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Polynomial-Time Algorithms for the
Ordered Maximum Agreement Subtree Problem1

Anders Dessmark,2 Jesper Jansson,3 Andrzej Lingas,2 and Eva-Marta Lundell2

Abstract. For a set of rooted, unordered, distinctly leaf-labeled trees, the NP-hard maximum agreement
subtree problem (MAST) asks for a tree contained (up to isomorphism or homeomorphism) in all of the
input trees with as many labeled leaves as possible. We study the ordered variants of MAST where the trees
are uniformly or non-uniformly ordered. We provide the first known polynomial-time algorithms for the
uniformly and non-uniformly ordered homeomorphic variants as well as the uniformly and non-uniformly
ordered isomorphic variants of MAST. Our algorithms run in time O(kn3), O(n3 min{kn, n + logk−1 n}),
O(kn3), and O(n3 min{kn, n + logk−1 n}), respectively, where n is the number of leaf labels and k is the
number of input trees.
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1. Introduction. The basic combinatorial problem of finding a longest common sub-
sequence (LCS) for a set of sequences and the well-known problem of finding a maximum
agreement subtree (MAST) for a set of trees with distinctly labeled leaves fall in the
general category of problems of finding a largest common sub-object for an input set
of combinatorial objects. In [7] Fellows et al. in particular studied the largest common
sub-object problem constrained to so-called p-sequences, i.e., sequences where each
element occurs at most once. In this paper we consider a natural generalization of the
largest common sub-object problem for p-sequences in which the objects are allowed to
be arbitrary rooted, ordered trees with distinctly labeled leaves (note that a p-sequence is
equivalent to a rooted, ordered, distinctly leaf-labeled star tree). Since this problem can
be also regarded as a restriction of the MAST problem where tree ordering is required,
we term it the ordered maximum agreement subtree problem.

For an extensive literature and motivation for the LCS and MAST problems, the reader
is referred to [3], [16], [19] and [2], [4], [5], [6], [9], [10], [11], [14], [15], [17], [18],
respectively. Indeed, the NP-hardness [2] and approximation NP-hardness [4], [10], [11]
of the general MAST problem is one of the motivations for studying its ordered variants
in this paper.
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1.1. Variants of the MAST Problem. A tree whose leaves are labeled by elements
belonging to a finite set S so that no two leaves have the same label is said to be distinctly
leaf-labeled by S. Throughout this paper, each leaf in such a tree is identified with its
corresponding element in S. Let T be a rooted tree distinctly leaf-labeled by a given
finite set S. For any subset S′ of S, T | S′ denotes the tree obtained by first deleting
from T all leaves which are not in S′ and all internal nodes without any descendants in S′

along with their incident edges, and then contracting every edge between a node having
just one child and its child. Similarly, T ‖ S′ denotes the tree obtained by first deleting
from T all leaves which are not in S′ and all internal nodes without any descendants
in S′ along with their incident edges, and then if the resulting root only has one child,
contracting every edge on the path from the root to its first descendant with more than
one child.

In the maximum homeomorphic agreement subtree problem (MHT), the input is a
finite set S and a set T = {T1, . . . , Tk} of rooted, unordered trees, where each Tx ∈ T
is distinctly leaf-labeled by S and no Tx ∈ T has a node of degree 1, and the goal is
to find a subset S′ of S of maximum cardinality such that T1 | S′ = · · · = Tk | S′. In
the maximum isomorphic agreement subtree problem (MIT), the input is a finite set S
and a set T = {T1, . . . , Tk} of rooted, unordered trees, where each Tx ∈ T is distinctly
leaf-labeled by S, and the goal is to find a subset S′ of S of maximum cardinality such
that T1 ‖ S′ = · · · = Tk ‖ S′.

An ordered tree is a rooted tree in which the left-to-right order of the children of each
node is significant. The leaf ordering of an ordered, leaf-labeled tree is the sequence
of labels obtained by scanning its leaves from left to right. A set T of ordered trees
distinctly leaf-labeled by S is said to be uniformly ordered if all trees in T have the same
leaf ordering.

We study the following four ordered variants of MHT and MIT:

– The ordered maximum homeomorphic agreement subtree problem (OMHT).
– The ordered maximum isomorphic agreement subtree problem (OMIT).
– The uniformly ordered maximum homeomorphic agreement subtree problem

(UOMHT).
– The uniformly ordered maximum isomorphic agreement subtree problem (UOMIT).

OMHT and OMIT are defined in the same way as MHT and MIT except that T
is required to be a set of ordered trees. UOMHT and UOMIT are the special cases of
OMHT and OMIT in which T is required to be uniformly ordered. Note that OMHT
and OMIT generalize the largest common sub-object problem for p-sequences studied
by Fellows et al. in [7].

From here on, n and k denote the cardinalities of S and T , respectively.

1.2. Motivation. In certain evolutionary tree construction situations, one can determine
or accurately estimate the leaf ordering of a planar embedding of the true tree by taking
into account other kinds of data such as the geographical distributions of the species
or data based on some measurable quantitative characteristics (average life span, size,
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etc.).4 The ordered variants of MHT and MIT might also arise in graphical representation
of evolutionary trees where additional restrictions are placed on the leaves (e.g., that they
must be ordered alphabetically) for ease of presentation.

In the context of the approximation NP-hardness of MHT and MIT (see [4], [10],
[11] and Section 1.3 below), their ordered restrictions are of theoretical interest in their
own rights. Does the leaf ordering restriction make the problems computationally fea-
sible? In [9] Ga̧sieniec et al. proved that an analogous ordering restriction on an NP-
hard optimization problem occurring in the construction of evolutionary trees admits
a polynomial-time algorithmic solution.5 Moreover, Jiang et al. [13] have shown that
the alignment of trees problem, defined in [13], is MAX SNP-hard for unordered trees
already when one of the two input trees has unrestricted degree, but can be solved in
polynomial time for two ordered trees of unrestricted degree. Our results on the ordered
variants of MHT and MIT further confirm the power of ordering.

1.3. Related Results. Fellows et al. studied the longest common subsequence problem
for p-sequences (among many other problems) in [7], and claimed that they could solve
this problem for k p-sequences with n symbols in O(kn(k+ log n)) time. However, their
algorithm seems to fail already for x1 = 1234 and x2 = 1342, producing either 12 or
34 instead of 134. Therefore, we were forced to use a weaker upper time-bound for this
problem, given in Lemma 10 in this paper, in order to derive one of our main results.

Many results for the unordered MAST problem have been published previously. Steel
and Warnow [17] presented the first exact polynomial-time algorithms for MHT and its
unrooted counterpart UMHT6 for the case k = 2. The currently fastest algorithm for
MHT with k = 2, due to Kao et al. [14], runs in O(

√
D n log(2n/D)) time, where

D is the maximum degree of the two input trees. Note that this is O(n log n) for trees
with maximum degree bounded by a constant and O(n1.5) for trees with unbounded
degrees. For two rooted, ordered trees, a maximum agreement subtree can be computed
in O(n log2 n) time [18]. On the other hand, Amir and Keselman [2] proved that MHT
is NP-hard already for three trees with unbounded degrees, but solvable in polynomial
time for three or more trees if the degree of at least one of the trees is bounded by a
constant. The two fastest known algorithms for MHT with k ≥ 3 (invented by Bryant [5]

4 The Dunlin (Calidris alpina), a small wading bird breeding in Siberia along the Arctic Sea coastline, is
a good example where the geographical distribution drives the evolutionary development. Due to different
migrational patterns and differences in climate and food sources, Dunlins in Eastern Siberia and Western
Siberia are subject to different selection pressures. Therefore, the species is likely to divide into two separate
species, one adapted to wintering in the North Sea area and one in the Pacific. Given enough time, it seems
plausible that this process of speciation will continue and lead to a whole range of subspecies distributed along
the Arctic coast (see, e.g., [20]).
5 More precisely, given a set T of rooted triplets (rooted, distinctly leaf-labeled trees containing exactly
three leaves each), the problem is to construct a distinctly leaf-labeled tree which contains as many of the
rooted triplets in T as possible as embedded subtrees. This problem is NP-hard for unordered trees [5], [12]
but solvable in polynomial time for ordered trees [9]. See also [10] for two polynomial-time approximation
algorithms for the unordered case.
6 UMHT is defined like MHT except that all trees are unrooted and T | S′ now denotes the tree obtained by
first deleting from T all nodes (and their incident edges) not on any path between two leaves in S′, and then
contracting every node with degree 2.
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and Farach et al. [6], respectively) both run in O(kn3 + nd) time, where d is an upper
bound on at least one of the input trees’ degrees; recently, Lee et al. [15] gave an even
faster implementation of the algorithm of [5] for the special case d = 2.

Hein et al. [11] proved that MHT with three trees with unbounded degrees cannot
be approximated within a factor of 2logδ n in polynomial time for any constant δ < 1,
unless NP⊆DTIME[2polylog n]. This inapproximability result also holds for UMHT [11].
Bonizzoni et al. [4] showed that it can be carried over to MIT restricted to three trees with
unbounded degrees as well, and that even stronger bounds can be proved for MIT in the
general case. Ga̧sieniec et al. [10] proved that MHT is hard to approximate in polynomial
time even for instances containing only trees of height 2, but showed that if the number
of trees is bounded by a constant and all of the input trees’ heights are bounded by a
constant, then MHT can be approximated within a constant factor in O(n log n) time.

1.4. Our Results and Organization of the Paper. We present the first known polynomial-
time algorithms for the uniformly and non-uniformly ordered homeomorphic variants
(UOMHT and OMHT) as well as the uniformly and non-uniformly ordered isomor-
phic variants (UOMIT and OMIT) of the MAST problem. They run in time O(kn3),
O(n3 min{kn, n + logk−1 n}), O(kn3), and O(n3 min{kn, n + logk−1 n}), respectively.
Our results were obtained by exploiting certain fundamental structural properties of
ordered agreement subtrees which allowed for a significant pruning of the otherwise
unfeasible number of combinations of subproblems needed for the exact solution.

In Section 2 we introduce some common notation for our algorithms. In Section 3
we present the algorithm for UOMHT. Section 4 is devoted to the algorithm for OMHT.
Section 5 describes the algorithms for UOMIT and OMIT.

2. Notation. We find it convenient to write S = {a1, a2, . . . , an}, where the sequence
a1, a2, . . . , an is the leaf ordering of T1.

We also use the following notation. For any al , ar ∈ S with l ≤ r , denote by
UOMHTal ,ar the problem UOMHT under the additional constraint that for any valid
solution S′, the leaf ordering of T1 | S′ must begin with al and end with ar . Furthermore,
let UOMHT(al ),(ar ) be UOMHT restricted to the leaves {al , al+1, . . . , ar }. Observe that
while al and ar are required to belong to any solution to UOMHTal ,ar , they are not nec-
essarily included in a solution to UOMHT(al ),(ar ). Define OMHTal ,ar and OMHT(al ),(ar )

analogously. Finally, we often write UOMHTal ,ar , etc. to refer also to an optimal solution
to the corresponding problem.

3. A Polynomial-Time Algorithm for UOMHT. In this section we present an al-
gorithm called All-Pairs for solving the uniformly ordered maximum homeomorphic
agreement subtree problem in O(kn3) time. Algorithm All-Pairs employs dynamic pro-
gramming to build successively a table of solutions for UOMHT(al ),(ar ) for all pairs of
leaves al and ar with l ≤ r , using a procedure named One-Pair to solve the subprob-
lem UOMHTal ,ar . Intuitively, to solve UOMHTal ,ar (the main computational challenge
here), we represent various subsets of S as weighted vertices in “conflict graphs” which
contain edges between vertices corresponding to subsets that are not allowed together in
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Fig. 1. Two trees Tx and Ty and an induced anchor partitioning {S1, S2, S3, S4, S5} of the intermediate
leaves {al+1, . . . , ar−1}. S1 and S5 have been further divided into anchor edge partitionings {S1,1, S1,2} and
{S5,1, S5,2, S5,3, S5,4, S5,5}, respectively. Note that the anchor for S2 is also the anchor for S3 in Tx but not
in Ty . Similarly, the anchor edge for S5,4 is also the anchor edge for S5,5 in Ty but not in Tx .

an agreement subtree, and then look for maximum weighted independent sets in these
graphs. Fortunately, due to the leaves being ordered, the constructed conflict graphs
have a special structure that allows us to compute maximum weighted independent sets
efficiently.

3.1. Preliminaries. Before describing the details of our algorithm, we need the fol-
lowing definitions. Please refer to Figure 1 for an illustration.

Suppose that al ∈ S and ar ∈ S are fixed and l ≤ r . For any Tx ∈ T , let LC Ax (al , ar )

be the lowest common ancestor in Tx of al and ar , and let px (al , ar ) be the unique path
in Tx between al and ar . Any ai ∈ S is called an intermediate leaf if l + 1 ≤ i ≤ r − 1.
For any intermediate leaf ai and Tx ∈ T , the anchor of ai in Tx is the node on px (al , ar )

where the path from ai to LC Ax (al , ar ) first joins px (al , ar ). Similarly, the first edge on
the path from the anchor of ai to ai is the anchor edge of ai in Tx . Note that the anchor
of ai is equal to the lowest common ancestor of al and ai , or the lowest common ancestor
of ar and ai . Next, observe that in each Tx ∈ T , the intermediate nodes can be divided
into three types depending on whether their anchors are: (1) in the interior of the path
from LC Ax (al , ar ) to al ; (2) equal to LC Ax (al , ar ) itself; or (3) in the interior of the
path from LC Ax (al , ar ) to ar . We say that an intermediate leaf ai is valid if it belongs
to the same type for all Tx ∈ T . We immediately have:

LEMMA 1. Suppose al , ar ∈ S with l ≤ r . Let ai be an intermediate leaf. If ai is
not valid then ai does not belong to any homeomorphic agreement subtree of T which
contains both al and ar .

PROOF. According to the definition, if ai is not valid then there exist Tx , Ty ∈ T such
that ai belongs to different types in Tx and Ty . This implies Tx | {al , ai , ar } �= Ty |
{al , ai , ar }, and thus Tx | S′ �= Ty | S′ for any S′ that contains al , ai , ar .

Each pair al , ar ∈ S with l ≤ r induces an anchor partitioning {S1, . . . , Sm} of its set
of valid intermediate leaves, in which two leaves b, c belong to the same Sp if and only



238 A. Dessmark, J. Jansson, A. Lingas, and E.-M. Lundell

if it holds in every Tx ∈ T that the anchor of b is also the anchor of c. The leaf indices
in any such Sp form a consecutive subsequence of the sequence of valid intermediate
leaves, and so we number the sets in the anchor partitioning so that for any ai ∈ Sp and
aj ∈ Sq , we have i < j if and only if p < q. Each set Sp in an anchor partitioning
is further divided into an anchor edge partitioning {Sp,1, . . . , Sp,mp }, where two leaves
b, c belong to the same Sp,s if and only if it holds in every Tx ∈ T that the anchor edge
of b is also the anchor edge of c. As above, we number the sets so that for any ai ∈ Sp,s

and aj ∈ Sp,t , we have i < j if and only if s < t . Anchor partitionings and anchor edge
partitionings have the following useful structural properties:

LEMMA 2. Suppose al , ar ∈ S with l ≤ r . Let {S1, . . . , Sm} be an anchor partitioning
of the valid intermediate leaves, and let A be a homeomorphic agreement subtree of T
which contains al and ar . For any b ∈ Sp and c ∈ Sq with p �= q, both b and c can
belong to A if and only if the anchor of b is different from the anchor of c in all Tx ∈ T .

PROOF. First, suppose there exists a Tx ∈ T in which b and c have the same an-
chor. Because b and c belong to different sets in the anchor partitioning, there always
exists a Ty ∈ T in which the anchor of b is different from the anchor of c. Then
Tx | {al , b, c, ar } �= Ty | {al , b, c, ar }, and thus Tx | S′ �= Ty | S′ for any S′ that contains
al , b, c, ar . Hence, both b and c cannot belong to A in this case.

On the other hand, suppose the anchor of b is different from the anchor of c in every
Tx ∈ T . Since b precedes c in all input trees’ leaf orderings (or vice versa) and since b
and c are valid (i.e., the anchors of b lie on the same section of px (al , ar ) for all Tx ∈ T
and similarly for c), we have Tx | {al , b, c, ar } = Ty | {al , b, c, ar } for all Tx , Ty ∈ T .
Hence, both b and c may belong to A in this case.

LEMMA 3. Suppose al , ar ∈ S with l ≤ r . Let {Sp,1, . . . , Sp,mp } be an anchor edge
partitioning of a set Sp in an anchor partitioning, and let A be a homeomorphic agreement
subtree of T which contains al and ar . For any b ∈ Sp,s and c ∈ Sp,t with s �= t , both
b and c can belong to A if and only if the anchor edge of b is different from the anchor
edge of c in all Tx ∈ T .

PROOF. Analogous to the proof of Lemma 2.

3.2. Description of the Algorithm. Algorithm All-Pairs and its main procedure One-
Pair are listed in Figures 2 and 3, respectively. They work as follows.

All-Pairs uses straightforward dynamic programming to compute and store
UOMHT(al ),(ar ) for all al , ar with l ≤ r in a table. To obtain UOMHT(al ),(ar ), All-Pairs
takes the largest of the previously computed optimal solutions to the two subproblems
UOMHT(al ),(ar−1) and UOMHT(al+1),(ar ) (both stored in the dynamic programming table)
and UOMHTal ,ar , computed by the procedure One-Pair as explained below. Finally,
All-Pairs returns UOMHT(a1),(an).

Given indices l and r , One-Pair computes UOMHTal ,ar by first identifying the set of
valid intermediate leaves in Step 1. According to Lemma 1, the non-valid intermediate
leaves cannot be part of a solution and are therefore removed from further considera-
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Algorithm All-Pairs

Input: An instance of UOMHT.
Output: The subset of leaves in a maximum agreement subtree of T .

for length = 1 to n do
for l = 1 to n − length + 1 do

r := l + length − 1
Take the largest of UOMHT (al ),(ar−1), UOMHT (al+1),(ar ), and One-
Pair(l, r), and store it for entry UOMHT (al ),(ar ) in the table.

endfor
endfor
return UOMHT (a1),(an )

End All-Pairs

Fig. 2. The dynamic programming algorithm All-Pairs for solving UOMHT.

tion. Step 2 constructs an anchor partitioning {S1, . . . , Sm} of the remaining (i.e., valid)
intermediate leaves, and Step 3 constructs an anchor edge partitioning {Sp,1, . . . , Sp,mp }
for each set Sp in the anchor partitioning. In Step 4 we define a set L p,s for each Sp,s as
UOMHT(ai ),(aj ) (obtained directly from the dynamic programming table), where i and
j are the smallest and largest indices such that ai , aj ∈ Sp,s . Then, in Step 5, for each
Sp, the algorithm builds a vertex-weighted undirected graph G p = (Vp, Ep) called a
conflict graph, defined as follows: Let Vp = {Sp,1, . . . , Sp,mp } and set the weight of each

Algorithm One-Pair

Input: An instance of UOMHT and the indices of two leaves al , ar ∈ S with
l ≤ r .

Output: UOMHTal ,ar .
1 Identify the set of valid intermediate leaves.
2 Construct an anchor partitioning {S1, . . . , Sm} of the valid intermediate leaves.

for p = 1 to m do
3 Construct an anchor edge partitioning {Sp,1, . . . , Sp,mp } for Sp .
4 For each Sp,s in the anchor edge partitioning, let L p,s = UOMHT (ai ),(aj ),

where i and j are the smallest and largest indices satisfying ai , aj ∈ Sp,s .
5 Build a conflict graph G p = (Vp, Ep) with Vp = {Sp,1, . . . , Sp,mp } using

the weights |L p,1|, . . . , |L p,mp |. Compute a maximum weighted inde-
pendent set Mp in G p and let L p be the union of all sets L p,s for which
Sp,s ∈ Mp .

endfor
6 Build a conflict graph G ′ = (V ′, E ′)with V ′ = {S1, . . . , Sm}using the weights
|L1|, . . . , |Lm |. Compute a maximum weighted independent set M ′ in G ′.

7 return the union of {al , ar } and all sets L p for which Sp ∈ M ′.
End One-Pair

Fig. 3. The procedure One-Pair for computing UOMHTal ,ar .
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Fig. 4. The conflict graphs G1 and G5 for the anchor edge partitionings of S1 and S5 in Figure 1 and the
conflict graph G ′ for the anchor partitioning of the intermediate leaves.

Sp,s ∈ Vp to the cardinality of L p,s . Furthermore, for all s �= t , let {Sp,s, Sp,t } ∈ Ep if
and only if there exist b ∈ Sp,s and c ∈ Sp,t such that b and c have the same anchor edge
in some Tx ∈ T . See Figure 4 for an example. After building G p, Step 5 subsequently
computes a maximum weighted independent set Mp and constructs the set L p consisting
of all L p,s for which Sp,s ∈ Mp. Next, in Step 6, One-Pair similarly builds a conflict
graph G ′ = (V ′, E ′) where V ′ = {S1, . . . , Sm}, the weight of each Sp ∈ V ′ equals the
cardinality of L p, and for all p �= q, it holds that {Sp, Sq} ∈ E ′ if and only if there
exist b ∈ Sp and c ∈ Sq such that b and c have the same anchor in some Tx ∈ T .
Finally, in Step 7, One-Pair returns the union of all sets L p that correspond to vertices
in a maximum weighted independent set of G ′ together with al and ar . Note that if there
are no valid intermediate leaves (for example in the case l = r ), G ′ has no vertices and
One-Pair will simply return the set {al , ar }.

3.3. Correctness. We now prove the correctness of the algorithm.

LEMMA 4. The union L p of the sets of leaves corresponding to vertices in Mp computed
by One-Pair in Step 5 forms a maximum subset of the leaves in Sp belonging to a
homeomorphic agreement subtree which contains al and ar .

PROOF. Firstly, since Mp is an independent set in G p, the anchor edge of b differs
from the anchor edge of c in every Tx ∈ T for every pair b ∈ Sp,s and c ∈ Sp,t with
Sp,s , Sp,t ∈ Mp and s �= t . By Lemma 3, both b and c (and by repeating this argument,
leaves from all Sp,s-sets in Mp) may belong to a homeomorphic agreement subtree which
contains al and ar . For each Sp,s , the set L p,s gives a subset of the leaves in Sp,s that can
exist together in such a subtree. Hence, L p is a valid solution.

Next, let Fp be any subset of Sp that belongs to a homeomorphic agreement subtree A
containing al and ar , and let Wp be the set of vertices in G p induced by Fp, i.e., Sp,s ∈ Wp

if and only if some b ∈ Sp,s belongs to Fp. Observe that Wp forms an independent set
in G p (if there exist Sp,s , Sp,t ∈ Wp connected by an edge in G p then there are b, c ∈ Fp

such that b ∈ Sp,s , c ∈ Sp,t while b and c have the same anchor edge in some Tx ∈ T ;
this means that both b and c cannot belong to A according to Lemma 3, which is a
contradiction). Now, suppose for the sake of contradiction that |Fp| > |L p|. Since Mp is
a maximum weighted independent set with weight |L p|, it follows that the weight of Wp

is at most |L p|. Hence, |Fp| is strictly greater than the weight of Wp. Then, for some
Sp,s in the anchor edge partitioning, Fp contains more than |L p,s | leaves. However, this
is a contradiction because every L p,s is guaranteed by its definition to form a maximum
subset of the leaves in Sp,s that can belong to A. Thus, L p is optimal.
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LEMMA 5. The leaves (except al and ar ) returned by One-Pair in Step 7 form a maximum
subset of the valid intermediate leaves belonging to a homeomorphic agreement subtree
which contains al and ar .

PROOF. Analogous to the proof of Lemma 4, but using Lemma 2 instead of Lemma 3,
and using the maximality of L p guaranteed by Lemma 4 for every Sp in the anchor
partitioning.

THEOREM 1. Algorithm All-Pairs correctly computes UOMHT(a1),(an).

PROOF. By Lemma 5, One-Pair(l, r) computes each UOMHTal ,ar correctly. The the-
orem now follows from the fact that the size of UOMHT(al ),(ar ) equals the size of the
largest of the three sets UOMHTal ,ar , UOMHT(al ),(ar−1), and UOMHT(al+1),(ar ) since either
both al and ar belong to the solution or at least one of al and ar does not.

3.4. Running Time Analysis. In this subsection we consider the running time of Algo-
rithm All-Pairs.

LEMMA 6. Each call to One-Pair takes O(kn) time.

PROOF. To implement Steps 1–3, perform the following: For every Tx ∈ T , construct
T̂x := Tx | {al , al+1, . . . , ar }, and augment every internal node v in T̂x with two inte-
gers A(v) and B(v) equal to the index of the leftmost and rightmost leaf, respectively,
in the subtree rooted at v. All these indices are obtained by a single postorder traversal
of T̂x . Then augment every intermediate leaf with a pointer to its anchor and anchor edge
in T̂x by using the A(v)- and B(v)-values for the children of each node v on the path
between al and ar . (After all trees have been handled, each ai ∈ {al+1, . . . , ar−1} has a
total of 2k pointers.) Now determine if each intermediate leaf is valid by checking the
location of its anchor in all k trees. Next, for each T̂x , process the valid intermediate
leaves in left-to-right order and record whenever the anchor or anchor edge changes; the
union of the recorded changes will then divide the leaves into the sought sequence of
subsets. The above operations take a total of O(kn) time.

Building the conflict graph G p in Steps 4 and 5 could take 
(n2) time if we list all
edges explicitly. Note however that since the leaves are uniformly ordered, if there is a
conflict between Sp,r and Sp,s for some r ≤ s then there is also a conflict between Sp,t

and Sp,s for every r ≤ t ≤ s, where we say there is a conflict between Sp,r and Sp,s

for r �= s if there exist b ∈ Sp,s and c ∈ Sp,t such that b and c have the same anchor
edge in some Tx ∈ T , and where Sp,s is considered to conflict with itself. We therefore
construct and represent the edge set Ep implicitly by storing, for each vertex Sp,s ∈ Vp,
an integer R(s) defined as the smallest index for which there is a conflict between Sp,R(s)

and Sp,s . We can obtain the value of R(s) for any Sp,s in O(k) time by taking the minimum
of all its k anchor edges’ lower nodes’ A(v)-values and then checking which Sp,R(s) that
the leaf having that index belongs to. To find a maximum weighted independent set in G p

in Step 5, define W (0) = 0 and W (s) for 1 ≤ s ≤ mp as the maximum weight of an
independent set in G p restricted to the vertices {Sp,1, . . . , Sp,s}, and observe that, for
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1 ≤ s ≤ mp, W (s) is equal to max{W (s−1), |L p,s |+W (R(s)−1)}. Hence, we can use
dynamic programming to compute W (mp) in O(kn) time, and then trace back to find a
corresponding Mp.

Step 6 is implemented in the same way as Step 5 above. In total, the running time of
One-Pair is O(kn).

THEOREM 2. Algorithm All-Pairs runs in O(kn3) time.

PROOF. Computing one entry UOMHT(al ),(ar ) in the dynamic programming table takes
O(n) time plus the time used by One-Pair, which is O(kn) by Lemma 6. There are
O(n2) entries in the table; hence, the total running time is O(kn3).

We remark that for even greater efficiency, we can apply a preprocessing step to
the input T before running All-Pairs that uses a total of O(kn) time to augment every
si ∈ {s1, . . . , sn−1} with a pointer to the lowest common ancestor in Tx of si and si+1 for
each Tx ∈ T . Then we can reconstruct each tree T̂x in One-Pair(l, r) in O(r − l + 1)
time, and the running time of One-Pair(l, r) reduces to O(k · (r − l + 1)). In the
preprocessing step we may also compute and store all A(v)- and B(v)-values. However,
these modifications will not improve the asymptotic time complexity of All-Pairs.

4. A Polynomial-Time Algorithm for OMHT. We now present an algorithm for the
(non-uniformly) OMHT problem running in O(n3 min{kn, n+logk−1 n}) time. It has the
same overall structure as the algorithm presented in Section 3, but uses other techniques
to identify maximum independent sets in the constructed conflict graphs since the simple
O(kn)-time method described in the proof of Lemma 6 does not work here.

4.1. Description of the Algorithm. The main algorithm, named All-Pairs-OMHT, is
identical to All-Pairs in Section 3 except that it computes and stores the successive values
of OMHT(al ),(ar ) and OMHTal ,ar instead of UOMHT(al ),(ar ) in a table. Accordingly, it calls
a procedure named One-Pair-OMHT to compute each OMHTal ,ar .

One-Pair-OMHT is listed in Figure 5. Given indices l and r , it proceeds as One-Pair,
with the following modifications:

First, an additional test is performed in Step 0 to ensure that al and ar appear in the
correct order in the leaf orderings of all input trees. If not, the solution to OMHTal ,ar is
the empty set and the procedure returns ∅.

Secondly, we extend the definition of an intermediate leaf to the non-uniformly or-
dered variant of MHT as follows. Suppose that al , ar ∈ S with l ≤ r are fixed as in
Section 3.1. We say that any ai ∈ S is an intermediate leaf if ai appears after al and
before ar in the leaf ordering of every Tx ∈ T . (The other definitions and lemmas given
in Section 3.1 then follow without any further modifications because if a leaf appears
before al or after ar in the leaf ordering of some input tree then it cannot belong to
OMHTal ,ar and may therefore be ignored.) Throughout this section we always use the
extended version of the definition.

Thirdly, in Step 4, let L p,s be the largest of all sets OMHTc,d satisfying c, d ∈ Sp,s ,
obtained from the dynamic programming table.
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Algorithm One-Pair-OMHT

Input: An instance of OMHT and the indices of two leaves al , ar ∈ S with l ≤ r .

Output: OMHTal ,ar .

0 if al appears after ar in the leaf ordering of some Tx ∈ T then return ∅.
1 Identify the set of valid intermediate leaves.

2 Construct an anchor partitioning {S1, . . . , Sm} of the valid intermediate leaves.

for p = 1 to m do

3 Construct an anchor edge partitioning {Sp,1, . . . , Sp,mp } for Sp .

4 For each Sp,s in the anchor edge partitioning, let L p,s be the largest of all
sets OMHTc,d that satisfy c, d ∈ Sp,s .

5 Build a conflict graph G p = (Vp, Ep) with Vp = {Sp,1, . . . , Sp,mp } using
the weights |L p,1|, . . . , |L p,mp | and the points Q(Sp,1), . . . , Q(Sp,mp ).
Compute a maximum weighted independent set Mp in G p and let L p be
the union of all sets L p,s for which Sp,s ∈ Mp .

endfor

6 Build a conflict graph G ′ = (V ′, E ′) with V ′ = {S1, . . . , Sm} using the
weights |L1|, . . . , |Lm | and the points P(S1), . . . , P(Sm). Compute a maxi-
mum weighted independent set M ′ in G ′.

7 return the union of {al , ar } and all sets L p for which Sp ∈ M ′.

End One-Pair-OMHT

Fig. 5. The procedure One-Pair-OMHT for computing OMHTal ,ar .

Lastly, the edge sets of the conflict graphs constructed in Steps 5 and 6 are modified
to include also conflicts between sets in the anchor partitioning (and anchor edge parti-
tionings) arising from them being differently relatively ordered in the input trees, i.e., not
just conflicts due to the sharing of an anchor (or anchor edge) in some input tree. For this
purpose, to each intermediate leaf b, associate a point P(b) = (P(b)1, . . . , P(b)k) ∈ Nk ,
where P(b)i for i ∈ {1, . . . , k} equals the number of edges between al and the anchor
of b in tree Ti . Note that for any two valid intermediate leaves b, c, it holds that b and c
belong to the same set Sp in the anchor partitioning if and only if P(b) = P(c). Hence,
any set Sp in the anchor partitioning can be represented by a single k-dimensional
point P(Sp) ∈ Nk . In the same way, associate to each intermediate leaf b a point
Q(b) = (Q(b)1, . . . , Q(b)k) ∈ Nk , where Q(b)i for i ∈ {1, . . . , k} equals the rank of
the anchor edge of b (i.e., its number in the left-to-right ordering of all edges incident
to the anchor of b) in tree Ti . As above, it follows that any set Sp,s in the anchor edge
partitioning of a set Sp can be represented by a single k-dimensional point Q(Sp,s) ∈ Nk .
Say that a point x = (x1, . . . , xk) ∈ Nk strictly dominates a point y = (y1, . . . , yk) ∈ Nk

if xi > yi for all i ∈ {1, . . . , k}, and that if x does not strictly dominate y and y does not
strictly dominate x then x and y are incomparable. We now define the edge set Ep of any
conflict graph G p by the relation {Sp,s, Sp,t } ∈ Ep if and only if s �= t and Q(Sp,s) and
Q(Sp,t ) are incomparable, and the edge set E ′ of the conflict graph G ′ by {Sp, Sq} ∈ E ′

if and only if p �= q and P(Sp) and P(Sq) are incomparable.
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4.2. Correctness. To prove the correctness of this approach, we need the next two
lemmas which are the counterparts of Lemmas 2 and 3.

LEMMA 7. Suppose al , ar ∈ S with l ≤ r . Let {S1, . . . , Sm} be an anchor partitioning
of the valid intermediate leaves, and let A be a homeomorphic agreement subtree of T
which contains al and ar . For any b ∈ Sp and c ∈ Sq with p �= q, both b and c can belong
to A if and only if P(Sp) strictly dominates P(Sq) or P(Sq) strictly dominates P(Sp).

PROOF. First, suppose P(Sp) and P(Sq) are incomparable. Take any Tx ∈ T in which
the anchor of b is different from the anchor of c (by definition, such a Tx always exists),
and assume without loss of generality that P(Sp)x < P(Sq)x . Because P(Sp) and P(Sq)

are incomparable, for some Ty ∈ T we have P(Sp)y ≥ P(Sq)y . This means that in Tx ,
the anchor of b is closer to al than the anchor of c is, but that this is not true in Ty . Then
Tx | {al , b, c, ar } �= Ty | {al , b, c, ar }, and thus Tx | S′ �= Ty | S′ for any S′ that contains
al , b, c, ar . Hence, both b and c cannot belong to A in this case.

On the other hand, suppose P(Sq) strictly dominates P(Sp) (the case P(Sp) strictly
dominates P(Sq) is symmetric). Then, in every Tx ∈ T it holds that the anchor of b is
closer to al than the anchor of c is. Since b and c are valid, Tx | {al , b, c, ar } = Ty |
{al , b, c, ar } for all Tx , Ty ∈ T . Hence, both b and c may belong to A in this case.

LEMMA 8. Suppose al , ar ∈ S with l ≤ r . Let {Sp,1, . . . , Sp,mp } be an anchor edge
partitioning of a set Sp in an anchor partitioning, and let A be a homeomorphic agreement
subtree of T which contains al and ar . For any b ∈ Sp,s and c ∈ Sp,t with s �= t , both b
and c can belong to A if and only if Q(Sp,s) strictly dominates Q(Sp,t ) or Q(Sp,t ) strictly
dominates Q(Sp,s).

PROOF. Analogous to the proof of Lemma 7.

Clearly, the leaves in any set of the form OMHTc,d with c, d ∈ Sp,s can exist together
with al and ar in a homeomorphic agreement subtree of T . It follows as in the proof
of Lemma 4 (using Lemma 8 instead of Lemma 3) that the union of the L p,s-sets
corresponding to vertices in a maximum weighted independent set computed in Step 5
indeed yields a maximum subset of the leaves in Sp belonging to a homeomorphic
agreement subtree which contains al and ar . As in Lemma 5 (but using Lemma 7), we
then see that One-Pair-OMHT(l, r) computes each OMHTal ,ar correctly.

From the above and the proof of Theorem 1, we obtain:

THEOREM 3. Algorithm All-Pairs-OMHT correctly computes OMHT(a1),(an).

4.3. Running Time Analysis. Here we analyze the time complexity of Algorithm All-
Pairs-OMHT.

First examine One-Pair-OMHT. Step 0 is straightforward. To implement Steps 1–
3, let I be a (k × n)-matrix whose entries are initialized to 0, and for each Tx ∈ T ,
set I [x, i] to 1 for every ai that appears after al and before ar in the leaf ordering of Tx .
Then determine for each ai ∈ S if it is an intermediate leaf by checking if I [x, i] = 1
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for all x ∈ {1, . . . , k}. Next, compute the P(ai )- and Q(ai )-values as follows: for every
Tx ∈ T , start at al and traverse px (al , ar ) while keeping track of the distance traveled
and filling in the values for P(ai )x and Q(ai )x for all intermediate leaves ai belonging
to subtrees rooted at the children of the current node. After this, it is easy to identify
and remove those intermediate leaves which are not valid. Find the anchor partitioning
by lexicographically sorting the P(ai )-values for all valid intermediate leaves (recall
that each set in the anchor partitioning corresponds to one distinct point in Nk), and
similarly find each anchor edge partitioning by lexicographically sorting the respective
Q(ai )-values. The lexicographic sorts take a total of O(kn) time (see, for instance, [1]),
so all the above operations can be performed in O(kn) time.

To implement Step 4 efficiently, also store the cardinality of each entry OMHTal ,ar

in the dynamic programming table; then, since all leaf sets of the form Sp,s are disjoint,
the sets L p,s can be looked up using a total of O(n2) time.

When computing maximum weighted independent sets in the conflict graphs in Steps 5
and 6, we can no longer apply the fast method from the proof of Lemma 6 since the leaves
are not necessarily uniformly ordered. Below, we present two methods to represent a
conflict graph G ′ and compute a maximum weighted independent set in it efficiently for
OMHT (the same methods are also used for the conflict graphs of the form G p). As we
shall see, the two methods’ running times depend differently on k.

Method 1: Make use of the fact that G ′ is a k-trapezoid graph and apply a known fast
algorithm [8] to find a maximum weighted independent set in such a graph.

For convenience, we recall the following definition (see, e.g., [8] for more details).
An undirected graph G = (V, E) is a k-trapezoid graph if there exist two mappings
l : V → N

k and u : V → N
k such that for any a, b ∈ V it holds that {a, b} ∈ E

if and only if l(a) does not strictly dominate u(b) and l(b) does not strictly dominate
u(a).7 Any triple (V, l, u) which satisfies the above condition is called a k-dimensional
box representation of G and contains enough information to reconstruct the edge set E .
Now we can see that the conflict graph G ′ is a k-trapezoid graph (in fact, a special case
of a k-trapezoid graph in which all trapezoids in the geometric interpretation are line
segments) by setting l(Sp) = u(Sp) = P(Sp) for all Sp ∈ V ′ in the definition above.
Then the following result from [8] applies:

LEMMA 9 [8]. Given a k-dimensional box representation of a k-trapezoid graph G and
the weights of the vertices in G, a maximum weighted independent set of G can be found
in O(N logk−1 N ) time, where N is the number of vertices in G.

By Lemma 9, Steps 5 and 6 of One-Pair-OMHT can be implemented to run in
O(n logk−1 n) total time using Method 1.

Method 2: Represent G ′ as a setW of strings and find a longest common subsequence
ofW .

7 To interpret this condition geometrically, let H1, . . . , Hk be k horizontal lines and let A and B be the union
of the k − 1 trapezoids formed by the points whose coordinates on each Hi are l(a)i and r(a)i , and l(b)i
and r(b)i , respectively. Then l(a) does not strictly dominate u(b) and l(b) does not strictly dominate u(a) if
and only if A and B intersect.
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More precisely, encode each Sp ∈ V ′ by a symbol σp and define an alphabet � =
{σ1, . . . , σm}, where m = |V ′| as before. For each Tx ∈ T , construct two strings Ex

and Fx of length m in which each symbol in � occurs exactly once (i.e., Ex and Fx are
permutations of �) such that for every p, q ∈ {1, . . . ,m} it holds that: (1) if P(Sp)x <

P(Sq)x then σp precedes σq in both Ex and Fx ; and (2) if P(Sp)x = P(Sq)x then σp

precedes σq in exactly one of Ex and Fx . This ensures that any common subsequence
of the 2k strings in the set {E1, F1, . . . , Ek, Fk} cannot contain a pair of symbols σp

and σq for which P(Sp) and P(Sq) are incomparable. Next, account for the weight w of
each vertex Sp ∈ V ′ by replacing every occurrence of σp in the 2k strings by a sequence
of w new symbols σ 1

p , . . . , σ
w
p , ordered in the same way in all strings. Let W be the

resulting set of strings. It follows from the above that a longest common subsequence
ofW will yield an encoding of a maximum weighted independent set of G ′. The length
of each string inW is the sum of all weights of vertices in V ′, which is always less than n
because the vertices in V ′ correspond to disjoint subsets of S. Therefore, we can use the
next lemma to find a maximum weighted independent set of G ′ in O(kn2) time.

LEMMA 10. LetW be a set of strings over an alphabet� such that each symbol from�
occurs exactly once in every string. Then a longest common subsequence ofW can be
computed in O(|W| · |�|2) time.

PROOF. First compute and store the ranks of all symbols in all strings in a (|W|× |�|)-
table in O(|W| · |�|) time. For any a, b ∈ �, we can then determine if a occurs before b
in all strings, if b occurs before a in all strings, or neither in O(|W|) time. Build a
directed graph D = (�, E) where (a, b) ∈ E if and only if a occurs before b in all
strings. D is clearly acyclic and can be constructed in O(|W| · |�|2) time. A longest
common subsequence ofW corresponds to a longest directed path in D, which can be
computed within the given time bound by doing a topological sort of D and then applying
simple dynamic programming to the vertices in topological order.

Hence, Steps 5 and 6 of One-Pair-OMHT can be implemented to run in O(kn2) total
time using Method 2.

The running time of Method 1 is better than that of Method 2 for small k, but super-
polynomial for large k. By taking the faster of Method 1 and Method 2, the running time
for Steps 5 and 6 becomes O(min{kn2, n logk−1 n}).

To summarize, each call to One-Pair-OMHT takes O(kn+n2+min{kn2, n logk−1 n})=
O(n min{kn, n + logk−1 n}) time. As in Theorem 2, we have:

THEOREM 4. Algorithm All-Pairs-OMHT runs in O(n3 min{kn, n + logk−1 n}) time.

5. Polynomial-Time Algorithms for UOMIT and OMIT. Our polynomial-time al-
gorithms for UOMHT and OMHT can easily be adapted to UOMIT and OMIT, respec-
tively. In order to solve the corresponding subproblems U O M I Tal ,ar and O M I Tal ,ar ,
first note that if al and ar belong to an isomorphic subtree of T then the path between al

and LC Ax (al , ar )must have the same length in every Tx ∈ T , and likewise for the path
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between ar and LC Ax (al , ar ). Hence, in the first step, if al and ar do not satisfy the
above criterion, just return the empty set. Next, identify every valid intermediate leaf ai

for which the distance from ai to px (al , ar ) is equal in all trees Tx ∈ T and for which
P(ai )1 = · · · = P(ai )k ; if at least one of these two conditions is not satisfied then ai can-
not be part of a solution together with al and ar , and must be discarded. Now there are no
conflicts between the sets S1, . . . , Sm in the anchor partitioning of the remaining leaves
because if two leaves ai and aj have the same anchor in some Tx ∈ T then ai and aj must
in fact belong to the same set Sp (to see this, observe that P(ai )x = P(aj )x plus the above
conditions implies P(ai ) = P(aj ) by transitivity). Consequently, the conflict graph G ′

has no edges and there is no need to use special algorithms for computing maximum
weighted independent sets in Step 6 as the optimal solution is trivially V ′. However,
we may still have conflicts in the graphs G p in Step 5, so we apply the techniques
from Sections 3 and 4 to find maximum weighted independent sets here. As before, we
obtain:

THEOREM 5. UOMIT can be solved in O(kn3) time.

THEOREM 6. OMIT can be solved in O(n3 min{kn, n + logk−1 n}) time.

6. Final Remarks. We have shown that two main variants of the MAST problem
which are NP-hard (and NP-hard even to approximate) for unordered trees can in fact
be solved efficiently for ordered trees. It would be interesting to investigate further other
combinatorial problems known to be NP-hard for unordered trees to see if they admit
polynomial-time solutions in the ordered case. (Other combinatorial problems where
this phenomenon occurs have been studied in, e.g., [9] and [13].)
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