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a b s t r a c t

This paper considers the problem of inferring a graph from the number of occurrences
of vertex-labeled paths, which is closely related to the pre-image problem for graphs: to
reconstruct a graph from its feature space representation. It is shown that both exact and
approximate versions of the problem can be solved in polynomial time in the size of an
output graph by using dynamic programming algorithms if the graphs are trees whose
maximum degree is bounded by a constant and the lengths of given paths and alphabet
size are bounded by constants. On the other hand, it is shown that this problem is strongly
NP-hard even for trees of bounded degree if the maximum length of paths is not bounded.
The problem of inferring a string from the number of occurrences of fixed size substrings
is also studied.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Kernel methods have become a standard tool in machine learning and have been applied to various areas [8,24,25], which
include bioinformatics and chemoinformatics. In order to apply kernel methods to target problems, it is usually required to
develop amapping from the set of objects in the target problem to a feature space (i.e., each object is transformed to a vector
of reals) and a kernel function is defined as an inner product between two feature vectors. For instance, in the spectrum kernel
method [17], each biological sequence is mapped to a frequency vector of fixed length substrings (i.e. frequency of n-grams).
In some cases, a feature space can be an infinite dimensional space (Hilbert space) and the kernel trick is applied for efficient
computation of the value of a kernel function without explicitly computing feature vectors [25].

Recently, a new approach has been proposed for designing and/or optimizing objects using kernel methods [4,5]. In this
approach, a desired object is computed as a point in the feature space using suitable objective function and optimization
technique and then the point is mapped back to the input space, where this mapped back object is called a pre-image. Let φ
be a mapping from an input space G to a feature space F . Then, the problem is, given a point y in F , to find a pre-image x
in G such that y = φ(x). It should be noted that φ is not necessarily injective or surjective. If φ is not surjective, we should
compute the approximate pre-image x∗ for which the distance between y and φ(x) is minimized (see Fig. 1):

x∗
= arg min

x
dist(y, φ(x)).

Bakir et al. proposed a method to find pre-images in a general setting by using Kernel Principal Component Analysis and
regression [4]. Bakir et al. developed a stochastic search algorithm to find pre-images for graphs [5]. It should be noted that
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Fig. 1. Inference of a graph from a feature vector.

the pre-image problem for graphs is very important from a practical viewpoint because it has potential applications to drug
design [5]. For example, suppose that we have two chemical compounds x and y having different functions and we want to
design a new chemical compounds having both functions. In such a case, we may develop a new compound by computing
a pre-image of the middle point of feature vectors corresponding to x and y (i.e., a pre-image of (φ(x) + φ(y))/2) [5]. For
another example, suppose that we have a potential function for a feature space which reflects some chemical activity and
may be obtained from training data using some regression technique. Then, we may develop a chemical compound having
more activity by computing a pre-image of a feature vector with maximal or maximum potential score. Indeed, several
studies have been done for designing molecules with optimal values using heuristic methods (e.g., genetic algorithms)
[20,28] though they did not use kernel methods. The pre-image problem has another potential application to machine
learning. Recent findings in machine learning allow to capture a distribution of points by its mean in feature space [27,29].
Therefore, by solving the pre-image problem, we may be able to find a graph that represents a whole distribution of
graphs.

As mentioned above, several studies have been done on the graph pre-image problem. However, all of the above
approaches are statistical, stochastic or heuristic. Therefore, it seems that these do not lead to polynomial time algorithms
for solving pre-image problems exactly. In this paper, we study algorithmic aspects of this pre-image problem. Moreover,
we focus on pre-image problems for feature spaces defined by frequency of distinct vertex-labeled paths because this type of
feature space has been successfully used for classification of biological sequences [17], glycan structures [13], and chemical
compounds [15,18]. As mentioned in the above, each biological sequence is transformed to a frequency vector of n-grams
in the spectrum kernel [17] where each n-gram corresponds to a path of fixed length. For analysis of glycans, which have
tree structures, frequency vectors of paths of length at most 3 are used [13]. In the marginalized graph kernel [15], each
graph (corresponding to a chemical compound) is transformed to a vector of probabilities of vertex-labeled paths. Though
some kernel trick was developed for handling unbounded length paths efficiently, it is known that the marginalized kernel
works well even if bounded length paths are used [15]. Similar graph kernels were also proposed by Gärtner et al. [12] and
Shervashidze and Borgwardt [26]. Thus, we only consider the case of bounded length paths. Moreover, we do not consider
the probabilities; insteadwe consider for simplicity the number of occurrences of labeled paths as in the case of the spectrum
kernel because it is considered to be a fundamental case (the probability corresponds to the number of occurrences if we
consider regular graphs).

We first show that the exact pre-image problem for sequences can be solved in polynomial time in the length of the
sequence to be inferred. Though this result is almost trivial from the Eulerian path approach, which was originally developed
for sequencing by hybridization [22],we also show that the approximate pre-image problem for sequences can be solved using
a dynamic programming algorithm.Next,wepresent dynamic programming algorithms for both exact and approximate pre-
image problems for trees of bounded degree (i.e., themaximumdegree is bounded by a constant), whichwork in polynomial
time in the size of an output graphwhen a feature vector is defined by frequency of bounded length paths over a finite set of
labels, where the length of a path in a graph is defined in this paper as the number of edges on the path. On the other hand,
we show that the pre-image problem is strongly NP-hard even for trees of bounded degree if the lengths of paths are not
bounded by a constant. Though the algorithms proposed for graphs are not practical and there still remain gaps between
the positive and negative results, these results provide new insights into the pre-image problem.

Several related problems have been studied in theoretical computer science. As mentioned above, sequencing by
hybridization [22] is almost the same as the pre-image problem for the spectrum kernel. Furthermore, Cortes et al. showed
that the pre-image problem for the spectrum kernel can be solved in polynomial time [6,7].1 However, extension of the
results on the spectrum kernel to graphs is far from trivial, and they did not give a concrete theoretical result on the
approximate version of the problem. Graphical degree sequence problems [3], graph inference from walks [19,23] and the
graph reconstruction problem [16] are related to the pre-image problem for graphs. However, to our knowledge, results on
these three graph problems are not directly applicable to the pre-image problem for graphs.

1 The results on the pre-image problem for spectrum kernel in this paper were obtained independently of their work. Indeed, a preliminary conference
version of this paper [1] appeared in almost the same time period.
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After a preliminary version of this paper was published [1], several related results were obtained. Nagamochi showed
that the pre-image problem for graphs can be solved in polynomial time if the lengths of paths are at most 1, by using graph
detachment [21]. However, his algorithm cannot be applied to the cases of longer length paths. Fujiwara et al. [10] and Ishida
et al. [14] developed practical branch-and-bound algorithms for the pre-image problem for tree-like structures. Akutsu and
Fukagawa studiedpre-imageproblemsongraphs for feature vectors based on fragments anddeveloped inference algorithms
for outer-planar graphs with some constraints [2]. However, these works are motivated by and/or are based on the work
appeared in a preliminary version of this paper [1].2

2. Problem definitions

Before presenting algorithms and hardness results, we define the problems formally. First, we define the pre-image
problem for sequences (i.e., strings). We use feature vectors in the spectrum kernel [17]. Let Σ be an alphabet and ΣK

be the set of strings with length K over Σ . For two strings t and s, occ(t, s) denotes the number of occurrences of substring
t in s. Then, the feature vector fK (s) of level K for s is a |ΣK

|-dimensional integer vector such that the coordinate indexed by
t ∈ ΣK is occ(t, s). That is, fK (s) is defined by

fK (s) = (occ(t, s))t∈ΣK .

As an example, consider string 00101111 overΣ = {0, 1}. Then, f2(s) = (1, 2, 1, 3) because occ(00, s) = 1, occ(01, s) = 2,
occ(10, s) = 1 and occ(11, s) = 3.

IfK is large, the number of dimensions of a feature vectorwill be large (exponential inK ). In such a case,many coordinates
will have value 0. Thus, when K is not a constant, we assume that a vector is represented in an appropriate way (linear size
of a target sequence) so that the coordinates having value 0 are not included in the data structures.

Definition 1 (SISF: Sequence Inference from Spectrum Feature). Given a feature vector v of level K , output a string s satisfying
fK (s) = v. If there does not exist such s, output ‘‘no solution’’.

The above definition can be extended to the case of finding the sequence nearest to a given feature vector. Let dist(u, v)
denote the Lp distance between u and v throughout this paper, where p is an arbitrary fixed positive integer.

Definition 2 (SISF-M: Sequence Inference from Spectrum Feature with Minimum Error). Given a feature vector v of level K ,
output a string s such that dist(fK (s), v) is the minimum.

Next, we define pre-image problems for graphs. Let G(V , E) be an undirected vertex-labeled connected graph and Σ be
a set of vertex labels. A sequence of vertices (v0, v1, . . . , vh) of G is called a path of length h (h ≥ 0) if {vi, vi+1} ∈ E holds
for i = 0, . . . , h − 1. It should be noted that the same vertex (and the same edge) can appear more than once in the above
definition. Since many papers on marginalized graph kernels [15,18,24] use this notation, we employ this definition of a
path. Let Σ≤k be the set of label sequences (i.e., the set of strings) over Σ whose lengths are between 1 and k. Let l(v) be
the label of vertex v. For a path P = (v0, . . . , vh) of G, l(P) denotes the label sequence of P (i.e., l(P) = l(v0)l(v1) · · · l(vh)).
It should be noted that the length of l(P) is the length of P plus one (i.e., the length of a path is the number of edges and its
label sequence contains length +1 letters). For graph G and label sequence t, occ(t,G) denotes the number of paths P in G
such that l(P) = t . Then, the feature vector fK (G) of level K for G(V , E) is an integer vector such that the coordinate index
by t ∈ Σ≤K+1 is occ(t,G). That is, fK (G) is defined by

fK (G) = (occ(t,G))t∈Σ≤K+1 .

For example, consider a star G(V , E) consisting of four vertices where the center vertex has label 0 and the other three
vertices have label 1. Then, f1(G) = (1, 3, 0, 3, 3, 0) because occ(0,G) = 1, occ(1,G) = 3, occ(00,G) = 0, occ(01,G) =

3, occ(10,G) = 3 and occ(11,G) = 0. See Fig. 2 for a more general example.
Our feature vector differs from that of the spectrum kernel in that it counts the number of paths of all lengths from 0

to K , as in the case of the marginalized graph kernel [15]. In this paper, we mainly consider for simplicity the case where
tottering paths (paths forwhich there exists some i such that vi = vi+2) are not counted in feature vectors because removal of
tottering paths does not decrease the prediction accuracy [18]. Therefore, paths mean non-tottering paths unless otherwise
stated. However, all the results on graphs in this paper are valid even if tottering paths are taken into account. Since tottering
paths are used in several graph kernels [12,15,26], we also describe the required modifications for including tottering paths
when necessary.

Definition 3 (GIPF: Graph Inference from Path Frequency). Given a feature vector v of level K , output a connected graph
G(V , E) satisfying fK (G) = v. If there does not exist such a G(V , E), output ‘‘no solution’’.

A feature vector v satisfying the above condition is called realizable. It is to be noted that G(V , E) is not necessarily
uniquely determined (i.e., there may exist multiple graphs G satisfying fK (G) = v). The above definition can be extended to
the case of finding the graph nearest to a given feature vector as in Definition 2.

2 Detailed explanations and/or proofs as well as some additional results are newly given in this paper.
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Fig. 2. Example of GIPF for Σ = {C,O,H} and K = 1. It is to be noted that each edge is counted twice for forward and backward directions. The double
bond O=C in the figure is considered to be a single edge in the graph.

Definition 4 (GIPF-M: Graph Inference from Path Frequency with Minimum Error). Given a feature vector v of level K , output
a connected graph G(V , E) such that dist(fK (G), v) is the minimum.

It is worthy to note that both the number of dimensions of the feature vector and the maximum coordinate value of the
feature vector are bounded by a polynomial in the size of the graph if we consider constant K .

3. Algorithms for sequences

In this section,wepresent algorithms for SISF and SISF-M. Though the algorithm for SISF followsdirectly from the Eulerian
path approach for sequencing by hybridization [22], the algorithm for SISF-M is based on another technique (dynamic
programming).

Suppose that a feature vector v of level K over a fixedΣ is given for the SISF problem (i.e., occ(t, s) is given).We construct
a directed multi graph G′(V , E) such that V = ΣK−1 and there exist directed edges (t ′, t ′′) with multiplicity occ(t, s) for
each t ∈ ΣK , where t ′ and t ′′ are the prefix and suffix of t with length K − 1, respectively. Then, we can see that there
exists an Eulerian path in G′(V , E) if and only if there is a solution for the SISF problem. It should be noted that we need not
create vertices which are neither prefix or suffix of any substring t such that occ(t, s) > 0. Let n be the length of the target
sequence (i.e., n = K − 1 +


t occ(t, s)). Since the length of each t is K and Σ is fixed, we can construct G′(V , E) in O(n)

time using simple appropriate data structure (e.g., trie). Using the result on sequencing by hybridization [22], we have:

Proposition 1. SISF is solved in O(n) time for a fixed Σ .

It is to be noted that the same result was obtained in [6]. SISF can be solved in O(n log n) time for a general alphabet since
O(log n) additional time is required to maintain a trie. Though we may be able to reduce the time complexity to O(n) even
for a general alphabet by using some sophisticated data structure (e.g., suffix tree for a general alphabet), we do not consider
such a case because |Σ | is fixed to 4 or 20 in biological applications.

For the SISF-M problem, we may construct a graph G′(V , E) in the same way. However, G′(V , E) does not necessarily
have an Eulerian path. Thus, we should add or delete edges (using the minimum number of additions/deletions) so that the
resulting graph has an Eulerian path. It is unclear whether or not such an approach leads to a polynomial time algorithm.
Though Cortes et al. proposed some heuristic algorithm for a similar problem, they did not get any concrete theoretical
result [7]. Here, we show that SISF-M can be solved in polynomial time in n using a dynamic programming algorithm if K
and Σ are fixed.

Theorem 1. SISF-M is solved in polynomial time in n if K and Σ are fixed.

Proof. We only show the algorithm for K = 2 and a binary alphabet (i.e., Σ = {0, 1}) since extension to the other cases is
straightforward. For string s = s1s2 · · · sm, we define s[i] = si, s[i, j] = sisi+1 · · · sj, and |s| = m. We construct a table F(· · ·)
defined by

F(n00, n01, n10, n11, t) =


1, if there exists sequence s such that f2(s) = (n00, n01, n10, n11) and s[|s| − 1, |s|] = t,
0, otherwise.

This table can be constructed by the following dynamic programming algorithm.

F(n00, n01, n10, n11, t) = 1 iff
F(n00 − 1, n01, n10, n11, t ′) = 1 and t ′[2] = t[1] and t = 00 or
F(n00, n01 − 1, n10, n11, t ′) = 1 and t ′[2] = t[1] and t = 01 or
F(n00, n01, n10 − 1, n11, t ′) = 1 and t ′[2] = t[1] and t = 10 or
F(n00, n01, n10, n11 − 1, t ′) = 1 and t ′[2] = t[1] and t = 11 holds
for some t ′ ∈ {00, 01, 10, 11},
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where it is initialized as

F(1, 0, 0, 0, 00) = 1,
F(0, 1, 0, 0, 01) = 1,
F(0, 0, 1, 0, 10) = 1,
F(0, 0, 0, 1, 11) = 1,
F(n00, n01, n10, n11, t) = 0, otherwise.

It is straightforward to see that this algorithm correctly computes the entries of F .
Let u = (n00, n01, n10, n11) be a given feature vector. Recall that we assumed that the length of the target string is n and

thus n00 + n01 + n10 + n11 = n − 1 holds. Since F(n − 1, 0, 0, 0, 00) = 1 holds for s = 00 · · · 0 of length n and

((n − 1 − n00)
p
+ np

01 + np
10 + np

11)
1/p < 2n

holds for any positive integer p, theminimumerror for SISF-M is less than 2n.We can also see that if dist(u, v) < 2n holds for
any v = (n′

00, n
′

01, n
′

10, n
′

11), n
′

ij < 3n holds for all i, j. Therefore, it is enough to consider a table of size 3n×3n×3n×3n×4,
which isO(n4). Furthermore, such a table can also be constructed inO(n4) time since each entry can be calculated in constant
time. Therefore, by examining all the entries of such a table, we can find v minimizing dist(f2(s), v) in O(n4) time. The
required string can be obtained by using the standard traceback technique for reconstructing an optimal solution from a
dynamic programming table.

In general, F(· · ·) is a (|Σ |
K

+ 1)-dimensional table with size O((3n)|Σ |
K

· |Σ |
K ). It is still a polynomial in n for fixed Σ

and K . Furthermore, each entry can also be calculated in constant time and np
00 + np

01 + np
10 + np

11 can also be calculated in
constant time for fixed Σ, K and p, where we assume that each of addition andmultiplication can be done in constant time.
Therefore, the theorem holds. �

4. Algorithms for trees

In this section,we present dynamic programming algorithms for inference of trees from feature vectors of constant levels.
They do notwork in polynomial timewith respect to the size of a feature vector because a feature vectormay be represented
inO(log n) size, where n is the number of vertices of the graph (i.e., n is the sumof frequencies of paths of length 0). However,
theywork in pseudo polynomial time (i.e., in timewhich is polynomial in n). Considering such algorithms is quite reasonable
because these work in polynomial time with respect to the size of an output graph.

4.1. Algorithm for level 1 feature vectors

We begin with the case of inference of trees from feature vectors of level 1. It is to be noted that the following result
has already been improved by Nagamochi [21]: he showed that GIPF for K = 1 can be solved in polynomial time for both
trees and general graphs with general alphabet. However, his results or methods cannot be applied to the case of K > 1.We
present the following result because it is useful for understanding the algorithm for a more general (but bounded degree)
case to be shown in Theorem 3. It is also to be noted that we need not consider tottering paths here because there are no
tottering paths in the case of K = 1.

Theorem 2. GIPF for trees is solved in polynomial time in n for K = 1 and a fixed alphabet.

Proof. We only show the algorithm for the case of the binary alphabet, where extension to an arbitrary fixed alphabet is
straightforward. As in Theorem 1, we construct a dynamic programming table F(· · ·). In this case, F(· · ·) is defined by

F(n0, n1, n00, n01, n10, n11) =


1, if there exists tree T such that f1(T ) = (n0, n1, n00, n01, n10, n11),
0, otherwise.

This table can be constructed by the following dynamic programming procedure where the initialization part is
straightforward.

F(n0, n1, n00, n01, n10, n11) = 1 iff
F(n0 − 1, n1, n00 − 2, n01, n10, n11) = 1 or
F(n0 − 1, n1, n00, n01 − 1, n10 − 1, n11) = 1 or
F(n0, n1 − 1, n00, n01 − 1, n10 − 1, n11) = 1 or
F(n0, n1 − 1, n00, n01, n10, n11 − 2) = 1.

The first, second, third and fourth conditions correspond to the caseswhere a newvertex labeled 0 is connected to an existing
vertex labeled 0, a new vertex labeled 0 is connected to an existing vertex labeled 1, a new vertex labeled 1 is connected to
an existing vertex labeled 0, and a new vertex labeled 1 is connected to an existing vertex labeled 1, respectively.

The correctness of the algorithm follows from the fact that any tree can be constructed incrementally by adding vertices
(leaves) one by one. Since a new vertex can be connected with any vertex in the current tree, different from Theorem 1, we



T. Akutsu et al. / Discrete Applied Mathematics 160 (2012) 1416–1428 1421

Fig. 3. Examples for the dynamic programming procedure for GIPF.

need not maintain the last part of a fragment. The required tree (if exists) can be obtained by using a traceback procedure.
Since the value of each coordinate of a feature vector is O(n) where n = n0 + n1, the table size is O(n6) and thus the
computation time is O(n6).

In general, we should construct a (|Σ | + |Σ |
2)-dimensional table of size O(n|Σ |+|Σ |

2
). However, it is still polynomial in

n for any fixed Σ . �

Note that a generate-and-test approach (enumerating all trees of size n and checking whether each tree T satisfies
fK (T ) = v) does not yield a (pseudo) polynomial time algorithm because the number of possible trees is not bounded
by a polynomial in n.

The algorithm above can be modified for GIPF-M. We only need to consider the table such that each coordinate value
is O(n) because any tree of size O(n) can correspond to some element in that table. Furthermore, for any n, there exists at
least one tree of size n. Therefore, as in Theorem 1, we can find the feature vector fK (T ) closest to v in polynomial time by
examining all vectors in the table of polynomial size.

Corollary 1. GIPF-M for trees is solved in polynomial time in n for K = 1 and a fixed alphabet.

4.2. Algorithm for level K feature vectors

We extend the above algorithm to cases of K > 1, where K is a constant andwe only consider trees over a fixedΣ whose
maximum degree is bounded by a constant D. This extension is not straightforward and is somewhat involved.

Though we do not consider directed trees, we will treat an undirected tree as if it were a rooted tree. Let r be the root of
a tree T . The depth (denoted by d(v)) of a vertex v ∈ T is the length of the (shortest) path from r to v. The height of a tree
(denoted by d(T )) is the depth of the deepest vertex. The size of a tree (denoted by |T |) is the number of vertices in T .

For each vertex v ∈ T , T (v) denotes the subtree of T induced by v and its descendants. In the following, we only consider
T (v)s such that v is at depth d(T ) − K . Thus, we only consider subtrees of height at most K . ID(v) denotes the signature
(i.e., canonical labeling in [9]) of v where the signature is an integer number of value O(|T (v)|) such that ID(v) = ID(v′) if
and only if T (v) is isomorphic to T ′(v′). Since we consider constant K and trees of bounded degree, there are O(1) different
ID(v)s, the value of each ID(v) is O(1), and ID(v) can be computed in O(1) time per v.

For each tree T , E(d, id) denotes the number of vertices v such that d(v) = d and ID(v) = id. Let e denote the vector
consisting of E(d, id) for d = d(T ) − K and for all possible id. Let gK (T ) denote e for T . It should be noted that the number
of dimensions of e is bounded by a constant since there exist O(1) different signatures.

Then, we construct a table F(v, e, d) defined by

F(v, e, d) =


1, if there exists a tree T such that fK (T ) = v, gK (T ) = e and d(T ) = d,
0, otherwise.

It is to be noted that the size of trees is uniquely determined from v though trees may not be uniquely determined. It should
also be noted that we cannot maintain the whole structure of a tree, instead we maintain a feature vector, subtrees (in the
form of ID(v)s) rooted at depth d − K , and the depth of a tree.

Here, we explain F(v, e, d) using examples in Fig. 3, where we consider the case of K = 2 and Σ = {0, 1}. F(v, e, d) has
the following form

F(n0, n1, n00, . . . , n11, n000, . . . , n111, E(d(T ) − 2, I1), . . . , E(d(T ) − 2, IH), d(T )),
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Fig. 4. Addition of a new vertex w to tree T . Vector e corresponds to the number of appearances of isomorphic subtrees rooted at depth d − K . Addition
of w only affects the signature of T (v) and paths (of length at most K ) in the gray part (i.e., T (v)).

whereH is the number of different possible signatures. It should be noted that 5 relevant signatures are only shown in Fig. 3,
where I5 is to be used later. Then, T1 corresponds to

F(4, 2, 4, 3, 3, 0, 1, . . . , 0, 1, 0, 0, 0, 0, . . . , 0, 2),

T2 corresponds to

F(4, 3, 4, 3, 3, 2, 1, . . . , 0, 0, 1, 0, 0, 0, . . . , 0, 2),

and T3 corresponds to

F(4, 3, 4, 4, 4, 0, 1, . . . , 0, 0, 0, 1, 1, 0, . . . , 0, 3).

Construction of the table is done in an incremental manner as in the case of K = 1. However, in this case, we only add a
new vertex at depth either d or d + 1 (see also Fig. 4). It should be noted that any tree can be constructed in this manner.

First, we consider the case of adding a newvertex at depth d = d(T ) to a tree T (see also Case (1) of Fig. 3). For each subtree
T (v) corresponding to an element of e such that E(d − K , ID(v)) > 0, we consider all ways of appending a new vertex w
having label l ∈ Σ to T (v). It is enough to consider one subtree with the same signature in the case of E(d − K , ID(v)) > 1
since addition of w only affects paths within T (v). Then, we can see that the number of ways of appending a new vertex
is bounded by a constant per T (v) because the number of possible subtrees (of height K with bounded degree) is bounded
by a constant. Moreover, addition of w affects at most two elements of e. Furthermore, the change of fK (T ) is of a constant
size and is determined only by w, T (v), and the position of T (v) to which w is connected. For example, in Case (a) of Fig. 3,
E(0, I1) decreases from 1 to 0 and E(0, I2) increases from 0 to 1, and the difference between fK (T1) and fK (T2) is determined
only by I1 and I2. Since there are a constant number of signatures, we can pre-compute all the required changes of signatures
and fK (T )s for all possible ways of addition of a new vertex in constant time. Suppose that F(v, e, d) = 1 holds and (v, e, d)
changes to (v ′, e′, d) by addition of w to some position of T (v). Then, F(v ′, e′, d) is set to 1 (initially, all entries of the table
are set to 0). This update of the table can be done in constant time per (v, e, d) since there is a constant number of ways of
addition of a new vertex.

Next, we consider the case of adding a new vertex at depth d(T ) + 1 to a tree T of size n (see also Case (2) in Fig. 3). As
above, we consider all ways of appending a new vertex. Unlike the above, all entries of e may change because the height of
the tree changes. For example, in Case (2) of Fig. 3, E(0, I1) decreases from 1 to 0, and E(1, I3) and E(1, I4) are set to 1. For
another example, consider a tree T0 of height 3 such that the root is labeled with 1 and has three children v1, v2 and v3 such
that T (v1) is isomorphic to T1, and each of T (v2) and T (v3) is isomorphic to T2. Suppose that the subtree isomorphic to T1
changes to a subtree isomorphic to T3. Then, e changes from

(1, 2, 0, 0, 0, . . . , 0)

to

(0, 0, 3, 1, 2, . . . , 0)

because I1 changes to I3 and I4, and I2 changes to I3 and I5. However, this kind of changes can also be computed in O(n)
time because there exist a constant number of possible signatures (i.e.,different subtrees), the maximum degree is bounded
by a constant D and the number of subtrees rooted at each depth is bounded by n. It should be noted that decrease of one
E(d−K , ID(v)) corresponds to increases ofmultiple but a constant number of E(d−K +1, ID(v′))s. Furthermore, changes of
fK (T ) can also be computed in O(n) time since required changes of fK (T ) per signature are bounded by a constant. Therefore,
update of the table can be done in O(n) time per addition of a new vertex.

We can fill in the table entries in the order according to the number of vertices in tree T since the number of vertices
increases by 1 per addition of a new vertex and this number is obtained from v. After initializing all the table entries to be
0, we can fill in the table entries with d = 0 by examining all possible trees of bounded degree D and height K , which can
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be done in O(1) time. The correctness of the algorithm can be seen from the fact that any tree can be obtained by adding
vertices one by one at depth d or depth d + 1, where d is the current depth. Then, we analyze the time complexity. The
number of dimensions of table F(v, e, d) is bounded by a constant. The value of each coordinate is O(n) since there exist
O(n ·

K
k=0(D− 1)k) = O(n · (D− 1)K+1) non-tottering paths and there exist O(n) subtrees rooted at each depth. Therefore,

the size of table F(v, e, d) is bounded by a polynomial of n. As seen above, O(n) time is required per update of a table entry.
Thus, the algorithm works in polynomial time in n. The required tree can be obtained by using the traceback technique.
Therefore, we have:

Theorem 3. GIPF for trees of bounded degree is solved in polynomial time in n if K and Σ are fixed.

Since there exists a tree of size n for all n > 0, we can extend this result to GIPF-M as in Corollary 1.

Corollary 2. GIPF-M for trees of bounded degree is solved in polynomial time in n if K and Σ are fixed.

Theorem3andCorollary 2 hold also in the tottering case. In that case,we canuse the same algorithmexcept that F(v, e, d)
and the rules of update aremodified according to the change of the definition of paths. Sincewe assume thatD, K , andΣ are
fixed, the number of dimensions of F(v, e, d) is still bounded by a constant. Furthermore, the computation time of update
of the table remains constant and O(n) when a new vertex is added at depth d(T ) and at depth d(T ) + 1, respectively. If we
allow tottering paths, the number of possible paths is increased from O(n · (D − 1)K+1) to O(n · DK+1). However, it is still
O(n) and thus the size of table F(v, e, d) is still bounded by a polynomial of n. Therefore, we can still solve GIPF and GIPF-M
in polynomial time in n.

5. Hardness of graph inference

In this section, we show strong NP-hardness results on GIPF, fromwhich the same strong NP-hardness results on GIPF-M
follow.

5.1. Hardness of GIPF with K = 2

To prove the strongNP-hardness of GIPF forK = 2,we provide a pseudo polynomial-time reduction [11] from the following
problem:
Three-Dimensional Matching (3DM)

Instance: A setM ⊆ A×B×C , where A = {a1, . . . , aq}, B = {b1, . . . , bq}, and C = {c1, . . . , cq} and A, B, and C are disjoint
sets.

Question: Is there a subset M ′ of M with |M ′
| = q such that M ′ is a matching, i.e., such that for every pair e1, e2 ∈ M ′ it

holds that e1 and e2 differ in all coordinates?

3DM is NP-hard, even if restricted to instances which satisfy the pairwise consistency constraint (see, e.g., [11]):

For every a ∈ A, b ∈ B, c ∈ C , ifM contains three triples of the form (a, b, ∗), (a, ∗, c), and (∗, b, c) then (a, b, c) ∈ M .

The reduction from3DM toGIPF is as follows. Given an arbitrary instance of 3DMwhich satisfies the pairwise consistency
constraint, create an instance of GIPF with K = 2, Σ = A∪B∪C ∪{y, z}, where y and z are two new symbols not belonging
to A∪ B∪ C , and a feature vector v of level K over Σ . For any i, j ∈ A∪ B∪ C , denote the number of triples inM that contain
i by s(i) and the number of triples inM that contain both i and j by s(i, j). For any t ∈ Σ≤K+1, denote the coordinate in v for
t by v[t], and set its value according to the rules below.

• |t| = 1:

v[i] = 1 for each i ∈ A ∪ B ∪ C, v[y] = |M|, v[z] = 1. (1)

• |t| = 2:

v[(i, y)] = v[(y, i)] = s(i) for each i ∈ A ∪ B ∪ C, (2)
v[(y, z)] = v[(z, y)] = q, (3)

• |t| = 3:

v[(i, y, z)] = v[(z, y, i)] = 1 for each i ∈ A ∪ B ∪ C, (4)
v[(y, i, y)] = s(i) · (s(i) − 1) for each i ∈ A ∪ B ∪ C, (5)
v[(i, y, j)] = v[( j, y, i)] = s(i, j) for each i, j ∈ A ∪ B ∪ C, (6)
v[(y, z, y)] = q · (q − 1), (7)
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Fig. 5. A graph G which realizes v. In this example, (ai, bj, ck), (aj, bj, ci), (ak, bj, cq) ∈ M with (ai, bj, ck) ∈ M ′ but (aj, bj, ci), (ak, bj, cq) ∉ M ′ . Note that
exactly q of the vertices labeled by y are adjacent to the vertex labeled by z, and the remaining |M| − q are not.

• All other cases:

v[t] = 0. (8)

We now prove that there exists a graph which realizes the feature vector defined by these rules if and only ifM contains
a matching.

Lemma 1. If M has a matching then v is realizable.

Proof. SupposeM has amatchingM ′. DefineG to be a graphwhose vertex set consists of one vertex labeled by z, |M| vertices
labeled by y, and one vertex labeled by i for every i ∈ A∪B∪C . PutM in one-to-one correspondence with the set of vertices
labeled by y, and for each triple (ai, bj, ck) ∈ M , let its corresponding vertex in G be adjacent to the three vertices labeled
by ai, bj, and ck; furthermore, if (ai, bj, ck) ∈ M ′ then let this vertex also be adjacent to the unique vertex labeled by z. See
Fig. 5. It is straightforward to verify that G realizes the feature vector v defined above. �

Lemma 2. If v is realizable then M has a matching.

Proof. Suppose there exists a graph Gwhich realizes v. To prove the lemma, we will show that Gmust have the structure of
the graph shown in Fig. 5 and that the q vertices labeled by ywhich are adjacent to the vertex labeled by z induce amatching
in M . Below, for any Σ ′

⊆ Σ , all vertices which are labeled by symbols in Σ ′ are referred to as Σ ′-vertices, and vertices
which are adjacent to the vertex labeled by z are called key vertices.

Firstly, by rules (1), (3) and (7), the subgraph of G induced by {y, z}-vertices consists of a star graph having a center
labeled by z and q non-center {y}-vertices, along with |M| − q isolated {y}-vertices. Secondly, by rules (2) and (8), every
(A ∪ B ∪ C)-vertex in G is adjacent to {y}-vertices only; we next consider how the (A ∪ B ∪ C)-vertices are attached.

For any pair i, j belonging to exactly one of the three sets A, B, and C , there are no paths of the form (i, y, j) in the feature
vector v according to the definition of s(i, j) and rule (6). It follows that each {y}-vertex is adjacent to at most one A-vertex,
at most one B-vertex, and at most one C-vertex. Moreover, if some {y}-vertex was adjacent to fewer than three (A∪ B∪ C)-
vertices then there would be less than 3 · |M| edges in G between {y}-vertices and (A∪ B∪ C)-vertices, which is impossible
because rule (2) implies that the total number of such edges is


i∈A∪B∪C s(i) = 3 · |M|. Therefore, each {y}-vertex is adjacent

to exactly one A-vertex, exactly one B-vertex, and exactly one C-vertex.
Next, let w be any {y}-vertex and let ai ∈ A, bj ∈ B, ck ∈ C be the labels of the three (A ∪ B ∪ C)-vertices adjacent to

w. Rule (6) ensures that: (i) ai and bj must appear together in at least one triple of M , (ii) ai and ck must appear together in
at least one triple of M , and (iii) bj and ck must appear together in at least one triple of M . Then, the pairwise consistency
constraint implies that all three of ai, bj, ck appear together in a triple of M , i.e., (ai, bj, ck) ∈ M . We have just proved that
every {y}-vertex in G induces a triple consisting of the labels of its three adjacent (A∪ B∪ C)-vertices which indeed belongs
toM .

Finally, only {y}-vertices may be key vertices by rules (3) and (8). Rule (4) implies that two different key vertices can
never be adjacent to the same (A ∪ B ∪ C)-vertex, so all triples induced by key vertices must be pairwise disjoint. Thus, G
has the structure shown in Fig. 5, and the q triples from M induced by the key vertices constitute a matching ofM . �

By Lemmas 1 and 2, we obtain:

Theorem 4. GIPF is strongly NP-hard even if restricted to K = 2.

It follows from this theorem that there does not exist a pseudo polynomial time algorithm for GIPF unless P = NP. The
above theorem remains valid even for the tottering case because every tottering path has the form of (u, v, u) in the case of
K = 2 and thus does not affect the structure of the proof.
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Fig. 6. Reduction from 3-PARTITION to GIPF, where ah corresponds to set Ah = {xi, xj, xk}.

5.2. Hardness of GIPF for trees

We prove that GIPF is strongly NP-hard even for trees and K = 3. For that purpose, we provide a pseudo polynomial time
reduction from the following problem:
3-PARTITION

Instance: A set X = {x1, x2, . . . , x3m} and a positive integer B, where each xi has integer weight w(xi).
Question: Is there a partition of X into A1, A2, . . . , Am such that each Ah consists of three elements and


xj∈Ah

w(xj) = B
holds for each Ah?

It is known that 3-PARTITION is strongly NP-hard even when each w(xi) satisfies B/4 < w(xi) < B/2. This assumption
assures that each set consists of exactly three elements. We adopt this assumption below.

We construct a feature vector of level 3 (i.e., K = 3), which is to be constructed from subgraphs of the target (tree) graph
G(V , E), where G(V , E) corresponds to a solution of 3-PARTITION.

We let

Σ = X ∪ {ah|h = 1, . . . ,m} ∪ {a, b, c, c ′, d}.

For each xi, we construct a subtree G(xi) as shown in Fig. 6. It is to be noted that we identify labels and vertices unless there
is confusion.

Each G(xi) is called a block. Note that there are w(xi) vertices with label a in G(xi). Note also that three blocks will be
connected to the same vertex labeled ah, though it is not specified by the feature vector which blocks are connected to the
same vertex.

Next, we connect the vertex with label d to m vertices with label ah as in Fig. 6. We call this subgraph the center star
(denoted by Gc in Fig. 6).

The feature vector v is constructed from the following paths:

• All paths up to length three in all blocks and in the center star.
• For each ah, we construct B paths of the form of a–b–c–ah and the corresponding B paths in the reverse direction.

It is not difficult to see that there exists a graph G(V , E) such that fK (G) = v if and only if there exists a solution to 3-
PARTITION, where a set of blocks connecting with ah correspond to Ah. The necessity is rather obvious because the number
of paths ah–c–b–a is equal to B if and only if the sum w(xi) + w(xj) + w(xk) is equal to B, where the vertex labeled ah shares
edges between G(xi),G(xj), and G(xk). In order to prove the sufficiency, we need some lemmas.

Lemma 3. Let H be a graph for which f3(H) = v holds. Then, H contains the center star Gc and blocks G(xi) for all xi.

Proof. The claim on Gc is almost obvious since each vertex labeled d or ah is unique in our graph G, and therefore paths
d–ah–c–b are unique in v for each h (h = 1, . . . ,m). These paths intersect only at d because there are paths labeled neither
ah–c–ah′ nor c–b–c.

The claim on G(xi) is proven in a similar way by observing that for each xi, there exists exactly one vertex labeled xi. �
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Fig. 7. Blocks intersecting with each other.

Lemma 4. Let H be a graph for which f3(H) = v holds. Then, for any pair (xi, xj) ∈ X2 (i ≠ j),G(xi) and G(xj) do not intersect
with each other (i.e., V (G(xi)) ∩ V (G(xj)) = ∅).

Proof. By Lemma 3, we can assume that there exists a block G(xi) for each xi ∈ X .
Suppose that G(xi) and G(xj) intersect with each other. Then, they must share a vertex labeled either c ′, b, c , or a.
Suppose that G(xi) and G(xj) share a vertex labeled c ′. Then, v = f3(G) must have a path labeled xi–c ′–xj (Fig. 7(a)). Since

v = f3(G) contains no paths labeled xi–c ′–xj, no pair of blocks intersect at c ′. Similarly, blocks intersect neither at b, at c , nor
at a because v does not contain any path labeled c ′–b–c ′, b–c–b, or b–a–b (Fig. 7(b)–(d)).

Hence neither of the above cases happens and thus any blocks cannot intersect with each other. �

Since the reduction satisfies the conditions for a pseudo polynomial time transformation [11], we have:

Theorem 5. GIPF is strongly NP-hard even for trees and K = 3.

We can see that Theorem 5 still holds in the tottering case. In that case, we use the same construction of the feature
vector v except that tottering paths are also included.

Since we can discriminate tottering paths from non-tottering paths both starting from xi or ah by using information on
vertex labels and non-tottering paths beginning from xi and ah uniquely determineGc andG(xi) respectively, Lemma 3 holds.

In order to prove Lemma 4, we use the same argument as in the non-tottering case. However, there can exist c ′–
b–c ′, b–c–b, and b–a–b paths and thus we need to use counting arguments. For example, suppose that the case shown in
Fig. 7(b) occurs. From the construction, we can see that v specifies that both the number of edges labeled c ′–b and the num-
ber of paths labeled c ′–b–c ′ are m. However, if there exists a substructure shown in Fig. 7(b), the number of paths labeled
c ′–b–c ′ exceedsm, a contradiction. Therefore, Lemma 4 still holds for the tottering case.

Finally, it is straightforward to see that the reduction satisfies the conditions for a pseudo polynomial time
transformation.

5.3. Hardness of GIPF for trees of bounded degree

In Theorem 5, the maximum degree of graph G and the size of Σ were not bounded. However, we can modify the above
reduction for trees of bounded degree 4 and of a fixed Σ . Let L = ⌈logmax(B,m)⌉. Then we transform blocks and the center
star as in Fig. 8, where labels of vertices should be defined appropriately using a fixedΣ . In this transformation, each xi (resp.
ah) is encoded by using a binary code and each high degree vertex is represented by a binary tree. It should be noted that
the maximum degree is 4 in the transformed graph.

In this case, we use a feature vector of level 4L. Then, it is straightforward to see the correctness of the reduction
because paths beginning from the fragment encoding xi and from the fragment encoding ah uniquely determines subtrees
corresponding to G(xi) and Gc , respectively. It can also be seen that both the number of dimensions of a feature vector and
the size of G are bounded by polynomials in B and m. Moreover, each coordinate value of a feature vector is also bounded
by a polynomial in B andm. From these, we can see that the reduction satisfies the conditions of a pseudo polynomial time
transformation.

Theorem 6. GIPF is strongly NP-hard even for trees of bounded degree 4 and of a fixed Σ .
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Fig. 8. Transformation of blocks and the center star for Theorem 6.

Fig. 9. (A) Construction of blocks and the center star for the tottering case of Theorem 6. (B) Replacement of an edge by a path of length 3.

Theorem 6 again holds in the tottering case. In order prove it, wemodify the construction of blocks and the center star as
in Fig. 9(A), replace each edge with a path of length 3 as in Fig. 9(B) where α and β are newly introduced symbols, and use a
feature vector of level 3 × 6L. Replacement of edges enables discrimination of non-tottering paths from tottering paths, by
which the structures of G(xi)s and Gc are uniquely determined. The structure of Ti (shown in Fig. 9(A)) was modified so that
any node encoding ah cannot know the number of leaves labeled a in Ti even using tottering paths, although nodes encoding
ah can know the total number of leaves labeled a in Ti, Tj, and Tk (this number must be B). The total number of tottering
paths is O(n ·

18L
k=0 4

k), which is still polynomial in B and m. Therefore, the reduction satisfied the condition of a pseudo
polynomial time transformation and thus the theorem holds.

6. Conclusion

We have presented polynomial time algorithms for inferring sequences from feature vectors corresponding to the
spectrum kernel and for inferring trees of bounded degree from feature vectors consisting of frequency of paths of fixed
length under a fixed alphabet. The results on inference of a graph (GIPF) are summarized as follows,whereK is themaximum
length of paths, and D is the maximum degree of graphs:
• GIPF can be solved in polynomial time for trees if D, |Σ | and K are bounded by constants,
• GIPF is strongly NP-hard for K = 2 if D and |Σ | are unbounded,
• GIPF is strongly NP-hard for trees and K = 3 if D and |Σ | are unbounded,
• GIPF is strongly NP-hard for trees if D and |Σ | are bounded by constants but K is not bounded.

It is to be noted that GIPF can be solved in polynomial time both for trees and for general graphs if K = 1 [21].
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From a theoretical viewpoint, there still remain complexity gaps between the positive and negative results. For example,
the complexity (polynomial or NP-hard) of the following cases should be studied:

• inference of a tree when all non-tottering paths are given under a fixed alphabet,
• inference of a graph of bounded degree from paths with constant K under a fixed alphabet.

Another interesting future work is to develop approximation algorithms for NP-hard cases.
From a practical viewpoint, the proposed algorithms for trees are not useful because the degrees of polynomials are

quite large both in time and space: it is O(n6) even for K = 1 and Σ = {0, 1}. Therefore, faster and/or practical algorithms
should be developed. Indeed, after a preliminary version of this paper [1]was published, branch-and-bound algorithmswere
developed for tree-like structures [2,10,14]. However, these algorithms can only handle small or medium-size chemical
compounds having tree-like structures. Therefore, further improvements should be done. It is to be noted that the tables
used in the dynamic programming algorithms in this paper are sparse and thus wemay be able to ignore most of the entries
in the tables. Therefore, a dynamic programming-based approach might be useful if combined with a branch-and-bound
procedure.

In this paper, we considered feature vectors defined by path frequency. However, probabilities of paths are used in the
marginalized graphs kernels [15]. Therefore, extensions for such cases should be studied.
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