |W | nodes instead of q′ − 1. Set j = j + 1.
if |S| = 0 stop. Otherwise go to the previous step.

We then have: |rt(T ) ∩R| = opt(q) ≤
∑λ
i=1 |rt(T ′i ) ∩R| ≤ λopt(q′) = d q−1

q′−1eopt(q′). J

3.1 Approximation Algorithms Based on MAX 3-CSP
In this subsection, we consider polynomial-time approximation algorithms. MAX 3-AND is
a Boolean satisfiability problem in which we are given as input a logical formula consisting
of a set of clauses, each being a conjunction (AND) of three literals formed from a set of
Boolean variables, and the goal is to assign each Boolean variable a True/False-value so
that the total number of satisfied clauses is maximized. Both MAX 3-AND and the well-
known MAX 3-SAT problem are special cases of the MAX 3-CSP problem [22], where a clause
can be an arbitrary function over three literals. The following lemma shows that 2-MAXRTC
can be reduced to MAX 3-AND in polynomial time while preserving the approximation ratio.

I Lemma 5. If MAX 3-AND can be approximated within a factor of r, then 2-MAXRTC
can also be approximated within a factor of r.

Lemma 5 allows every approximation algorithm for MAX 3-AND to be used to approx-
imate 2-MAXRTC. For MAX 3-AND, Zwick [22] presented a randomized 1

2 -approximation
algorithm with relative ratio based on semi definite programming. Trevisan [19] presented a
deterministic 1

4 -approximation algorithm with relative ratio based on linear programming. A
deterministic algorithm based on local search by Alimonti [2], would satisfy ≥ 1

8 |C| number
of clauses, giving a 1

8 -approximation ratio for 2-MAXRTC. Since this ratio is absolute, from
Lemma 4 this algorithm also gives a 1

8 -approximation ratio for q-MAXRTC, where q ≥ 3.

WABI 2019
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3.2 Approximation Algorithms Based on Derandomization
This subsection also assumes that all approximation algorithms run in polynomial time. Re-
ducing 2-MAXRTC to MAX 3-AND can produce a deterministic 1

8 -approximation algorithm
for q-MAXRTC, however from Lemma 4, we should be able to capture more triplets by
allowing more internal nodes. The algorithms based on MAX 3-AND cannot be directly
extended to support Lemma 4. We propose a new deterministic algorithm for q-MAXRTC
that achieves a 4

27 -approximation ratio, based on a randomized algorithm for 2-MAXRTC,
and then show how to extend it to get better approximation ratios for higher values of q.
Note that the only available related algorithm based on derandomization by Byrka et al. [7],
always constructs a binary tree on n leaves, i.e. the case q < n−1 is not considered. Moreover,
as we will show below, our derandomization procedure is highly optimized for trees instead
of the more complex phylogenetic networks (for a definition see Section 2 of [7]).

I Lemma 6. There exists a randomized 4
27 -approximation algorithm for q-MAXRTC.

Proof. Let R = {r1, . . . , r|R|} be the set of triplets and L = {x1, . . . , xn} the leaf label set.
Build a tree T with two internal nodes, with a being the root and b the child of the root. Make
every leaf xi ∈ L with probability 2

3 a child of b and probability 1
3 a child of a. Let Yj be a

random variable that is 1 if rj ∈ rt(T ) and 0 otherwise. Let W =
∑|R|
j=1 Yj . For the expected

number of triplets consistent with T we have E[W ] =
∑|R|
j=1 E[Yj ] =

∑|R|
j=1

4
27 = 4

27 |R|. J

I Theorem 7. There exists a deterministic 4
27 -approximation algorithm for q-MAXRTC

that runs in O(|R|) time.

Proof. We derandomize the algorithm in Lemma 6 with the method of conditional expect-
ations [20] in a way that differs from Byrka et al. [7], where the main focus is the general
case of phylogenetic networks. In our method, the leaves x1, . . . , xn are scanned from left to
right, and each leaf is deterministically assigned to either be the child of b, denoted xi ← b,
or the child of a, denoted xi ← a. The leaves are assigned in a way, such that after every
assignment the expected value of the solution is preserved. From probability theory we
have E[W ] = 1

3E[W |x1 ← a] + 2
3E[W |x1 ← b]. We choose n1 = a or n1 = b such that

E[W |x1 ← n1] = max(E[W |x1 ← a], E[W |x1 ← b]). Then E[W |x1 ← n1] ≥ E[W ] = 4
27 |R|.

Suppose that the first i leaves have been assigned to n1, . . . , ni. Let Ni contain those assign-
ments, i.e., Ni = {x1 ← n1, . . . , xi ← ni}. To find the assignment for xi+1 we follow the same
approach as that for x1, i.e., we have E[W |Ni] = 1

3E[W |Ni, xi+1 ← a] + 2
3E[W |Ni, xi+1 ← b]

and then ni+1 is chosen so that E[W |Ni+1] = max(E[W |Ni, xi+1 ← a], E[W |Ni, xi+1 ← b]).
By induction, we then get that E[W |Ni+1] ≥ E[W |Ni] ≥ · · · ≥ 4

27 |R|.
To compute E[W |Ni], we use the fact that E[W |Ni] =

∑|R|
j=1 Pr[rj ∈ rt(T )|Ni], where

Pr[rj ∈ rt(T )|Ni] can be computed in O(1) time (see procedure PR2() of Algorithm 1). A
trivial implementation that scans the leaves and for every possible assignment of a leaf xi, com-
putes the expected value E[W |Ni] by scanning the entire set R would require O(n|R|) time.

We can achieve a more efficient implementation (see procedure 2-MAXRTC-FAST() of
Algorithm 1) that would require O(|R|) time, by maintaining for every leaf xi ∈ L, a list of
all the triplets that xi is part of, denoted R[xi]. At the beginning of the i-th iteration of
the first for loop in Algorithm 1, the value of the variable prev is E[W |Ni−1]. To determine
the assignment for leaf xi, we need to compute E[W |Ni−1, xi ← a] and E[W |Ni−1, xi ← b],
and for this we use the second for loop. At the end of the execution of the second for
loop, the value of E[W |Ni−1, xi ← a] will be stored in the variable aValue and the value of
E[W |Ni−1, xi ← b] in the variable bValue. To compute aValue (resp. bValue), we initialize it
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Algorithm 1 O(|R|) 4
27 -approximation algorithm for q-MAXRTC based on 2-MAXRTC.

1: procedure PR2(xy|z) . Computing Pr[xy|z ∈ rt(T )|Ni]
2: if x← a or y ← a or z ← b then return 0
3: p = 4/27
4: if x 6= ∅ and x← b then p = 3p/2 . x 6= ∅ meaning that x has been assigned
5: if y 6= ∅ and y ← b then p = 3p/2
6: if z 6= ∅ and z ← a then p = 3p
7: return p

8: procedure 2-MAXRTC-FAST(R) . The main procedure
9: prev = 4|R|/27 . Storing E[W |N0], where N0 = ∅
10: for i = 1 to n do
11: aValue = prev . To compute E[W |Ni−1, xi ← a]
12: bValue = prev . To compute E[W |Ni−1, xi ← b]
13: for j = 1 to |R[xi]| do
14: xi ← ∅
15: aValue = aValue −PR2(R[xi][j])
16: bValue = bValue −PR2(R[xi][j])
17: xi ← a

18: aValue = aValue + PR2(R[xi][j])
19: xi ← b

20: bValue = bValue + PR2(R[xi][j])
21: xi ← b

22: prev = bValue
23: if aValue > bValue then
24: xi ← a

25: prev = aValue

to the value of prev, and then for every triplet in the list R[xi], we subtract the contribution of
that triplet to the value of prev when xi ← ∅, and add its new contribution by having xi ← a

(resp. xi ← b). Since every triplet inR will be part of 3 lists, every triplet will induce O(1) calls
to the procedure PR2() of Algorithm 1, giving the O(|R|) final bound of the algorithm. J

In the following theorem, we prove that the best possible absolute approximation ratio
for 2-MAXRTC is 4

27 , making the approximation algorithm in Theorem 7 optimal when
considering algorithms with absolute approximation ratios.

I Theorem 8. For any ε > 0, there exists some n and set R of triplets on a leaf label set of
size n, such that the approximation ratio ≥ 4

27 + ε for 2-MAXRTC is impossible.

Proof. For any n, let Ln = {1, 2, . . . , n} andRn = {ab|c, ac|b, bc|a : a, b, c ∈ L, |{a, b, c}| = 3}.
Since |Ln| = n, we have |Rn| = 3

(
n
3
)
. Next, we construct a tree T with two internal

nodes, which is rooted at the vertex a with an internal node b (b is a child of a). Let
A = {x : x is a child of a} \ {b} and B = {x : x is a child of b}. Assume that m = |A|.
Then |B| = n −m and |rt(T ) ∩ Rn| = m(m−1

2 )(n −m). By taking derivatives, we obtain
that T is consistent with the largest number of triplets when m = n+1+

√
n2−n+1
3 . For

that given m, we then have |rt(T )∩Rn| =
(
n+1+

√
n2−n+1
3

)(
n−2+

√
n2−n+1
6

)( 2n−1−
√
n2−n+1

3
)

and lim
n→∞

|rt(T )∩Rn|
|Rn| = 4

27 . J

WABI 2019
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To obtain an algorithm that has a better approximation ratio for q ≥ 3, we allow
the output tree T to have q internal nodes {u1, . . . , uq}. Every internal node uj ∈ T

has a probability p(uj), which is the probability of a fixed leaf being assigned to that
node. Given that

∑q
j=1 p(uj) = 1, we can obtain a randomized algorithm, the ana-

lysis of which follows from Lemma 6. Let E[W ] be the expected value of that ran-
domized algorithm. Like in Theorem 7, we can derandomize the algorithm to obtain
a E[W ]
|R| -approximation ratio. The only difference in the proof is that the total number

of possible assignments is q instead of 2, i.e., given Ni, we choose ni+1 for xi+1 such
that E[W |Ni, xi+1 ← ni+1] = max(E[W |Ni, xi+1 ← u1, . . . , E[W |Ni, xi+1 ← uq). The prob-
lem is thus reduced to finding a tree with q internal nodes and a choice of probabilit-
ies p(u1), . . . , p(uq) such that E[W ] > 4

27 |R|.

I Theorem 9. Given q ≥ 3, there exists a randomized algorithm for q-MAXRTC that achieves
a ( 1

3 −
4

3(q+q mod 2)2 )-approximation. The algorithm can be derandomized while preserving
the approximation ratio. The running time of the deterministic algorithm is O(q|R|).

4 Implementation and Experiments

We used the C++ programming language to implement the algorithm from Theorem 7
for 2-MAXRTC, and the algorithm from Theorem 9 for q-MAXRTC when q > 2. The
implementation is publicly available at https://github.com/kmampent/qMAXRTC. Below, we
describe some experiments on both simulated and real datasets and the results.

Simulated Dataset. The input to q-MAXRTC is a set of triplets R and a parameter q. We
define the following types of sets for R:

dense consistent (abbreviated dc): if |R| =
(
n
3
)
and R is consistent with a tree T

containing n− 1 internal nodes. The tree T is created using the uniform model [18].
probabilistic: if |R| = n2 and R is a set of triplets on n leaf labels created as follows. After
building a binary tree T on n leaves following the uniform model, start extracting triplets
from T to add into R. For every extracted triplet xy|z, permute the leaves uniformly at
random with probability p. Depending on whether p = 0.25, p = 0.50 or p = 0.75 the
abbreviations we use are prob25, prob50, and prob75 respectively.

In the experiments of this dataset, the performance of an algorithm for any fixed q, n, and
dataset model is defined as its mean approximation ratio, taken over 100 randomly generated
instances of size n. Figure 3 compares the performance of q-MAXRTC, WU, and OLS in the dc
and prob50 models, for small values of q and n at most 1000. In both models, the larger
the value of q, the better the performance of q-MAXRTC. Moreover, the improvement in
performance decreases as the value of q increases, which is expected. For the dc dataset, which
contains no conflicting triplets, the performance is much better. Significantly, when q = 9
we can capture close to 80% of the triplets even if the input tree contains as many as 1000
leaves. When compared against WU & OLS, we can see that while WU & OLS perform better,
the difference in performance is small compared to the difference in the number of internal
nodes used by the algorithms.

Real Dataset. We considered five trees from recently published papers ([9] and [16]).
From [9] we used the trees from the supplementary datasets 2 and 4, denoted nmS2 and nmS4
respectively. From [16] we used the trees from the supplementary datasets 1, 2, and 4,
denoted poS1, poS2, and poS4 respectively. All trees are binary except nmS2 and nmS4.
However, we removed the leaf that is a child of nmS2’s root to make nmS2 binary. Similarly,

https://github.com/kmampent/qMAXRTC
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Figure 3 Performance of {3, 5, 7, 9}-MAXRTC compared to WU and OLS in the dc and prob50
models. Every data point corresponds to the mean of 100 runs. Observe that the performance
of 9-MAXRTC is very close to that of WU & OLS, even though 9-MAXRTC uses only 9 internal
nodes, while WU uses exactly n− 1 internal nodes and OLS at most n− 1.

Table 1 Performance of q-MAXRTC on real datasets. Every cell corresponds to the best ratio (as
defined below) over 100 runs. The size of each leaf label set is written inside the parenthesis.

q poS1(761) poS2(761) poS4(841) nmS4(1869) nmS2(3082) Average

2 0.27 0.36 0.43 0.41 0.29 0.35
3 0.67 0.54 0.48 0.41 0.46 0.51
5 0.77 0.81 0.67 0.66 0.72 0.73
7 0.82 0.75 0.76 0.62 0.73 0.74
9 0.86 0.71 0.87 0.80 0.79 0.81
11 0.91 0.89 0.87 0.79 0.87 0.87

we removed the two leaves that are children of nmS4’s root to make nmS4 binary as well. The
total number of leaves in nmS2, nmS4, poS1, poS2, and poS4 is 1869, 3082, 761, 761, and 841.
Since the trees are binary, the total number of internal nodes is 1868, 3081, 760, 760, and 840.

For a tree T ∈ {nmS2, nmS4, poS1, poS2, poS4} with n leaf labels, let Tq be the tree pro-
duced by the new algorithm. Let D(T, Tq) be the rooted triplet distance between T and Tq
(for a definition see Section 5 below). The performance of q-MAXRTC in the experiments of
this dataset is then defined by the ratio S(T, Tq)/

(
n
3
)
, where S(T, Tq) =

(
n
3
)
−D(T, Tq). To

compute this ratio efficiently, we used the rooted triplet distance implementation in [5]. We
measured the performance of q-MAXRTC for q ∈ {2, 3, 5, 7, 9, 11}. Every experiment con-
sisted of 100 runs, and in each run n2 triplets were picked at random from the corresponding
tree to define the set R. We made sure that each leaf from a given tree appeared in R so
that the size of the leaf label set was as big as the leaf label set of the tree.

Table 1 shows the best ratios achieved, and the corresponding trees in Newick format can be
found at https://github.com/kmampent/qMAXRTC. As can be seen from the results, larger
number of internal nodes tend to improve performance. Significantly, with only 9 nodes we
can capture between 71% and 86% of the triplets in each case, and with 11 nodes between 79%
and 91%. When q > 11, we did not observe a significant improvement in performance.

WABI 2019
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5 Motivation for q-MAXRTC: Faster Computation of the Rooted
Triplet Distance

Finally, we give an example of the algorithmic advantage of using phylogenetic trees with
few internal nodes. More precisely, we develop an algorithm for computing the rooted triplet
distance between two phylogenetic trees in O(qn) time, where q is the number of internal
nodes in the smaller tree and n is the number of leaf labels.

Problem Definition. The rooted triplet distance between two trees T1 and T2 built on the
same leaf label set, is the total number of trees with three leaves that appear as embedded
subtrees in T1 but not in T2. Intuitively, two trees with very similar branching structure will
share many embedded subtrees, so the rooted triplet distance between them will be small.

Formally, let T1 and T2 be two trees built on the same leaf label set of size n. We need
to distinguish between two types of triplets. The first type is the resolved triplet, previously
defined in Section 1. In addition, since T1 and T2 can be non-binary, we also need to define
the fan triplet. We call t = x|y|z a fan triplet, if t is a tree with the three leaves x, y,
and z, and one internal node that is the root of t. The definition of when a resolved triplet
is consistent with a tree T follows from Section 1. Similarly to a resolved triplet, we say
that the fan triplet x|y|z is consistent with a tree T , where x, y, and z are leaves in T ,
if lca(x, y) = lca(x, z) = lca(y, z). In this section only, we use the word triplet to refer to
both fan and resolved triplets. Moreover, when we refer to a fan triplet x|y|z or a resolved
triplet xy|z induced by a tree T , there exists a left to right ordering of x, y, and z in T .

Let D(T1, T2) be the rooted triplet distance between T1 and T2. Define S(T1, T2) to be
the total number of triplets that are consistent with both T1 and T2, commonly referred to
as shared triplets. For the rooted triplet distance we then have D(T1, T2) =

(
n
3
)
− S(T1, T2).

The Algorithm. It is known how to compute D(T1, T2) in O(n logn) time [4, 5]. Below, we
show how to compute D(T1, T2) in O(qn) time, which is faster than [4, 5] when q = o(logn).
There is a preprocessing step and a counting step.

Preprocessing. The leaves in T2 are relabeled according to their discovery time by a depth
first traversal of T2, in which the children of a node are discovered from left to right. Notice
that for a node v in T2, the labels of the leaves in T2(v) will correspond to a continuous
range of numbers. Afterwards, we transfer the new labels of the leaves in T2 to the leaves
in T1. For T1, we define the q × n table A such that for a node u in T1 we have A[u][`] = 1
if ` is a leaf in T1(u), and A[u][`] = 0 otherwise. We construct another table C to answer
one dimensional range queries as follows. For 1 ≤ i ≤ n we have C[u][i] =

∑i
j=1 A[u][j]

and C[u][0] = 0. The C table will be used to answer queries asking for the total number
of leaves in T2(v) that are also in T1(u) in O(1) as follows. Let [l, . . . , r] be the continuous
range of leaf labels in T2(v). The answer to the query will be exactly C[u][r]− C[u][l − 1].

Counting. We extend the technique introduced in [5]. Let t = xy|z or t = x|y|z be a
triplet induced by a tree T , which in our problem can be either T1 or T2. We anchor t in
the edge {v, c}, where v = lca(x, y) and c is the child of v such that T (v) contains y. The
following lemma shows that every triplet induced by T is anchored in exactly one edge of T .

I Lemma 10. Let T be a tree in which every triplet t with the three leaves x, y, and z

is anchored in the edge {u, c}, such that u = lca(x, y) and T (c) contains y. Every triplet
induced by T is anchored in exactly one edge of T .

Suppose that a node v in T2 has the children v1, . . . , vj , . . . , vi where 1 < j ≤ i. To
capture all triplets anchored in edge {v, vj} of T2, we color the leaves of T2 as follows. Let
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every leaf in T2(v1), . . . , T2(vj−1) have the color red, every leaf in T2(vj) have the color
blue, every leaf in T2(vj+1), . . . , T2(vi) have the color green and every other leaf in T2
have the color white. The red, blue, and green colors will be used to capture fan triplets
and the red, blue, and white colors, resolved triplets. By the relabeling scheme of the
leaves, we have that the red, blue, and green colors correspond to exactly one continuous
range of leaf labels each. Let those ranges be R = [ared, . . . , a′red], B = [ablue, . . . , a′blue],
and G = [agreen, . . . , a′green], for the colors red, blue, and green respectively. Note that
ablue = a′red + 1 and if G is non-empty, agreen = a′blue + 1. Finally, note that a leaf has the
color white if and only if it does not have any other color.

We are now going to describe how to compute the total number of triplets anchored
in some edge {v, v′} in T2, where v is the parent of v′, that are also consistent with T1,
denoted S{v,v

′}(T1, T2). Let S{v,v
′}

r (T1, T2) denote the shared resolved triplets anchored
in {v, v′} and similarly let S{v,v

′}
f (T1, T2) denote the shared fan triplets. Note that we

have S{v,v′}(T1, T2) = S
{v,v′}
r (T1, T2) + S

{v,v′}
f (T1, T2). The following lemma gives an al-

gorithm for computing S{v,v′}(T1, T2) efficiently.

I Lemma 11. Given the ranges R, B, and G that define a coloring of the leaves in T2 accord-
ing to an edge {v, v′} of T2, there exists a O(q)-time algorithm for computing S{v,v′}(T1, T2).

Proof. Since both T1 and T2 are built on the same leaf label set, a coloring of the leaves
of T2 defines a coloring of the leaves of T1. Suppose that a node u in T1 has the m
children u1, . . . , um, where m ≥ 2. Some children could be leaves and others, internal nodes.
Let I denote the set containing the children that are internal nodes and L the children that
are leaves. Let T (I) = {T (u) : u ∈ I}. Define the following counters:
1. uwhite: total number of leaves with the white color in T1 but not in T1(u).
2. ui, for i ∈ {red,blue, green}: total number of leaves with color i in T1(u).
3. uiI , for i ∈ {red,blue, green}: total number of leaves with color i in T (I).
4. uiL, for i ∈ {red,blue, green}: total number of leaves with color i in L.
5. ui,j , for (i, j) ∈ {(red, blue), (red, green), (blue, green)}: total number of pairs of leaves

in T (I), such that one has color i, the other has color j, and both come from different
subtrees attached to u.

6. ured, blue, green: total number of leaf triples in T (I), such that one leaf has the color red,
another the color blue, another the color green, and they all come from different subtrees
attached to u.
To compute these counters for every internal node of T1 efficiently, a depth first traversal

is applied on T1 while making sure that we only visit internal nodes. For every such internal
node u visited, a simple dynamic programming procedure is used to compute the counters
of u in O(|I|) time, thus making the total time required to compute all counters O(q).

Algorithm 2 shows how to compute S{v,v
′}

f (T1, T2) and S{v,v
′}

r (T1, T2) in O(q) time as
well. It counts shared triplets by considering for every internal node u in T1, all possible cases
for the location of the leaves of a shared triplet anchored in any edge {u, u′} in T1, where u
is the parent of u′. More precisely, for the leaves of a fan triplet anchored in any edge {u, u′}
in T1, we have the following cases: (1) all three leaves come from T (I), (2) two leaves come
from T (I) and one from L, (3) one leaf comes from T (I) and two from L, and (4) all three
leaves come from L. Similarly, for the leaves of a resolved triplet we have the following
cases: (1) two leaves come from T (I) and one not from T1(u), (2) one leaf comes from T (I),
one from L, and one not from T1(u), and (3) two leaves come from L and one not from T1(u).
Since S{v,v′}(T1, T2) = S

{v,v′}
r (T1, T2) + S

{v,v′}
f (T1, T2), the statement follows. J
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Algorithm 2 Computing S
{v,v′}
f (T1, T2) and S

{v,v′}
r (T1, T2) in O(q) time.

1: procedure S{v,v
′}

f (T1, T2)
2: fans = 0
3: for every internal node u in T1 do
4: fans = fans + ured,blue,green
5: fans = fans + ured,blue · ugreenL + ured,green · ublueL + ublue,green · uredL
6: fans = fans+uredI ·ublueL ·ugreenL +ublueI ·uredL ·ugreenL +ugreenI ·uredL ·ublueL
7: fans = fans + uredL · ublueL · ugreenL
8: return fans

9: procedure S{v,v
′}

r (T1, T2)
10: resolved = 0
11: for every internal node u in T1 do
12: resolved = resolved + ured,blue · uwhite
13: resolved = resolved + uredI · ublueL · uwhite + ublueI · uredL · uwhite
14: resolved = resolved + uredL · ublueL · uwhite
15: return resolved

Algorithm 3 O(qn)-time algorithm for computing D(T1, T2).

1: procedure D(T1, T2)
2: Compute the q × n table C.
3: For every u in T1 compute the parameter ul, which is the number of leaves in T (u).
4: sharedTriplets = 0
5: for every internal node v in T2 do
6: for every child v′ of v do
7: Let R, B, and G be the color ranges defined by edge {v, v′}
8: Given C, R, B, and G, compute the counters of T1 according to Lemma 11
9: sharedTriplets = sharedTriplets + S

{v,v′}
f (T1, T2)+S{v,v

′}
r (T1, T2)

10: return
(
n
3
)
− sharedTriplets

In Algorithm 3 we show how to compute D(T1, T2). From the preprocessing step,
line 2 requires O(qn) time. Line 3 is performed by a depth first traversal of T1, thus
requiring O(n) time. From Lemma 11, lines 7-9 require O(q) time. Since we also have
that

∑
v∈T2

deg(v) = O(n), the total time required to compute D(T1, T2) is O(qn). The
correctness is ensured by Lemma 10, thus we obtain the following theorem:

I Theorem 12. The rooted triplet distance between two rooted phylogenetic trees T1 and T2
built on the same leaf label set of size n, can be computed in O(qn) time, where q is the total
number of internal nodes in T1.

An implementation of the algorithm in C++ is available at https://github.com/
kmampent/qtd. Preliminary experiments indicate that our prototype implementation uses
less space and is faster than the state-of-the-art, optimized implementation of the O(n logn)-
time algorithm from [5] for large inputs, e.g., when n = 1, 000, 000 and q ≤ 50. Details will
be reported in the full version of the paper.

https://github.com/kmampent/qtd
https://github.com/kmampent/qtd
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Figure 4 Let R = {12|3, 13|4, 24|5}. (a) The optimal tree for 2-MAXRTC induces 2 triplets
from R. (b) The tree returned by the BUILD algorithm from [1]. (c) The best tree obtainable by
contracting all internal edges except one in the tree from (b) induces only 1 triplet from R, so this
method is not optimal for 2-MAXRTC.

6 Open Problems

The optimal polynomial-time approximation ratio for any fixed q ≥ 3 is an open problem, as
well as the existence of algorithms achieving that ratio. Moreover, for the special case where
all the triplets in R are consistent with a tree T , the computational complexity of q-MAXRTC
is an open problem as well. Note that just applying BUILD [1] to obtain such a T and then
trying every bipartition of L induced by an edge of T fails to produce an optimal solution
to 2-MAXRTC (see Figure 4 for a counterexample). Another open problem is the existence of
approximation algorithms for q-MAXRTC in the weighted case, where each triplet in R has
a weight and the objective is to build a tree that maximizes the total weight of the triplets
induced from R. This addresses the case where some triplets in R are more important than
others. Moreover, another open problem is the following: given a set of triplets R on a leaf
label set of size n and a parameter `, build a tree T with ` leaves such that |rt(T ) ∩ R|
is maximized. Just like q-MAXRTC is a combination of MINRS and MAXRTC, this new
problem is a combination of the maximum agreement supertree problem studied in [13] and
MAXRTC. Finally, for the rooted triplet distance computation, a major open problem [4, 5]
is whether it can be computed in O(n) time. When q = O(1), our proposed algorithm runs
in O(n) time. If q1 is the total number of internal nodes of one tree and q2 of the other, is it
possible to obtain an algorithm with a O(q1q2 + n) running time?
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