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We combine two fundamental optimization problems related to the construction of 
phylogenetic trees called maximum rooted triplets consistency and minimally resolved supertree
into a new problem, which we call q-maximum rooted triplets consistency (q-MAXRTC). It 
takes as input a set R of rooted, binary phylogenetic trees with three leaves each and asks 
for a phylogenetic tree with exactly q internal nodes that contains the largest possible 
number of trees from R. We prove that q-MAXRTC is NP-hard to approximate within 
a constant, develop polynomial-time approximation algorithms for different values of q, 
and show experimentally that representing a phylogenetic tree by one having much fewer 
nodes typically does not destroy too much branching information. To demonstrate the 
algorithmic advantage of using trees with few internal nodes, we also propose a new 
algorithm for computing the rooted triplet distance that is faster than the existing algorithms 
when restricted to such trees.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

Phylogenetic trees are used in biology to represent evolutionary relationships [14]. The leaves in such a tree correspond 
to species that exist today and internal nodes to ancestor species that existed in the past. Phylogenetic trees are also used 
in linguistics to deduce and visualize evolutionary relationships between natural languages [28].

An important problem when studying the evolution of species is, given some data describing the species, to construct 
a phylogenetic tree that supports the input data as much as possible. The supertree approach [6,13,17] deals with the 
challenging problem of constructing a reliable phylogenetic tree for a large set of species by combining several accurate 
trees for small, overlapping subsets of the species into one final tree called a supertree. Depending on the type of data that 
is available and the type of tree that should be constructed, one obtains several variants of the problem. In particular, many 
special cases where all of the input phylogenetic trees are required to have exactly the same set of leaf labels have been 
investigated in detail since the early 1970s [1]; in such problems, the output supertree is referred to as a consensus tree (see, 

✩ A preliminary version of this article appeared in Proceedings of the Nineteenth International Workshop on Algorithms in Bioinformatics (WABI 2019), LIPIcs, 
Vol. 143, Article No. 1, pp. 1:1–1:14, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2019.

* Corresponding author.
E-mail addresses: jj@i.kyoto-u.ac.jp (J. Jansson), kmampent@cs.au.dk (K. Mampentzidis), thekkumpadan@math.su.se (T.P. Sandhya).
https://doi.org/10.1016/j.ic.2023.105082
0890-5401/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2023.105082
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2023.105082&domain=pdf
mailto:jj@i.kyoto-u.ac.jp
mailto:kmampent@cs.au.dk
mailto:thekkumpadan@math.su.se
https://doi.org/10.1016/j.ic.2023.105082


J. Jansson, K. Mampentzidis and T.P. Sandhya Information and Computation 294 (2023) 105082
Fig. 1. Let L = {1, 2, 3, 4, 5} and R = {12|3, 24|1, 34|2, 35|2, 45|3}. In this example, no tree T such that |R ∩ rt(T )| = 5 exists. Left figure: optimal solution 
for MAXRTC with value 4. Right figure: optimal solution for 3-MAXRTC with value 3.

e.g., [10]). This article considers a new problem variant in which the input trees do not have identical leaf label sets, but 
the output supertree must have exactly q internal nodes for some fixed integer q.

1.2. Problem definition

A rooted phylogenetic tree is a rooted, unordered tree in which every leaf has a unique label and every internal node has 
at least two children. A resolved triplet is a binary rooted phylogenetic tree with three leaves. In this article, for simplicity 
we use the word “tree” to refer to a “rooted phylogenetic tree” and “triplet” to refer to a “resolved triplet”. Also, we identify 
each leaf in a tree with its leaf label so that, e.g., a leaf labeled by x will be referred to by x. The triplet with leaves x, y, 
and z in which z is located the closest to the root is denoted by xy|z.

Let T be a tree. For any node u in T , deg(u) is the number of children of u and T (u) is the subtree induced by u and all 
proper descendants of u. For any two nodes u and v in T , lca(u, v) is the lowest common ancestor node of u and v in T . 
A triplet xy|z is said to be induced by T or consistent with T if x, y, and z are three leaves in T and lca(x, z) = lca(y, z) and 
lca(x, y) �= lca(x, z) hold in T . Let rt(T ) be the set of all triplets induced by T . For any set R of triplets, if R ⊆ rt(T ) then 
we say that R is consistent with T , or equivalently, that T is consistent with R.

In the q-maximum rooted triplets consistency problem, abbreviated q-MAXRTC, the input is a set R of triplets over a leaf 
label set L and the objective is to find a tree T leaf-labeled by L containing exactly q internal nodes such that the value 
of |R ∩ rt(T )| is maximized, i.e., the number of triplets induced by T that also belong to R must be as large as possible. 
An example of an instance of q-MAXRTC can be seen in Fig. 1. Throughout this article, we will denote the cardinality of the 
leaf label set L of the input R by n.

Let A be any algorithm for a maximization problem. Given an input instance I , let opt(I) be the value of an optimal 
solution and A(I) the value of the solution returned by A. Let 0 ≤ r ≤ 1. We say that A is an r-approximation algorithm with 
relative ratio r, if A(I) ≥ r · opt(I) for any I . Similarly, A is an r-approximation algorithm with absolute ratio r, if A(I) ≥ r · |I|
for any I . In particular, for q-MAXRTC we have that A(I) ≥ r · |R|. From here on and unless otherwise stated, when we refer 
to any ratio r, we imply an absolute ratio.

1.3. Previous work

Aho et al. [2] proposed a polynomial-time algorithm, called BUILD, that can determine if there exists a tree inducing 
all triplets from an input R, and if such a tree exists, output it. As observed by Bryant [9], the BUILD algorithm does not 
always produce a tree with the minimal number of internal nodes. In fact, BUILD might return a tree with �(n) more 
internal nodes than needed [19], which is undesirable because unnecessary internal nodes may suggest false groupings of 
the leaves, also known as spurious novel clades [6]. Moreover, scientists typically look for the simplest possible explanation 
for some given observations and would in many cases prefer a tree that makes as few additional statements as possible 
about evolutionary relationships that are not supported by the input data (for example, to construct a supertree for stony 
corals, Kerr [24] combined trees from 28 published studies, and when multiple trees were provided in a study without any 
clear preference, he would choose the least resolved one on the assumption that it gave “the most conservative estimates 
of relationship”). This motivates the minimally resolved phylogenetic supertree (MINRS) problem, where the output is a tree 
(if one exists) inducing all triplets from R while having the minimum number of internal nodes. The decision version of 
MINRS is NP-complete for q ≥ 4 and polynomial-time solvable for q ≤ 3 [19], where q is the total number of internal nodes 
allowed in the output tree. An exact exponential-time algorithm for MINRS and experimental results for the non-optimality 
of BUILD for MINRS were given in [22]. For the special case of caterpillar trees (trees in which every internal node has at 
most one non-leaf child), MINRS is polynomial-time solvable [19].

The above problems only consider finding trees that induce all triplets from R. However, in situations where such a tree 
cannot be constructed, e.g., due to a single error in the input triplets, it is still useful to build a tree that induces as many 
of the triplets from R as possible. This has been formalized as the maximum rooted triplets consistency problem (MAXRTC). 
Bryant [9] showed that MAXRTC is NP-hard and Ga̧sieniec et al. [15] proposed a polynomial-time top-down 1

3 -approximation 
algorithm that always returns a caterpillar tree. Byrka et al. [12] showed that a bottom-up algorithm by Wu [32] can be 
modified to also obtain a polynomial-time 1

3 -approximation algorithm. In [11], Byrka et al. gave a polynomial-time 1
3 -

approximation algorithm by derandomizing a randomized algorithm. In Section 4 below, we refer to the algorithm in [15]
as One-Leaf-Split (OLS) and the algorithm in [12] as the modified Wu algorithm (Mod-Wu). For more results related to the 
computational complexity of MAXRTC, see [12].
2
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Table 1
Previous and new results for computing q-MAXRTC. The abbreviations “abs.” and “rel.” correspond to “absolute” and “relative” respectively.

Year Reference Deterministic q Approximation Type

1999 Ga̧sieniec et al. [15] yes unbounded 1/3 abs.

2010 Byrka et al. [11,12] yes n − 1 1/3 abs.

2022 new [Section 3.1] no 2 1/2 rel.

2022 new [Section 3.1] yes 2 1/4 rel.

2022 new [Theorem 3.1] yes 2 4/27 abs.

2022 new [Theorem 3.3] yes q ≥ 3 1/3 − 4/(3(q + q mod 2)2) abs.

1.4. Motivation

The existing approximation algorithms for MAXRTC generally produce trees with an arbitrary number of internal nodes. 
For example, the algorithms in [11,12] always produce a tree with n − 1 internal nodes, and the algorithm in [15] produces 
a tree with n − 1 internal nodes for certain R. However, due to the issue of spurious novel clades [6] mentioned above, 
biologists may prefer to build a supertree with few internal nodes that is still consistent with a large number of input 
triplets, which leads to the new problem q-MAXRTC introduced in this article. More precisely, q-MAXRTC can be regarded 
as a combination of MINRS and MAXRTC that models how well the triplet branching information contained in the set of 
input triplets can be preserved while forcing the size of the output tree to be bounded by a user-specified parameter q. 
Note that by the problem definition, some input branching structure usually has to be discarded and the objective is to do 
it in a least destructive way.

On a high level, q-MAXRTC is comparable to the problem of compressing a large data file into a small data file. As an 
analogy, consider the widely used JPEG compression method for images. Both JPEG and q-MAXRTC are examples of lossy 
compression where the user controls a parameter yielding a trade-off between the size of the compressed data (the number 
of bits for JPEG and the number of internal nodes for q-MAXRTC) and the amount of preserved information (the image 
quality for JPEG and the number of induced triplets in R for q-MAXRTC).

Finally, in the design of phylogenetic tree comparison algorithms, trees with fewer internal nodes sometimes admit 
faster running times. For example, given two trees built on the same leaf label set of size n, the fastest known algorithms 
for computing the so-called rooted triplet distance between the two trees takes O(n log n) time [7,8], but if at least one of 
the input trees has O(1) internal nodes then the time complexity can be reduced to O(n); see Section 5. As the available 
published trees get larger and larger (the total number of species on Earth was recently estimated to potentially be as many 
as one trillion [26]), to make their comparison practical, it may be necessary to approximate them using trees with fewer 
internal nodes while keeping enough triplet branching structure to represent them accurately.

1.5. New results and outline of the article

In Section 2, we show that q-MAXRTC is NP-hard for every fixed q ≥ 2 and give some inapproximability results. Section 3
describes our approximation algorithms. In Section 4, we provide implementations, and present some experimental results 
showing that representing a tree by one having much fewer nodes typically does not destroy too much triplet branching 
information. As an extreme example, we show that allowing only nine internal nodes is still sufficient to capture on av-
erage 80% of the rooted triplets from some recently published trees, each having between 760 and 3081 internal nodes. 
Section 5 presents an O(qn)-time algorithm for computing the rooted triplet distance between two trees, where n is the 
size of the leaf label set in the two trees and q the number of internal nodes in the smaller tree, and provides an imple-
mentation of it. Finally, Section 6 contains some concluding remarks and open problems. For a summary of previous and 
new results related to q-MAXRTC, refer to Table 1.

2. Computational complexity of q-MAXRTC

In this section, we study the computational complexity of q-MAXRTC. We first establish the NP-hardness of q-MAXRTC, 
and then present some inapproximability results.

Theorem 2.1. q-MAXRTC is NP-hard for every fixed q ≥ 2.

Proof. Consider the known NP-hard problem MAX q-CUT [23], in which the input is an undirected graph G = (V , E) and 
the goal is to find a partition (A1, A2, . . . , Aq) of V such that the total number of edges connecting two vertices residing 
in different sets, i.e., the size of the cut, is maximized. We prove that q-MAXRTC is NP-hard by reducing MAX q-CUT to q-
MAXRTC as follows: Let L = V ∪ {z} and R = {xz|y, yz|x : {x, y} ∈ E}. We claim that there exists a cut (A1, A2, . . . , Aq) of 
size k in G if and only if there exists a solution to q-MAXRTC that is consistent with k triplets from R. We now prove the 
claim.
3
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Fig. 2. Increasing the number of internal nodes by one without destroying any triplets.

First, assume that there exists a cut (A1, A2, . . . , Aq) of size k in G . We construct a tree T that is rooted at a node a1 with 
additional internal nodes a2, . . . , aq such that ai is a child of ai−1 for 2 ≤ i ≤ q. For i ∈ {1, 2, . . . , q}, |Ai| leaves bijectively 
labeled by Ai are attached as children of ai , and the leaf z is added as a child of aq . Consider any edge {x, y} in the cut. By 
the definition of a cut, x ∈ Ai and y ∈ A j for two different i, j ∈ {1, 2, . . . , q}. If i < j, then yz|x will be consistent with T , 
since lca(y, z) = a j is a proper descendant of lca(x, y) = lca(x, z) = ai . Similarly, if i > j, then xz|y will be consistent with T . 
For every edge in the cut, exactly one triplet from R will be consistent with T , so in total, T will be consistent with exactly 
k triplets from R.

Conversely, assume that there exists a tree T with q internal nodes a1, a2, . . . , aq that is consistent with k triplets from 
R. Define Ai = {x : x is a child of ai} \ {z, a1, a2, . . . , aq} for 1 ≤ i ≤ q and let S = R ∩ rt(T ). For each xz|y ∈ S , clearly x and 
y belong to different sets Ai and A j for some i, j ∈ {1, 2, . . . , q}, and thus the corresponding edge {x, y} contributes one to 
the size of the cut, making the size of the cut |S| = k. �

From the inapproximability of MAXCUT [16], we obtain the following corollary:

Corollary 2.1. Unless P=NP, 2-MAXRTC cannot be approximated in polynomial time within a relative ratio of 16/17 + ε , for any 
constant ε > 0.

From the inapproximability of MAX q-CUT [23], we obtain the following corollary:

Corollary 2.2. Unless P=NP, for any q ≥ 3, it holds that q-MAXRTC cannot be approximated in polynomial time within a relative ratio 
of 1 − 1/(34q) + ε , for any constant ε > 0.

Remark 1. Recall from Section 1 that MINRS is polynomial-time solvable if restricted to caterpillar trees [19]. In contrast, 
the proof of Theorem 2.1 shows that q-MAXRTC remains NP-hard even in this special case.

3. Approximability of q-MAXRTC

Intuitively, a tree with a larger number of internal nodes should be able to induce more triplets from a given R. The 
next lemma shows that this is indeed so, and upper bounds the total number of triplets that can be induced. Define opt(q)

to be the maximum number of triplets from R that can be consistent with a tree T with q internal nodes.

Lemma 3.1. For any integers q, q′ satisfying 2 ≤ q′ ≤ q ≤ n − 1, we have opt(q′) ≤ opt(q) ≤ � q−1
q′−1 �opt(q′).

Proof. We start by showing that opt(q′) ≤ opt(q). Let T ′ be a tree with q′ internal nodes that induces opt(q′) triplets from 
R. We can create a tree T with q internal nodes that induces at least as many triplets from R as follows.

• Let T = T ′ .
• While T does not have q internal nodes, repeat the following steps:

– Select any node u ∈ T with deg(u) > 2. (Such a node must exist because if every internal node only had two children 
then the number of internal nodes would be n −1, which contradicts the fact that T has fewer than q ≤ n −1 internal 
nodes.)

– Let u1, u2 be any two children of u.
– Create an internal node u12, and make u1 and u2 the children of u12 and u12 the child of u.
An example of the construction can be found in Fig. 2.

To show the second part of the inequality, proceed as follows. Define the delete operation on any non-root node u in a 
tree as the operation of making the children of u become children of the parent of u, and then removing u and all edges 
incident to u. Let T be a tree with q internal nodes that induces opt(q) triplets from R and let W be any subset of the set 
of internal nodes from T such that W includes the root of T . Suppose that we create a tree T ′ by letting T ′ be a copy of T
and applying the delete operation to every internal node of T ′ not in W . See Fig. 3 for an example. Consider any triplet ab|c
induced by a tree to be anchored in the node lca(a, b). Then, if ab|c is anchored in a node u in T , where u ∈ W , it is also 
anchored in u in T ′ and u will still be a proper descendant of lca(a, c) in T ′ because lca(a, c) in T ′ lies somewhere on the 
4
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Fig. 3. Let T be the tree on the left with eight internal nodes and let W = {a, d, g}. The tree T ′ on the right with three internal nodes is created by deleting 
all internal nodes in T except the ones in W .

path from the root of T ′ to the parent of u in T ′ . Thus, for every node u in T such that u ∈ W , all triplets anchored in u
will also be induced by T ′ .

Now, define λ = � q−1
q′−1 � and use the following procedure to build λ trees T ′

1, T
′
2, . . . , T

′
λ like in the description of T ′ above, 

each having at most q′ internal nodes and with the property that every internal node u ∈ T except the root corresponds to 
an internal node of exactly one such tree:

• Store all internal nodes of T except the root in a list S in any order, and let j = 1.
• Initialize W to be a set containing the root of T only. If |S| ≥ q′ − 1, remove the first q′ − 1 elements from S and insert 

them into W ; otherwise, remove all remaining elements from S and insert them into W . Construct T ′
j by taking a copy 

of T and applying the delete operation to every internal node not in W . Let j = j + 1.
• If |S| = 0, stop. Otherwise, go to the previous step.

We then have: |rt(T ) ∩R| = opt(q) ≤ ∑λ
i=1 |rt(T ′

i ) ∩R| ≤ λ · opt(q′) = � q−1
q′−1 � · opt(q′). �

3.1. Polynomial-time approximation algorithms based on MAX 3-CSP

MAX 3-AND is a Boolean satisfiability problem in which we are given as input a logical formula consisting of a set of 
clauses, each being a conjunction (AND) of three literals formed from a set of Boolean variables, and the goal is to assign 
each Boolean variable a True/False-value so that the total number of satisfied clauses is maximized. Both MAX 3-AND and 
the well-known MAX 3-SAT problem are special cases of the MAX 3-CSP problem [33], where a clause can be an arbitrary 
function over three literals. The following lemma shows that 2-MAXRTC can be reduced to MAX 3-AND in polynomial time 
while preserving the approximation ratio.

Lemma 3.2. If MAX 3-AND can be approximated within a factor of r, then 2-MAXRTC can also be approximated within a factor of r.

Proof. We present a reduction from 2-MAXRTC to MAX 3-AND. Given a set of triplets R built on the leaf label set L, we 
construct an instance of MAX 3-AND as follows: let V = L be the set of variables and C = {x ∧ y ∧ z̄ : xy|z ∈ R} the set of 
clauses. We claim that there exists a solution to MAX 3-AND that satisfies k clauses from C if and only if there exists a 
solution to 2-MAXRTC that is consistent with k triplets from R. We now prove this claim.

First, suppose that there exists an assignment φ on V that satisfies a set S of clauses from C , where |S| = k. Let 
A = ⋃

x∧y∧z̄∈S {z} and B = ⋃
x∧y∧z̄∈S{x, y}. Observe that A ∩ B = ∅, which can be argued as follows. Take any c ∈ A ∩ B . 

By the definition of A, c̄ is True in φ. This means that c = False in φ, while c ∈ B implies that c = True in φ, leading to a 
contradiction. Next, we construct a tree T with root a and an internal node b that is a child of a that is consistent with 
k triplets from R. The elements in A and B are added as children of a and b respectively. The set of all k triplets of the 
form {xy|z : x ∧ y ∧ z̄ ∈ S} is consistent with T , since lca(x, y) = b and lca(x, z) = lca(y, z) = a.

Conversely, assume that T is a tree consistent with a set S ′ of k triplets from R. Let a be the root of T and b the 
internal node of T that is a child of a. Let B = {c : c is a child of b} and A = {c : c is a child of a} \ {b}. We assign c = True
for every c ∈ B and c = False for every c ∈ A. Then, for every x, y ∈ B and z ∈ A, the corresponding clause x ∧ y ∧ z̄ is 
satisfied. Hence, all clauses corresponding to the triplets in S ′ are satisfied. �

Lemma 3.2 allows every approximation algorithm for MAX 3-AND to be used to approximate 2-MAXRTC. For MAX 3-
AND, Zwick [33] presented a randomized polynomial-time 1

2 -approximation algorithm with relative ratio based on semi 
definite programming. Trevisan [30] presented a deterministic polynomial-time 1

4 -approximation algorithm with relative 
ratio based on linear programming. A deterministic polynomial-time algorithm based on local search by Alimonti [3], would 
satisfy ≥ 1

8 |C | number of clauses, giving a 1
8 -approximation ratio for 2-MAXRTC. Since this ratio is absolute, from Lemma 3.1

this algorithm also gives a 1 -approximation ratio for q-MAXRTC, where q ≥ 3.
8
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3.2. Polynomial-time approximation algorithms based on derandomization

Reducing 2-MAXRTC to MAX 3-AND can produce a polynomial-time deterministic 1
8 -approximation algorithm for q-

MAXRTC, however from Lemma 3.1, we should be able to capture more triplets by allowing more internal nodes. The 
algorithms based on MAX 3-AND cannot be directly extended to support Lemma 3.1. We propose a new deterministic 
polynomial-time algorithm for q-MAXRTC that achieves a 4

27 -approximation ratio, based on a randomized algorithm for 2-
MAXRTC, and then show how to extend it to get better approximation ratios for higher values of q. Note that Byrka et al.
previously used a similar derandomization technique in [11]; however, the time complexity of their method (Theorem 1 
in [11]) is worse than Theorem 3.1 below since we have optimized the derandomization procedure for trees rather than 
the more complex phylogenetic networks studied in their article (for a definition, see Section 2 of [11]). Furthermore, when 
restricted to trees, the method of Byrka et al. only considers binary trees on n leaves and thus does not allow cases where 
q < n − 1.

Lemma 3.3. There exists a randomized polynomial-time 4
27 -approximation algorithm for q-MAXRTC.

Proof. Let R = {r1, . . . , r|R|} be the set of triplets and L = {x1, . . . , xn} the leaf label set. Build a tree T with two internal 
nodes, with a being the root and b the child of the root. Make every leaf xi ∈ L with probability 2

3 a child of b and 
probability 1

3 a child of a. Let Y j be a random variable that is 1 if r j ∈ rt(T ) and 0 otherwise. Let W = ∑|R|
j=1 Y j . For the 

expected number of triplets consistent with T we have E[W ] = ∑|R|
j=1 E[Y j] = ∑|R|

j=1
4

27 = 4
27 |R|. �

Theorem 3.1. There exists a deterministic polynomial-time 4
27 -approximation algorithm for q-MAXRTC that runs in O(|R|) time.

Proof. We derandomize the algorithm in Lemma 3.3 with the method of conditional expectations [31] in a way 
that differs from Byrka et al. [11], where the main focus is the general case of phylogenetic networks. In our 
method, the leaves x1, . . . , xn are scanned from left to right, and each leaf is deterministically assigned to either 
be the child of b, denoted xi ← b, or the child of a, denoted xi ← a. The leaves are assigned so that after ev-
ery assignment, the expected value of the solution does not decrease. From probability theory we have E[W ] =
1
3 E[W |x1 ← a] + 2

3 E[W |x1 ← b]. We choose n1 = a or n1 = b such that E[W |x1 ← n1] = max(E[W |x1 ← a], E[W |x1 ← b]). 
Then E[W |x1 ← n1] ≥ E[W ] = 4

27 |R|. Suppose that the first i leaves have been assigned to n1, . . . , ni . Let those assign-
ments be contained in Ni , i.e., we have that Ni = {x1 ← n1, . . . , xi ← ni}. To find the assignment for xi+1 we follow the 
same approach as that for x1, i.e., we have E[W |Ni] = 1

3 E[W |Ni, xi+1 ← a] + 2
3 E[W |Ni, xi+1 ← b] and then ni+1 is chosen 

so that E[W |Ni+1] = max(E[W |Ni, xi+1 ← a], E[W |Ni, xi+1 ← b]). By induction, we then get that E[W |Ni+1] ≥ E[W |Ni] ≥
· · · ≥ 4

27 |R|.
To compute E[W |Ni], we use the fact that E[W |Ni] = ∑|R|

j=1 Pr[r j ∈ rt(T )|Ni], where Pr[r j ∈ rt(T )|Ni] can be com-
puted in O(1) time (see procedure PR2() in Algorithm 1). A direct implementation that scans all the leaves and for every 
possible assignment of a leaf xi , computes the expected value E[W |Ni] by scanning the entire set R (see procedure 
2-MAXRTC-SLOW() in Algorithm 1) would require O(n|R|) time.

Algorithm 1 O(n|R|)-time 4
27 -approximation algorithm for q-MAXRTC based on 2-MAXRTC (Theorem 3.1).

1: procedure PR2(xy|z) � Computing Pr[xy|z ∈ rt(T )|Ni ]
2: if x ← a or y ← a or z ← b then return 0
3: p = 4/27
4: if x �= ∅ and x ← b then p = 3p/2 � x �= ∅, thus x has been assigned

5: if y �= ∅ and y ← b then p = 3p/2

6: if z �= ∅ and z ← a then p = 3p

7: return p

8: procedure 2-MAXRTC-SLOW(R) � The main procedure
9: for i = 1 to n do

10: xi ← ∅
11: for i = 1 to n do
12: aValue = 0 � To compute E[W |Ni−1, xi ← a]
13: bValue = 0 � To compute E[W |Ni−1, xi ← b]
14: for j = 1 to |R| do
15: xi ← a
16: aValue = aValue + PR2(R[ j])
17: xi ← b
18: bValue = bValue + PR2(R[ j])
19: xi ← b
20: if aValue > bValue then xi ← a
6
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Algorithm 2 O(|R|) 4
27 -approximation algorithm for q-MAXRTC based on 2-MAXRTC.

1: procedure 2-MAXRTC-FAST(R) � The main procedure
2: for i = 1 to n do
3: xi ← ∅
4: prev = 4|R|/27 � Storing E[W |N0], where N0 = ∅
5: for i = 1 to n do
6: aValue = prev � To compute E[W |Ni−1, xi ← a]
7: bValue = prev � To compute E[W |Ni−1, xi ← b]
8: for j = 1 to |F [xi ]| do
9: xi ← ∅

10: aValue = aValue − PR2(F [xi ][ j])
11: bValue = bValue − PR2(F [xi ][ j])
12: xi ← a
13: aValue = aValue + PR2(F [xi ][ j])
14: xi ← b
15: bValue = bValue + PR2(F [xi ][ j])
16: xi ← b
17: prev = bValue
18: if aValue > bValue then
19: xi ← a
20: prev = aValue

We can achieve a more efficient implementation (see procedure 2-MAXRTC-FAST() in Algorithm 2) that runs in O(|R|)
time, by maintaining for every leaf xi ∈ L, a list of all the triplets from R that xi is part of, denoted F [xi]. At the beginning 
of the i-th iteration of the first for-loop in Algorithm 2, the value of the variable prev is E[W |Ni−1]. To determine the 
assignment for leaf xi , we need to compute E[W |Ni−1, xi ← a] and E[W |Ni−1, xi ← b], and for this we use the second 
for-loop. At the end of the execution of the second for-loop, we have that the value of E[W |Ni−1, xi ← a] will be stored 
in the variable aValue and the value of E[W |Ni−1, xi ← b] in the variable bValue. To compute aValue (resp. bValue), we 
initialize it to the value of prev, and then for every triplet in the list F [xi], we subtract the contribution of that triplet to 
the value of prev when xi ← ∅, and add its new contribution by having xi ← a (resp. xi ← b). Since every triplet in R will 
be part of three lists, every triplet induces O(1) calls to the procedure PR2() in Algorithm 1, giving the O(|R|) final bound 
of 2-MAXRTC-FAST(). �

In the following theorem, we prove that the best possible absolute approximation ratio for 2-MAXRTC is 4
27 , making the 

approximation algorithm in Theorem 3.1 optimal when considering algorithms with absolute approximation ratios.

Theorem 3.2. For any ε > 0, there exists some n and set R of triplets on a leaf label set of size n, such that the approximation ratio 
≥ 4

27 + ε for 2-MAXRTC is impossible.

Proof. For any n, let Ln = {1, 2, . . . , n} and Rn = {ab|c, ac|b, bc|a : a, b, c ∈ L, |{a, b, c}| = 3}. Since |Ln| = n, we have 
|Rn| = 3

(n
3

)
. Construct a tree T with two internal nodes, which is rooted at the vertex a with an internal node b (i.e., b is 

a child of a). Let B = {c : c is a child of b} and A = {c : c is a child of a} \ {b}. Assume that m = |B|. Then |A| = n − m and 
|rt(T ) ∩ Rn| = m(m−1

2 )(n − m). By taking derivatives, we obtain that T is consistent with the largest number of triplets 

when m = n+1+
√

n2−n+1
3 . For that given m, we then have |rt(T ) ∩ Rn| = (n+1+

√
n2−n+1
3

)(n−2+
√

n2−n+1
6

)( 2n−1−
√

n2−n+1
3

)

and lim
n→∞

|rt(T )∩Rn |
|Rn| = 4

27 . �

To obtain an algorithm with a better approximation ratio for q ≥ 3 (Algorithm 3), we allow the output tree T to have q
internal nodes {u1, . . . , uq}. Every internal node u j ∈ T has a probability p(u j), which is the probability of a fixed leaf being 
assigned to that node. Given that

∑q
j=1 p(u j) = 1, we can obtain a randomized algorithm, the analysis of which follows 

from Lemma 3.3. Let E[W ] be the expected value of that randomized algorithm. Like in Theorem 3.1, we can derandomize 
the algorithm to obtain a E[W ]

|R| -approximation ratio. The only difference in the proof is that the total number of possible 
assignments is q instead of 2, i.e., given Ni , we choose ni+1 for xi+1 such that E[W |Ni, xi+1 ← ni+1] = max(E[W |Ni, xi+1 ←
u1], . . . , E[W |Ni, xi+1 ← uq]). The problem is thus reduced to finding a tree with q internal nodes and a choice of probabil-
ities p(u1), . . . , p(uq) such that E[W ] > 4 |R|.
27

7
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Algorithm 3 The O(q|R|)-time algorithm for q-MAXRTC when q > 2 (Theorem 3.3).
1: procedure PRQ(xy|z, q, k) � Computing Pr[xy|z ∈ rt(T )|Ni ]
2: if x ← ∅ and y ← ∅ and z ← ∅ then return 1/3 − 4/(3(q + 1)2)

3: if x ← u and y ← ∅ and z ← ∅ then return (u↑d + k)/(k + 1)2

4: if x ← ∅ and y ← v and z ← ∅ then return (v↑d + k)/(k + 1)2

5: if x ← ∅ and y ← ∅ and z ← w then return (k + 2w↑s)/(k + 1)2

6: if x ← u and y ← v and z ← ∅ then
7: p = lca(u, v)

8: return (k + 1 − p↓)/(k + 1)

9: if x ← u and y ← ∅ and z ← w then
10: p = lca(u, w)

11: if p == u then return 0
12: m = child of p whose subtree contains u
13: return m↓/(k + 1)

14: if x ← ∅ and y ← v and z ← w then
15: p = lca(v, w)

16: if p == v then return 0
17: m = child of p whose subtree contains v
18: return m↓/(k + 1)

19: if x ← u and y ← v and z ← w then
20: return (lca(x, z) == lca(y, z) and lca(x, y) �= lca(x, z))

21: procedure Q-MAXRTC(R, q) � The main procedure
22: if q mod 2 == 1 then
23: q = q − 1

24: k = q/2
25: prev = |R|(1/3 − 4/(3(q + 1)2)) � Storing E[W |N0], where N0 = ∅
26: for i = 1 to n do
27: for m = 1 to k + 1 do
28: nValue[m] = prev

29: for j = 1 to |F [xi ]| do
30: for m = 1 to k + 1 do
31: xi ← ∅
32: nValue[m] = nValue[m] − PRQ(F [xi ][ j])
33: xi ← um

34: nValue[m] = nValue[m] + PRQ(F [xi ][ j])
35: xi ← u1

36: curBest = nValue[1]
37: for j = 2 to k + 1 do
38: if nValue[ j] > curBest then
39: curBest = nValue[ j]
40: xi ← u j

41: prev = curBest

Theorem 3.3. Given q ≥ 3, there exists a randomized polynomial-time algorithm for q-MAXRTC that achieves a ( 1
3 − 4

3(q+q mod 2)2 )-

approximation. The algorithm can be derandomized while preserving the approximation ratio. The running time of the deterministic 
algorithm is O(q|R|).

Proof. Let R = {r1, . . . , r|R|} and L = {x1, . . . , xn}. If q = 2k + 1 for some k ∈N , build a binary tree T with q nodes in total. 
By construction, T has k + 1 leaves and k internal nodes. Assign the probability 1/(k + 1) to every leaf and 0 to every 
internal node. For the expected value of the randomized algorithm we then obtain:

E[W ] =
|R|∑
j=1

Pr[r j ∈ rt(T )] =
|R|∑
j=1

k(k + 1) + 2
(k+1

3

)

(k + 1)3
=

(1

3
− 1

3(k + 1)2

)
|R| .

By setting k = q−1
2 , we get E[W ] = ( 1

3 − 4
3(q+1)2

)|R|. If q = 2k, we follow the same approach but by building a binary 
tree T with 2k − 1 nodes instead. The tree T has k leaves and k − 1 internal nodes. Every leaf has the probability 1/k and 
every internal node the probability 0. After finding the assignment of the leaves according to the chosen probabilities, we 
recursively remove all nodes with degree 0 from the tree that are not leaves. (These nodes correspond to internal nodes 
that have not been assigned any leaves.) We then pick one internal node u for which deg(u) ≥ 3 to add a new internal node 
as shown in Fig. 2. This would give E[W ] ≥ ( 1

3 − 4
3q2

)|R|. Hence, for any q ≥ 3 we have E[W ] ≥ ( 1
3 − 4

3(q+q mod 2)2

)|R|.
To obtain a deterministic algorithm that preserves the approximation ratios, we use the method of conditional expec-

tations. We now describe how to achieve the O(q|R|) time bound, given any binary tree T with q internal nodes and a 
probability assignment as described above. For any internal node u in T , let d(u) be the number of edges on the path from 
the root of T to u. Define the following counters:
8



• u↓ = total number of leaves in T (u).
• u↑s = total number of pairs of leaves x, y such that x �= y, x and y are not in T (u), and d(lca(u, x)) = d(lca(u, y)).
• u↑d = total number of pairs of leaves x, y such that x �= y, x and y are not in T (u), and d(lca(u, x)) < d(lca(u, y)).

After building T , all these counters can be trivially computed in O(q) time by applying two depth first search traversals on T . 
The procedure PRQ() of Algorithm 3 shows how to compute Pr[xy|z ∈ rt(T )|Ni]. The most expensive operation is computing 
the lowest common ancestor of two nodes. However, data structures exist [4], that can answer such queries in O(1) time, 
while only requiring O(q) preprocessing time. Given such a data structure, the time complexity of PRQ() becomes O(1). The 
main procedure Q-MAXRTC() of Algorithm 3 is a direct extension of the main procedure 2-MAXRTC-FAST() of Algorithm 2, 
with the only difference being that we have q possible assignments for a leaf instead of 2. Hence, every triplet in R induces 
O(q) calls to PRQ() of Algorithm 3, making the entire complexity of the algorithm O(q) + O(q|R|) = O(q|R|). �
4. Implementation and experiments

We used the C++ programming language to implement the algorithm from Theorem 3.1 for 2-MAXRTC, and the de-
terministic algorithm from Theorem 3.3 for q-MAXRTC when q > 2. The implementation is publicly available at https://
github .com /kmampent /qMAXRTC. For simplicity in our implementation, given two nodes u and v , a straightforward O(q)-
time algorithm is used to compute lca(u, v). To evaluate our algorithms experimentally, we also implemented One-Leaf-Split
(OLS) [15] and the modified Wu algorithm (Mod-Wu) [12]. Below, we describe some experiments on simulated and real 
datasets and the results.

4.1. Simulated datasets

To evaluate the algorithms, we simulate the process of trying to reconstruct an unknown phylogenetic tree with a 
specified number of internal nodes from an input set of triplets R that can be incomplete, i.e., missing some triplets, and 
that can contain incorrect triplets due to experimental errors. To cover various possible scenarios, we define the following 
types of sets for R:

• dense consistent (abbreviated dc): |R| = (n
3

)
and R is consistent with a tree T containing n − 1 internal nodes. The tree 

T is created using the uniform model (also known in the literature as the PDA model), which is a standard method for 
generating a random binary phylogenetic tree with properties that are similar to those of phylogenetic trees from the 
real world; see, e.g., [27] or p. 29 of [29] for details.

• probabilistic: |R| = n2 and R is a set of triplets on n leaf labels created as follows. Initially, R = ∅. After building a 
binary tree T on n leaves following the uniform model [27,29], extract triplets at random from T and add them to R. 
For each extracted triplet, permute its leaves uniformly at random with probability p. Depending on whether p = 0.25, 
p = 0.50, or p = 0.75, the abbreviations we use are prob25, prob50, and prob75, respectively.

• noisy: |R| = n2 and R is a set of triplets on n leaf labels that is created at random.

In the experiments of this dataset, the performance of an algorithm for any fixed q, n, and dataset model is defined as 
its mean approximation ratio, taken over 100 randomly generated instances of size n. Fig. 4 compares the performance of 
q-MAXRTC, OLS, and Mod-Wu in the dc, prob25, prob50, prob75, and noisy models defined above for small values of 
q and n at most 1000. In all models, the larger the value of q, the better the performance of q-MAXRTC. Moreover, the rate 
of improvement in performance decreases as the value of q increases, which is expected.

When comparing 9-MAXRTC against OLS & Mod-Wu, one can see in Fig. 4 that while OLS & Mod-Wu perform better, the 
difference in performance is small when there are few conflicting triplets like in the dc and prob25 models. All methods’ 
relative performance decrease as the probability p increases.

For the dc dataset, which contains no conflicting triplets, the performance of 9-MAXRTC is in some cases even better 
than that of Mod-Wu according to Fig. 4. Significantly, a tree with just nine internal nodes obtained by setting q = 9 can 
induce close to 80% of the triplets even if the input tree contains as many as 1000 leaves. Also note that an optimal tree 
with nine internal nodes might in fact induce even more than 80% of the triplets here since the algorithm from Theorem 3.3
that was used in the experiments is an approximation algorithm.

Fig. 5 shows the performance of q-MAXRTC for q ∈ {2, 5, 7, 9} in every simulation model. In all experiments, the larger 
the value of q, the better the performance. As expected, the performance deteriorates when the number of conflicting 
triplets in R is increased.

4.2. Real datasets

We considered five trees from recently published articles ([18] and [25]). From [18] we used the trees from the sup-
plementary datasets 2 and 4, denoted nmS2 and nmS4 respectively. From [25] we used the trees from the supplementary 
datasets 1, 2, and 4, denoted poS1, poS2, and poS4 respectively. All trees are binary except nmS2 and nmS4. However, 
we removed the leaf that is a child of nmS2’s root to make nmS2 binary. Similarly, we removed the two leaves that are 
J. Jansson, K. Mampentzidis and T.P. Sandhya Information and Computation 294 (2023) 105082
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Fig. 4. Performance of {3, 5, 7, 9}-MAXRTC compared to OLS and Mod-Wu in the dc, prob25, prob50, prob75, and noisy models. Every data point 
corresponds to the mean of 100 runs. Observe that the performance of 9-MAXRTC is close to that of OLS and Mod-Wu, even though 9-MAXRTC uses only 
nine internal nodes while OLS uses up to n − 1 internal nodes and Mod-Wu exactly n − 1. In the noisy model, the performance of q-MAXRTC approaches 
the theoretical guarantee from Theorem 3.3 (0.25 for q = 3, 0.296296 . . . for q = 5, 0.3125 for q = 7, and 0.32 for q = 9).

Fig. 5. Performance of {2,5,7,9}-MAXRTC on the different simulated models. Every data point corresponds to the mean of 100 runs.
10
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Table 2
Accuracy of q-MAXRTC on real datasets. Every entry corresponds to the best accuracy over 100 runs. The size of each leaf label set is written inside the 
parenthesis.

q poS1(761) poS2(761) poS4(841) nmS4(1869) nmS2(3082) Average

2 0.27 0.36 0.43 0.41 0.29 0.35

3 0.67 0.54 0.48 0.41 0.46 0.51

5 0.77 0.81 0.67 0.66 0.72 0.73

7 0.82 0.75 0.76 0.62 0.73 0.74

9 0.86 0.71 0.87 0.80 0.79 0.81

11 0.91 0.89 0.87 0.79 0.87 0.87

Table 3
The execution time (in seconds) to generate each tree produced by q-MAXRTC on the real datasets. Every entry corresponds to the mean of 100 runs. The 
experiments were performed on a machine with 8GB RAM, Intel(R) Core(TM) i5-3470 CPU @ 3.20 GHz, and having Ubuntu 16.04.2 LTS as an operating 
system.

q poS1(761) poS2(761) poS4(841) nmS4(1869) nmS2(3082)

2 0.06 0.06 0.07 0.40 1.16

3 0.32 0.32 0.39 1.96 5.38

5 0.47 0.47 0.58 2.92 7.85

7 0.63 0.62 0.76 3.83 10.53

9 0.78 0.79 0.96 4.85 13.15

11 0.94 0.94 1.14 5.71 15.56

children of nmS4’s root to make nmS4 binary as well. The total number of leaves in nmS2, nmS4, poS1, poS2, and poS4
is 1869, 3082, 761, 761, and 841. Since the trees are binary, the total number of internal nodes is 1868, 3081, 760, 760, 
and 840.

For a tree T ∈ {nmS2,nmS4,poS1,poS2,poS4} with n leaf labels, let Tq be the tree produced by the new algorithm 
from Theorem 3.3 applied to an appropriate set of triplets, to be defined below. Let D(T , Tq) be the rooted triplet distance 
between T and Tq (for a definition see Section 5 below). The accuracy of q-MAXRTC in the experiments of this dataset is 
then defined by the ratio S(T , Tq)/

(n
3

)
, where S(T , Tq) = (n

3

) − D(T , Tq). To compute this ratio efficiently, we used the rooted 
triplet distance implementation in [8]. We measured the accuracy of q-MAXRTC for q ∈ {2, 3, 5, 7, 9, 11}. Every experiment 
consisted of 100 runs, and in each run n2 triplets were picked at random from the corresponding tree to define the set R. 
We made sure that each leaf from a given tree appeared in R so that the size of the leaf label set was as big as the leaf 
label set of the tree.

Table 2 shows the best ratios achieved, and the corresponding trees in Newick format can be found at https://github .
com /kmampent /qMAXRTC /tree /master /trees. As can be seen from the results, a larger number of internal nodes tends to 
improve the accuracy. Importantly, with only nine nodes we can induce between 71% and 86% of the triplets in each case, 
and with eleven nodes between 79% and 91%. When q > 11, we did not observe a significant improvement in accuracy. 
Fig. 6 shows the performance of q-MAXRTC on the real datasets, with all points plotted in the right graph. Because of the 
large sample size, i.e., n2 triplets were picked at random to define R, the quality of the trees does not differ significantly 
between the different runs. Finally, Table 3 lists the average number of seconds needed for q-MAXRTC to generate each tree 
from Table 2. The practicality of the algorithm can be seen from the fact that the largest amount of time spent for a tree is 
15.56 seconds, and that is for the nmS2 dataset which contains 3082 leaves and 3081 internal nodes.

5. Motivation for q-MAXRTC: a faster algorithm for the rooted triplet distance

Finally, we give an example of the algorithmic advantage of using phylogenetic trees with few internal nodes. More 
precisely, we develop an algorithm for computing the rooted triplet distance between two phylogenetic trees in O(qn)

time, where q is the number of internal nodes in the smaller tree and n is the number of leaf labels. We also provide 
an implementation of our new algorithm, along with experimental results comparing the practical performance of our 
algorithm against previous state-of-the-art algorithms.

5.1. Problem definition

The rooted triplet distance between two trees T1 and T2 built on the same leaf label set, is the total number of trees 
with three leaves that appear as embedded subtrees in T1 but not in T2. Intuitively, two trees with very similar branching 
structure will share many embedded subtrees, so the rooted triplet distance between them will be small.

Formally, let T1 and T2 be two trees built on the same leaf label set of size n. We need to distinguish between two 
types of triplets. The first type is the resolved triplet, previously defined in Section 1. In addition, since T1 and T2 can be 
11
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Fig. 6. Graphical representation of the performance of q-MAXRTC on real datasets. Left figure: Every data point corresponds to the mean of 100 runs. Right 
figure: All 100 data points appear in the figure.

non-binary, we also need to define the fan triplet. We call t = x|y|z a fan triplet, if t is a tree with the three leaves x, y, 
and z, and one internal node that is the root of t . The definition of when a resolved triplet is consistent with a tree T
follows from Section 1. Analogously, we say that the fan triplet x|y|z is consistent with a tree T , where x, y, and z are 
leaves in T , if lca(x, y) = lca(x, z) = lca(y, z). In this section only, we use the word triplet to refer to both fan and resolved 
triplets. Moreover, when we refer to a fan triplet x|y|z or a resolved triplet xy|z induced by a tree T , there exists a left to 
right ordering of x, y, and z in T .

Let D(T1, T2) be the rooted triplet distance between T1 and T2. Define S(T1, T2) to be the total number of triplets that 
are consistent with both T1 and T2, commonly referred to as shared triplets. For the rooted triplet distance we then have 
that D(T1, T2) =

(n
3

) − S(T1, T2).

5.2. The algorithm

It is known how to compute D(T1, T2) in O(n log n) time [7,8]. Below, we show how to compute D(T1, T2) in O(qn) time, 
which is faster than [7,8] when q = o(log n). The method consists of a preprocessing step and a counting step.

Preprocessing. The leaves in T2 are relabeled according to their discovery time by a depth first traversal of T2, in which 
the children of a node are discovered from left to right. Notice that for a node v in T2, the labels of the leaves in T2(v)

will correspond to a continuous range of numbers. Afterwards, we transfer the new labels of the leaves in T2 to the leaves 
in T1. For T1, we define the q × n table A such that for an internal node u in T1 we have A[u][�] = 1 if � is a leaf in T1(u), 
and A[u][�] = 0 otherwise. We construct another table C to answer one dimensional range queries as follows. For 1 ≤ i ≤ n
we have C[u][i] = ∑i

j=1 A[u][ j] and C[u][0] = 0. The C-table will be used to answer queries asking for the total number of 
leaves in T2(v) that are also in T1(u) in O(1) as follows. Let [l, . . . , r] be the continuous range of leaf labels in T2(v). The 
answer to the query will be exactly C[u][r] − C[u][l − 1] (see Fig. 7 for an example).

Counting. We extend the technique introduced in [8]. Let t = xy|z or t = x|y|z be a triplet induced by a tree T , which 
in our problem can be either T1 or T2. We anchor t in the edge {v, c}, where v = lca(x, y) and c is the child of v such 
that T (v) contains y. The following lemma shows that every triplet induced by T is anchored in exactly one edge of T .

Lemma 5.1. Let T be a tree in which every triplet t with the three leaves x, y, and z is anchored in the edge {u, c}, such that u = lca(x, y)

and T (c) contains y. Every triplet induced by T is anchored in exactly one edge of T .

Proof. For the purpose of obtaining a contradiction, assume that t is anchored in i edges where i ≥ 2. Let those edges be 
{u1, v1}, . . . , {ui, vi}. By definition, u1 = lca(x, y). For the same reason, u2 = lca(x, y), . . . , ui = lca(x, y). Because T is a tree, 
it must hold that u1 = u2 = . . . = ui . Again by definition, v1, . . . , vi must all be the children of u1 such that every subtree 
in S = {T (v1), . . . , T (vi)} contains leaf y. Because T is a tree, there can only be one such child of u1, meaning that |S| = 1, 
which leads to a contradiction. �

Suppose that a node v in T2 has the children v1, . . . , v j, . . . , vi , where 1 < j ≤ i. To detect all triplets anchored in edge 
{v, v j} of T2, we color the leaves of T2 as follows. Let every leaf in T2(v1), . . . , T2(v j−1) have the color red, every leaf 
in T2(v j) have the color blue, every leaf in T2(v j+1), . . . , T2(vi) have the color green, and all other leaves in T2 have the 
color white. The red, blue, and green colors will be used to detect fan triplets and the red, blue, and white colors, resolved 
triplets. See Fig. 8 for an illustration. By the relabeling scheme of the leaves, we have that the red, blue, and green colors 
12
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Fig. 7. Changing the leaf labels of the trees from Fig. 1 according to the preprocessing step of the rooted triplet distance algorithm in Section 5. The leaves 
in T2(v) are defined by the range of leaf labels [1, 3]. The number of leaves appearing in both T2(v) and T1(c) is C[c][3] − C[c][0] = 2.

Fig. 8. Using colors to detect triplets in T2. Three leaves x, y, and z that have the color red, blue, and green respectively, define the fan triplet x|y|z. Three 
leaves x, y, and z that have the color red, blue, and white respectively, define the resolved triplet xy|z.

correspond to exactly one continuous range of leaf labels each. Let those ranges be R = [ared, . . . , a′
red], B = [ablue, . . . , a′

blue], 
and G = [agreen, . . . , a′

green], for the colors red, blue, and green respectively. We have ablue = a′
red + 1 and if G is non-empty, 

agreen = a′
blue +1. Finally, note that a leaf has the color white if and only if it does not have any other color. We now describe 

how to compute the total number of triplets anchored in some edge {v, v ′} in T2, where v is the parent of v ′ , that are also 
consistent with T1, denoted S{v,v ′}(T1, T2). Let S{v,v ′}

r (T1, T2) be the number of shared resolved triplets anchored in {v, v ′}
and similarly let S{v,v ′}

f (T1, T2) be the number of shared fan triplets. Clearly, S{v,v ′ }(T1, T2) = S{v,v ′}
r (T1, T2) + S{v,v ′}

f (T1, T2). 
The following lemma shows that S{v,v ′}(T1, T2) can be computed efficiently.

Lemma 5.2. Given the ranges R, B, and G that define a coloring of the leaves in T2 according to an edge {v, v ′} of T2 , there exists an 
O(q)-time algorithm for computing S{v,v ′}(T1, T2).

Proof. Since both T1 and T2 are built on the same leaf label set, a coloring of the leaves of T2 defines a coloring of the 
leaves of T1. Suppose that a node u in T1 has the m children u1, . . . , um , where m ≥ 2. Some children could be leaves and 
others, internal nodes. Let I denote the set containing the children that are internal nodes and L the children that are leaves. 
Let T (I) = ⋃

u∈I {T (u)}. Define the following counters:

1. uwhite: total number of leaves with the white color in T1 but not in T1(u).
2. ui , for i ∈ {red, blue, green}: total number of leaves with color i in T1(u).
3. uiI , for i ∈ {red, blue, green}: total number of leaves with color i in T (I).
4. uiL , for i ∈ {red, blue, green}: total number of leaves with color i in L.
5. ui, j , for (i, j) ∈ {(red, blue), (red, green), (blue, green)}: total number of pairs of leaves in T (I), such that one has color 

i, the other has color j and both come from different subtrees attached to u.
6. ured, blue, green: total number of leaf triples in T (I), such that one leaf has the color red, another the color blue, another 

the color green and they all come from different subtrees attached to u.
13
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Algorithm 4 O(q)-time algorithm for computing the counters of every internal node u in T1 (see Lemma 5.2).
1: procedure CountersHelper(u, C, R, B, G)
2: Let R = [ared, . . . , a′

red], B = [ablue, . . . , a′
blue], G = [agreen, . . . , a′

green]
3: Let ul denote the total number of leaves in T1(u)

4: totalWhite = n − (a′
red − ared + 1) − (a′

blue − ablue + 1) − (a′
green − agreen + 1)

5: if u has no children that are internal nodes then
6: for every color i ∈ {red, blue, green} do
7: ui = C[u][a′

i ] − C[u][ai − 1]
8: uiI = 0
9: uiL = ui

10: uwhite = totalWhite − ul + ured + ublue + ugreen

11: ured,blue = ured,green = ublue,green = 0
12: ured,blue,green = 0
13: return
14: Let I denote the set of children of u that are internal nodes in T1

15: for every node w in I do
16: CountersHelper(w, C, R, B, G)

17: pick some node w from I
18: for every color i ∈ {red, blue, green} do
19: ui = C[u][a′

i ] − C[u][ai − 1]
20: uiI = wi

21: uiL = ui

22: for every node w ′ in I do
23: uiL = uiL − (C[w ′][a′

i ] − C[w ′][ai − 1])
24: uwhite = totalWhite − ul + ured + ublue + ugreen

25: ured,blue = ured,green = ublue,green = 0
26: ured,blue,green = 0
27: remove w from I
28: while I is not empty do
29: pick some node w from I
30: ured,blue,green = ured,blue,green + ured,blue · wgreen + ured,green · wblue +

ublue,green · wred
31: ured,blue = ured,blue + uredI · wblue + ublueI · wred
32: ured,green = ured,green + uredI · wgreen + ugreenI · wred
33: ublue,green = ublue,green + ublueI · wgreen + ugreenI · wblue
34: uredI = uredI + wred
35: ublueI = ublueI + wblue
36: ugreenI = ugreenI + wgreen

37: remove w from I
38: procedure Counters(T1, C, R, B, G)
39: let r be the root of T1

40: CountersHelper(r, C, R, B, G)

Algorithm 4 shows how to compute these counters for every internal node of T1. A depth first traversal is applied on T1
while making sure that we only visit internal nodes. For every node u in I we apply a dynamic programming procedure 
(lines 17-37) to compute the counters. Since in every recursive call we spend O(|I|) time, the total time of the algorithm is 
O(q).

After computing all counters in T1 by applying Algorithm 4, Algorithm 5 shows how to compute S{v,v ′}
f (T1, T2) and 

S{v,v ′}
r (T1, T2) in O(q) time as well.

Algorithm 5 Computing S{v,v ′}
f (T1, T2) and S{v,v ′}

r (T1, T2) in O(q) time.

1: procedure S{v,v ′ }
f (T1, T2)

2: fans = 0
3: for every internal node u in T1 do
4: fans = fans + ured,blue,green
5: fans = fans + ured,blue · ugreenL + ured,green · ublueL + ublue,green · uredL

6: fans = fans + uredI · ublueL · ugreenL + ublueI · uredL · ugreenL +
ugreenI · uredL · ublueL

7: fans = fans + uredL · ublueL · ugreenL

8: return fans

9: procedure S{v,v ′ }
r (T1, T2)

10: resolved = 0
11: for every internal node u in T1 do
12: resolved = resolved + ured,blue · uwhite
13: resolved = resolved + uredI · ublueL · uwhite + ublueI · uredL · uwhite
14: resolved = resolved + uredL · ublueL · uwhite

15: return resolved
14
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Fig. 9. Rooted triplet distance computation: an internal node u in T1, having m children k of which are internal nodes. In Algorithm 5, I = {u1, . . . , uk} and 
L = {uk+1, . . . , um}.

Algorithm 5 counts shared triplets by considering for every internal node u in T1, all possible cases for the location of 
the leaves of a shared triplet anchored in any edge {u, u′} in T1, where u is the parent of u′ . More precisely, for the leaves 
of a fan triplet anchored in any edge {u, u′} in T1, we have the following cases:

1. all three leaves come from T (I) (line 4, e.g., 8|3|7 in Fig. 9).
2. two leaves come from T (I) and one from L (line 5, e.g., 7|3|2 in Fig. 9).
3. one leaf comes from T (I) and two from L (line 6, e.g., 3|5|4 in Fig. 9).
4. all three leaves come from L (line 7, e.g., 4|2|5 in Fig. 9).

Similarly, for the leaves of a resolved triplet we have the following cases:

1. two leaves come from T (I) and one not from T1(u) (line 11, e.g., 38|6 in Fig. 9).
2. one leaf comes from T (I), one from L, and one not from T1(u) (line 12, e.g., 35|1 in Fig. 9).
3. two leaves come from L and one not from T1(u) (line 13, e.g., 52|9 in Fig. 9).

Since S{v,v ′}(T1, T2) = S{v,v ′}
r (T1, T2) + S{v,v ′}

f (T1, T2), the lemma statement follows. �
Finally, Algorithm 6 computes D(T1, T2). From the preprocessing step, line 2 requires O(qn) time. Line 3 is performed 

by a depth first traversal of T1, thus requiring O(n) time. From Lemma 5.2, lines 7-9 require O(q) time. Since we also have 
that

∑
v∈T2

deg(v) = O(n), the total time required to compute D(T1, T2) is O(qn). The correctness is ensured by Lemma 5.1, 
thus we obtain the following theorem.

Algorithm 6 O(qn)-time algorithm for computing D(T1, T2).
1: procedure D(T1, T2)
2: Compute the q × n table C .
3: For every node u in T1, compute ul (= the number of leaves in T1(u)).
4: shared = 0
5: for every internal node v in T2 do
6: for every child v ′ of v do
7: Let R , B , and G be the color ranges defined by edge {v, v ′}
8: Counters(T1, C, R, B, G) � From Lemma 5.2

9: shared = shared + S{v,v ′}
f (T1, T2)+S{v,v ′}

r (T1, T2)

10: return
(n

3

) − shared

Theorem 5.1. The rooted triplet distance between two rooted phylogenetic trees T1 and T2 built on the same leaf label set of size n, 
can be computed in O(qn) time, where q is the total number of internal nodes in T1.

5.3. Implementation and experiments

We implemented the O(qn)-time triplet distance algorithm in the C++ programming language. The source code is avail-
able at https://github .com /kmampent /qtd. The experiments were performed on a machine with 8GB RAM, Intel(R) Core(TM) 
i5-3470 CPU @ 3.20 GHz, and having Ubuntu 16.04.2 LTS as an operating system. For the space usage we considered the 
Maximum resident set size parameter returned by /usr/bin/time -v. We ran the experiments using the following two different 
models for generating input trees:
15
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Fig. 10. Model A: Running time and space usage of the different triplet distance algorithms when n = 105.

• Model A: Generate a binary tree with n leaves for T2 following the uniform model [27,29]. For T1, first create a tree with 
q internal nodes as follows: start with a tree containing one internal node, then as long as T1 does not have q internal 
nodes, pick an internal node u uniformly at random and insert a new internal node as a child of u. Next, to assign 
the leaves, first assign one leaf to every internal node that has only one child and then assign any remaining leaves to 
internal nodes selected uniformly at random.

• Model B: Generate a binary tree with n leaves for T2 following the uniform model [27,29]. For T1, start by generating 
a binary tree with n leaves following the uniform model. Let S be a set containing the root and q − 1 internal nodes 
picked uniformly at random. Contract every internal node u that is not in S by letting the children of u become the 
children of u’s parent and then deleting u.

We compared our algorithm against the O(n log n)-time algorithm in [8] and the O(n log3 n)-time algorithm in [21]. We 
call our algorithm qtd and the algorithm in [8] cachetd. In [21] two different implementations are provided, one that 
uses unordered_map,1 which we refer to as cpdt, and one that uses sparsehash,2 which we refer to as cpdtg.

Every data point in the figures corresponds to the mean of 50 different runs, each run on a different pair of input trees. 
In Fig. 10 we have the execution time in seconds as well as the space usage of the algorithms in model A and when n = 105. 
In Fig. 12 we have the same experiments except now n = 106. Figs. 11 and 13 have the previous experiments but in model 
B. The results indicate that our implementation uses less space and is faster than the previous algorithms when q ≤ 50.

6. Concluding remarks

In this article, we introduced the problem of building a phylogenetic tree with q internal nodes that induces the largest 
number of triplets from an input triplet set R, denoted q-MAXRTC. We showed that q-MAXRTC is NP-hard for every fixed 
q ≥ 2. For 2-MAXRTC, no polynomial-time approximation algorithm with a relative (resp. absolute) approximation ratio 
better than 16

17 + ε (resp. 4
27 + ε) can exist. When q ≥ 3, the inapproximability bound becomes 1 − 1/(34q) + ε . We reduced 

2-MAXRTC to MAX 3-AND and obtained several polynomial-time approximation algorithms that, however, could not scale 
with q. We then proposed a simple polynomial-time 4

27 -approximation algorithm that could be extended to scale with any 
q ≥ 3. Finally, for two trees with one having q internal nodes and both being built on the same leaf label set of size n, we 
presented an O(qn)-time algorithm for the rooted triplet distance computation. We have also implemented the O(qn)-time 
algorithm described in Section 5. Our experiments indicate that our prototype implementation uses less space and is faster 
than the state-of-the-art, optimized implementation of the O(n log n)-time algorithm from [8] for large inputs, e.g., when 
n = 106 and q ≤ 50.

Some open problems are:

• To derive the optimal polynomial-time approximation ratio for q-MAXRTC for any fixed q ≥ 3 is an open problem, 
as well as to develop an efficient algorithm achieving that ratio. To design efficient approximation algorithms for the 
weighted version of q-MAXRTC is also an open problem, where every triplet in R has a weight and the objective is to 

1 http://en .cppreference .com /w /cpp /container /unordered _map.
2 https://github .com /sparsehash /sparsehash.
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Fig. 11. Model B: Running time and space usage of the different triplet distance algorithms when n = 105.

Fig. 12. Model A: Running time and space usage of the different triplet distance algorithms when n = 106.

Fig. 13. Model B: Running time and space usage of the different triplet distance algorithms when n = 106.
17
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Fig. 14. Let R = {12|3, 13|4, 24|5}. (a) The optimal tree for 2-MAXRTC induces two triplets from R. (b) The tree returned by the BUILD algorithm [2] when 
applied to R. (c) The best tree obtainable by contracting all internal edges except one in the tree from (b) induces only one triplet from R, so this method 
is not optimal for 2-MAXRTC.

build a tree that maximizes the total weight of its induced triplets that belong to R. This would be useful in situations 
where some triplets in R are known to be more reliable than others or where certain triplets should be given a higher 
priority.

• The computational complexity of q-MAXRTC restricted to inputs where all triplets in R are consistent with some 
tree T having an unbounded number of internal nodes is still unknown. A simple idea might be to first run the BUILD 
algorithm [2] to obtain such a T and then try every bipartition of L induced by an edge of T , but as demonstrated in 
Fig. 14, this approach would fail to produce optimal solutions even for 2-MAXRTC. The issue in this particular example 
seems to be that while running BUILD, nothing indicates that it would be better to discard leaf 3 from the connected 
component {1, 2, 3, 4} before leaf 4.

• Another related problem that has not yet been studied is the following: Given a set of triplets R on a leaf label set of 
size n and a parameter �, output a tree T with � leaves such that |rt(T ) ∩ R| is maximized. Just like q-MAXRTC is a 
combination of MINRS and MAXRTC, this new problem is a combination of the maximum agreement supertree problem
from [5,20] and MAXRTC.

• For the rooted triplet distance computation, a major open problem [7,8] is whether it can be computed in O(n) time. 
When q = O(1), our proposed algorithm runs in O(n) time. Is it possible to refine it to run in O(q1q2 + n) time, where 
q1 (resp. q2) is the number of internal nodes in T1 (resp. T2)?

• A general problem inspired by the work in this article is: Given a tree T and an integer q, what does the tree T ′ having 
q internal nodes that represents T in the best way possible look like? In other words, how should a tree T be simplified 
to a smaller tree T ′ with at most q internal nodes while keeping as much important information as possible? One can 
consider different alternatives when defining “in the best way possible” and “important information”, not necessarily 
based on triplets.
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