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Abstract. Given a set N of phylogenetic networks, the maximum agree-
ment phylogenetic subnetwork problem (MASN) asks for a subnetwork
contained in every Ni ∈ N with as many leaves as possible. MASN can be
used to identify shared branching structure among phylogenetic networks
or to measure their similarity. In this paper, we prove that the general
case of MASN is NP-hard already for two phylogenetic networks, but
that the problem can be solved efficiently if the two given phylogenetic
networks exhibit a nested structure. We first show that the total number
of nodes |V (N)| in any nested phylogenetic network N with n leaves
and nesting depth d is O(n(d + 1)). We then describe an algorithm for
testing if a given phylogenetic network is nested, and if so, determin-
ing its nesting depth in O(|V (N)| · (d + 1)) time. Next, we present a
polynomial-time algorithm for MASN for two nested phylogenetic net-
works N1, N2. Its running time is O(|V (N1)| · |V (N2)| · (d1 +1) · (d2 +1)),
where d1 and d2 denote the nesting depths of N1 and N2, respectively.
In contrast, the previously fastest algorithm for this problem runs in
O(|V (N1)| · |V (N2)| · 4f ) time, where f ≥ max{d1, d2}.

1 Introduction

Phylogenetic trees are commonly used to describe evolutionary relationships
among a set of objects (e.g., biological species, proteins, viruses, or languages)
produced by an evolutionary process, and can help scientists to understand the
mechanisms of evolution as well as to classify the objects being studied and to
organize information [15, 19]. However, evolutionary events such as horizontal
gene transfer or hybrid speciation (often referred to as recombination events)
which suggest convergence between objects cannot be adequately represented
in a single tree structure [3, 10, 11, 12, 16, 17, 18, 21]. Phylogenetic networks were
introduced in order to solve this shortcoming by allowing internal nodes to have
more than one parent so that each recombination event may be represented by
a node with indegree greater than one. Various methods for constructing and
comparing phylogenetic networks have been proposed recently [3, 4, 10, 12, 13,
16, 17, 18, 21].

Phylogenetic network comparison has many uses; one application described
in [16] is to assess the topological accuracy of different phylogenetic network con-
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struction methods1. Another application for network comparison is to identify
a subnetwork with as many leaves as possible which is contained in all of the
networks in a given set (obtained, for example, by different construction meth-
ods or by using the same method on alternative data sets) to determine which
ancestral relationships are present in all networks. Moreover, the size of such a
subnetwork provides a measure of how similar the networks in a given set are.
This problem was formalized as a computational problem called the maximum
agreement phylogenetic subnetwork problem (MASN) and initially studied in [4].

The general case of MASN is NP-hard for three or more phylogenetic net-
works [4]. In fact, it is NP-hard even for just two networks, as we prove in this
paper. Fortunately, recombination events usually do not occur in an unrestricted
manner [10, 21]. It is therefore important to know under what structural restric-
tions on the input networks the problem becomes efficiently solvable. Here, we in-
vestigate the computational complexity of MASN for two phylogenetic networks
whose merge paths are nested, which is a natural generalization of rooted, leaf-
labeled trees and so called galled-trees previously studied in [10, 13, 17, 21] (see
below for definitions), and prove that this case can be solved by a polynomial-
time algorithm. The decomposition technique for nested phylogenetic networks
we develop here may also be applicable to other computational and combinato-
rial problems related to phylogenetic network construction and comparison.

1.1 Problem Definition and Terminology

A phylogenetic network is a connected, rooted, simple, directed acyclic graph in
which: (1) each node has outdegree at most 2; (2) each node has indegree 1 or 2,
except the root node which has indegree 0; (3) no node has both indegree 1 and
outdegree 1; and (4) all nodes with outdegree 0 are labeled by elements from a
finite set L in such a way that no two nodes are assigned the same label. From
here on, nodes of outdegree 0 are referred to as leaves and identified with their
corresponding elements in L. We denote the set of all nodes and the set of leaves
in a phylogenetic network N by V (N) and Λ(N), respectively.

Given a phylogenetic network N and a set L′, the topological restriction of N
to L′, denoted by N | L′, is defined as the phylogenetic network obtained by first
deleting all nodes which are not on any directed path from the root to a leaf in L′

along with their incident edges, and then, for every node with outdegree 1 and
indegree less than 2, contracting its outgoing edge (any resulting set of multiple
edges between two nodes is replaced by a single edge).

Given a set N = {N1, . . . , Nk} of phylogenetic networks, an agreement sub-
network of N is a phylogenetic network A such that Λ(A) ⊆ ⋂

Ni∈N Λ(Ni) and
for every Ni ∈ N , A is isomorphic to a subgraph of Ni | Λ(A) in which zero or
more of the edges have been deleted and each outgoing edge from a node with

1 To evaluate a construction method M, repeat the following steps a number of times.
First, randomly generate a network N and evolve a sequence down the edges of N ac-
cording to some chosen model of evolution, then build a network N ′ for the resulting
set of sequences using M, and finally measure the similarity between N ′ and N .
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Fig. 1. N is a nested phylogenetic network with nesting depth 3 and u is a split node
in N . The numbers shown next to the nodes of N are their respective nesting depths.
N2[uL] and N0[uR] are the subgraphs of N displayed on the right

resulting outdegree 1 has been contracted. A maximum agreement subnetwork
of N is an agreement subnetwork of N with the maximum possible number
of leaves. The maximum agreement phylogenetic subnetwork problem (MASN)
is: Given a set N = {N1, . . . , Nk} of phylogenetic networks, find a maximum
agreement subnetwork of N . A leaf can appear in a maximum agreement sub-
network of N only if it is present in every network in N , so we assume without
loss of generality that Λ(N1) = . . . = Λ(Nk) and call this leaf set L. Throughout
this paper, we let n denote the number of different leaves and k the number of
input networks, i.e., n = |L| and k = |N | in the problem definition above.

To describe our results, we need the following terminology. Let N be a phylo-
genetic network. Recall that nodes with outdegree 0 are called leaves. We refer to
nodes with indegree 2 as hybrid nodes. For any hybrid node h, every ancestor s
of h such that h can be reached using two disjoint directed paths starting at the
children of s is called a split node of h. If s is a split node of h then any path
starting at s and ending at h is a merge path of h, and any path starting at a
child of s and ending at a parent of h is a clipped merge path of h.

We say that N is a nested phylogenetic network if for every two merge
paths P1, P2 of two different hybrid nodes h1, h2, either P1 and P2 are disjoint,
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one is a subpath of the other, or their intersection equals either h1 or h2. For
each node u in a nested phylogenetic network N , define the nesting depth of u,
d(u), as the number of hybrid nodes in N that have a clipped merge path passing
through u. See Fig. 1 for an example. The nesting depth of N , denoted by d(N),
is the maximum value of d(u) over all u ∈ V (N). Note that if d(N) = 0 then N
is a tree. Gusfield et al. [10] defined a galled-tree (also referred to in the literature
as a gt-network [17] or a topology with independent recombination events [21])
as a phylogenetic network in which all clipped merge paths are disjoint. For a
discussion on the biological significance of galled-trees, see [10]. Clearly, d(N) ≤ 1
if and only if N is a galled-tree. Thus, nested phylogenetic networks naturally
extend the notion of rooted, leaf-labeled trees and galled-trees.

Finally, given any phylogenetic network N , let U(N) be the undirected graph
obtained from N by replacing each directed edge by an undirected edge. N is
said to be a level-f phylogenetic network if, for every biconnected component B
in U(N), the subgraph of N induced by the set of nodes in B contains at most
f nodes with indegree 2. If f = 0 then N is a tree, and we have f = 1 if and
only if N is a nested phylogenetic network with nesting depth 1. If N is a nested
phylogenetic network with nesting depth d then f ≥ d.

1.2 Previous Results

Median-joining, split decomposition (SplitsTree), PYRAMIDS, statistical parsi-
mony (TCS), molecular-variance parsimony (Arlequin), reticulogram (T-REX),
and netting are some general methods for constructing phylogenetic networks
(see [18] for a survey). More recently presented methods include NeighborNet [3]
and Z-closure [12]. Algorithms for some reconstruction problems with additional
constraints on the networks were given in [10, 13, 17, 21]; in particular, these pa-
pers considered problems involving constructing a network with nesting depth 1.

As for comparing two given networks, one method based on the Robinson-
Foulds (RF) measure for phylogenetic trees was proposed in [16]. MASN was
introduced in [4], where it was shown to be NP-hard if restricted to k = 3 and
an O(n2)-time algorithm for the special case of two level-1 phylogenetic networks
(i.e., having nesting depth 1) was presented. [4] also showed that MASN for two
level-f networks N1 and N2 can be solved in O(|V (N1)| · |V (N2)| · 4f ) time.

MASN generalizes a well-studied problem known as the maximum agreement
subtree problem (MAST)2 (see, e.g., [1, 2, 5, 7, 9, 14, 20]) in which the input is a set
of distinctly leaf-labeled trees and the goal is to compute a tree embedded in all of
the input trees with the maximum possible number of labeled leaves. The fastest
known algorithm for MAST for two trees runs in O(

√
D n log(2n/D)) time, where

n is the number of leaves and D is the maximum degree of the two input trees [14].
Note that this is O(n log n) for two trees with D bounded by a constant and
O(n1.5) for two trees with unbounded D. MAST is NP-hard for three trees with
unbounded degrees [1], and solvable in O(kn3 + nδ) time for k ≥ 3 trees, where
δ is an upper bound on at least one of the input trees’ degrees [2, 7].

2 MAST is also known as the maximum homeomorphic subtree problem (MHT).
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1.3 Our Results and Organization of Paper

In this paper, we focus on MASN for two nested phylogenetic networks. In Sec-
tion 2, we derive some useful combinatorial properties of nested networks. We
first prove that |V (N)| = O(n(d+1)) for any nested network N with n leaves and
nesting depth d and then show how to test whether a given phylogenetic network
is nested, and if so, determine its nesting depth in O(|V (N)|·(d+1)) time. In Sec-
tion 3, we present a simple and fast algorithm for solving MASN for two nested
networks N1 and N2 running in O(|V (N1)|·|V (N2)|·(d1+1)·(d2+1)) time, where
d1 and d2 are the nesting depths of N1 and N2, respectively. (The algorithm given
in [4] could be applied here but its running time is O(|V (N1)| · |V (N2)| · 4f ),
where f ≥ max{d1, d2}.) For the special case d1 = 1, d2 = 1, i.e., two level-1 net-
works, the running time of our new algorithm coincides with the running time of
O(n2) of the algorithm in [4]. Next, in Section 4, we strengthen the NP-hardness
result of [4] by proving that MASN is NP-hard already for two phylogenetic
networks3. Finally, we discuss some open problems in Section 5. Proofs omitted
due to space limitations will appear in the full-length version of this paper.

2 Preliminaries

We first state some basic properties of nested phylogenetic networks.

Lemma 1. If N is a nested network then each split node in N is a split node of
exactly one hybrid node, and each hybrid node in N has exactly one split node.

Because of Lemma 1, each hybrid node in a nested phylogenetic network
corresponds to a unique split node. For any such hybrid node h and split node s,
s is called the split node of h and h is called the hybrid node of s.

Lemma 2. Let h be a hybrid node in a nested phylogenetic network and let s be
the split node of h. Then d(h) = d(s).

We now derive an upper bound on the total number of nodes in a nested
phylogenetic network. The next two lemmas generalize Lemma 3.2 in [4].

Lemma 3. If N is a nested phylogenetic network with n leaves and nesting
depth d then the number of hybrid nodes in N is at most (n − 1) · d.

Proof. Let TN (d) be the network N . For i ∈ {0, 1, . . . , d−1}, define TN (i) as the
directed graph constructed from TN (i+1) as follows. For every hybrid node h in
TN (i + 1) with d(h) = i, remove h’s two incoming edges, contract the split node
of h and all nodes on the two clipped merge paths of h to a single node s, and add

3 The reduction in [1] for proving the NP-hardness of MAST restricted to three trees
with unbounded degrees cannot be used directly for MASN with k = 2 because it con-
structs three trees and because here we require all nodes to have outdegree at most
two. Interestingly, MAST for two binary trees is solvable in O(n log n) time [5, 14].
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a directed edge from s to h. TN (0) is a tree because every node with indegree 2
in N has indegree 1 in TN (0) and no contraction increases the indegree of any
node. TN (0) has n leaves, so the number of internal nodes in TN (0) with out-
degree > 1 is at most n− 1. Observe that at most d split nodes in N correspond
to each internal node in TN (0) with outdegree > 1 and that the number of hybrid
nodes in N equals the number of split nodes in N since N is nested. ��

Lemma 4. If N is a phylogenetic network with n leaves and H hybrid nodes
then the total number of nodes in N is at most 2(n + H) − 1.

Proof. Let zij denote the number of nodes in N which have i incoming edges and
j outgoing edges. By the definition of a phylogenetic network, the total number
of nodes in N is z02+z10+z12+z20+z21+z22. For every u ∈ V (N), let in(u) and
out(u) denote the number of incoming and outgoing edges incident to u. Since⎧⎪⎨

⎪⎩

∑
u∈V (N)

in(u) = z02 · 0 + (z10 + z12) · 1 + (z20 + z21 + z22) · 2

∑
u∈V (N)

out(u) = (z10 + z20) · 0 + z21 · 1 + (z02 + z12 + z22) · 2

and
∑

u∈V (N) in(u) =
∑

u∈V (N) out(u), we have z12 = z10 + 2z20 + z21 − 2z02.
Next, H = z20 + z21 + z22, n = z10 + z20, and z02 = 1 give us z12 ≤ n + H − 2.
Hence, |V (N)| ≤ 1 + n + (n + H − 2) + H = 2n + 2H − 1. ��

Theorem 1. If N is a nested phylogenetic network with n leaves and nesting
depth d then |V (N)| = O(n(d + 1)).

Theorem 2. Let N be a phylogenetic network with n leaves and H hybrid nodes.
We can test whether N is nested in O(|V (N)| · (H + 1)) time; if N is nested,
the test takes only O(|V (N)| · (d(N) + 1)) time and its nesting depth can be
determined in the same asymptotic time bound.

Proof. Use the following method to construct a list L(u) for every u ∈ V (N)
consisting of all hybrid nodes which have a clipped merge path passing through u,
plus u itself if u is a hybrid node. Associate an initially empty list L(u) to each
u ∈ V (N), and define L(∅) = ∅. Do a postorder traversal of the nodes of N .
Whenever a non-leaf node u is visited, examine L(uL) and L(uR), where uL and
uR are the children of u (if u only has one child then let uR equal ∅). If L(uL)
is empty then let L(u) := L(uR); else if L(uR) is empty then let L(u) := L(uL).
Otherwise, check whether L(uL) equals L(uR). If no then N is not nested, and
the algorithm terminates; if yes then let L(u) := L(uL) and remove the last
element � from L(u) (here, u is in fact the split node for the hybrid node �).
Finally, if u is a hybrid node then insert u at the end of L(u). Note that a node
may be both a split node and a hybrid node. No |L(u)| can exceed the number
of hybrid nodes in N . Moreover, when the algorithm is finished, if N is a nested
phylogenetic network then its nesting depth d(N) equals the maximum length
of L(u) over all u ∈ V (N) since d(u) = |L(u)| for each non-hybrid node u. ��
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3 An Algorithm for MASN for Two Nested Networks

In this section, we show how to solve MASN for two nested phylogenetic networks
N1, N2 with n leaves in O(|V (N1)| · |V (N2)| · (d1 + 1) · (d2 + 1)) time, where d1
and d2 are the nesting depths of N1 and N2, respectively.

Let N be any nested phylogenetic network. From this point onward, assume
that some arbitrary left-to-right ordering of the children of every node has been
fixed. If u ∈ V (N) has two children then let uL and uR denote the left and
right child of u, respectively, and if u only has one child c then set uL = c and
uR = ∅. For every u ∈ V (N), N [u] is the subnetwork of N rooted at u, i.e.,
the minimal subgraph of N which includes all nodes and directed edges of N
reachable from u. N [∅] refers to the empty network with no nodes or edges.

Each u ∈ V (N) belongs to d(u) different clipped merge paths. Since N is
nested, the d(u) different hybrid nodes corresponding to these clipped merge
paths have nesting depths 0, 1, . . . , d(u) − 1. For i ∈ {1, . . . , d(u)}, we define
hi(u) as the hybrid node h which has a clipped merge path passing through u and
which satisfies d(h) = i−1. Next, for i ∈ {1, . . . , d(u)}, let N i[u] be the subgraph
of N [u] where N [hi(u)] and hi(u)’s incoming edge have been removed, and let
N0[u] be N [u]. Define N i[u] for i > d(u) as N0[u] if u is not a hybrid node, and as
N [∅] if u is a hybrid node. See Fig. 1 for an example. Intuitively, the parameter i
informs us at which descendant hybrid node of u to cut N [u] to obtain N i[u].

Lemma 5. For any nested phylogenetic network N , u ∈ V (N), and 0 ≤ j <
i ≤ d(u), it holds that N i[u] is a proper subgraph of N j [u].

Lemma 6. Let N be a nested phylogenetic network. For any u ∈ V (N) and i ∈
{0, 1, . . . , d(u)}, we have: (1) N i[uL] and Nx[uR]are disjoint,and (2) Nx[uL] and
N i[uR] are disjoint, where x = d(u) + 1 if u is a split node and x = i otherwise.

Proof. If u is a split node then let h be the hybrid node of s. By Lemma 2, d(h) =
d(u). Let c1 be a child of u with c1 	= h and let c2 be the other child of u. We have
hx(c1) = hd(u)+1(c1) = h, which means that Nx[c1] does not contain any nodes
in N [h]; hence, Nx[c1] and N0[c2] are disjoint, and Lemma 5 then implies that
Nx[c1] and N i[c2] are disjoint. Similarly, N i[c1] and Nx[c2] are disjoint (if c2 	= h
then hx(c2) = hd(u)+1(c2) = h so Nx[c2] contains no nodes in N [h] and thus no
nodes in N i[c1]; if c2 = h then Nx[c2] = Nd(u)+1[h] = Nd(h)+1[h] = N [∅]).

If u is not a split node then N [uL] (= N0[uL]) and N [uR] (= N0[uR]) are
always disjoint. By Lemma 5, N i[uL] and N i[uR] are disjoint. ��

For any two phylogenetic networks N1, N2, define Masn(N1, N2) as the num-
ber of leaves in a maximum agreement subnetwork. If N1 or N2 is an empty net-
work then Masn(N1, N2) is 0. Otherwise, Masn(N1, N2) for two nested networks
can be expressed recursively using the following lemma which is a generalization
of the main lemma in [20] for MAST. In the Match case, when trying to match
two subnetworks N i

1[uL] and Nx
1 [uR] to two subnetworks Nk

2 [vL] and Ny
2 [vR],

Lemma 6 ensures that the set of nodes in the intersection of V (N1[uL]) and
V (N1[uR]) is matched to only one of Nk

2 [vL] and Ny
2 [vR], and vice versa.
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Lemma 7. Let N1 and N2 be two nested phylogenetic networks. For every (u, v)
∈ V (N1) × V (N2) and 0 ≤ i ≤ d(u), 0 ≤ k ≤ d(v),

Masn(N i
1[u], Nk

2 [v]) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|Λ(N i
1[u]) ∩ Λ(Nk

2 [v])|, if at least one of u and v
is a leaf

max
{
Diag(N i

1[u], Nk
2 [v]), Match(N i

1[u], Nk
2 [v])

}
,

otherwise

where

Diag(N i
1[u], Nk

2 [v]) = max
{
Masn(N i

1[u], Nk
2 [vL]), Masn(N i

1[u], Nk
2 [vR]),

Masn(N i
1[uL], Nk

2 [v]), Masn(N i
1[uR], Nk

2 [v])
}

and
Match(N i

1[u], Nk
2 [v]) =

max
{
Masn(N i

1[uL], Nk
2 [vL]) + Masn(Nx

1 [uR], Ny
2 [vR]),

Masn(N i
1[uL], Ny

2 [vL]) + Masn(Nx
1 [uR], Nk

2 [vR]),
Masn(N i

1[uL], Nk
2 [vR]) + Masn(Nx

1 [uR], Ny
2 [vL]),

Masn(N i
1[uL], Ny

2 [vR]) + Masn(Nx
1 [uR], Nk

2 [vL]),
Masn(Nx

1 [uL], Nk
2 [vL]) + Masn(N i

1[uR], Ny
2 [vR]),

Masn(Nx
1 [uL], Ny

2 [vL]) + Masn(N i
1[uR], Nk

2 [vR]),
Masn(Nx

1 [uL], Nk
2 [vR]) + Masn(N i

1[uR], Ny
2 [vL]),

Masn(Nx
1 [uL], Ny

2 [vR]) + Masn(N i
1[uR], Nk

2 [vL])
}
,

where x =
{

d(u) + 1, if u is a split node
i, otherwise

y =
{

d(v) + 1, if v is a split node
k, otherwise

Now, given two nested phylogenetic networks N1 and N2, we can use Lemma 7
to compute Masn(N i

1[u], Nk
2 [v]) for all 0 ≤ i ≤ d(u) and 0 ≤ k ≤ d(v) by ap-

plying dynamic programming in a bottom-up manner. The resulting algorithm
(Algorithm NestedMasn) is listed in Fig. 2.

Lemma 8. NestedMasn runs in O
(|V (N1)|·|V (N2)|·(d(N1)+1)·(d(N2)+1)

)
time.

Algorithm NestedMasn can be modified to compute the set of leaves in a max-
imum agreement subnetwork without increasing the asymptotic running time by
also recording information about how each Masn-value is attained as it is com-
puted, e.g., by saving pointers. To construct an actual maximum agreement
subnetwork from such a set L′, we may use a standard traceback technique to
obtain a tree with leaf set L′ which is an agreement subnetwork. This yields:

Theorem 3. Given two nested phylogenetic networks N1 and N2 with nesting
depths d1 and d2, respectively, a maximum agreement subnetwork can be com-
puted in O(|V (N1)| · |V (N2)| · (d1 + 1) · (d2 + 1)) time.
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Algorithm NestedMasn

Input: Two nested phylogenetic networks N1 and N2.

Output: The number of leaves in a maximum agreement subnetwork of {N1, N2}.

1 Compute and store d(u) and hi(u) for all u ∈ V (N1)∪V (N2), i ∈ {1, . . . , d(u)}.
2 Let O be the lexicographic ordering of V (N1)×V (N2), where the nodes in each

V (Ni) are ordered according to postorder.
3 for each (u, v) ∈ V (N1) × V (N2) in increasing order in O do

Compute Masn(N i
1[u], Nk

2 [v]) for all 0 ≤ i ≤ d(u), 0 ≤ k ≤ d(v) by using
the expression in Lemma 7.

endfor
4 return Masn(N0

1 [r1], N0
2 [r2]), where ri is the root of Ni for i ∈ {1, 2}.

End NestedMasn

Fig. 2. A dynamic programming algorithm for computing all values of Masn

4 MASN with k = 2 Is NP-Hard

To prove the NP-hardness of MASN for every fixed k ≥ 2, we provide a polyno-
mial-time reduction from the following problem.

Three-Dimensional Matching (3DM): Given a set M ⊆ X×Y ×Z, where X,
Y , and Z are disjoint sets and X = {x1, ..., xq}, Y = {y1, ..., yq}, Z = {z1, ..., zq},
is there a subset M ′ of M with |M ′| = q such that M ′ is a matching, i.e., such
that for every pair e, f ∈ M ′ it holds that e and f differ in all coordinates?

3DM is NP-complete (see, e.g., [8]). Given an arbitrary instance of 3DM,
construct an instance of MASN with two phylogenetic networks N1 and N2 with
a leaf set L as described below. The elements of M are encoded in subtrees
called Sxi,zk

in N1 and in subtrees called Uyj in N2. The purpose of the subtrees
named Axi , Bxi,zk

, and Wzk
is to make sure that for any two triples e and f

in M , a maximum agreement subnetwork of N1 and N2 can contain both of
the two leaves representing e and f if and only if e and f differ in all coordi-
nates.

Take L = M ∪ A ∪ B, where A is a set of q6 · (q + 2) elements not in M
and B is a set of q6 elements not in M or A. Let Ax0 , . . . , Axq , Axq+1 be q + 2
binary trees with q6 leaves each, distinctly labeled by A. For every (xi, zk) ∈
X × Z, let Bxi,zk

be a binary tree with q4 leaves, distinctly labeled by B.
For every (xi, zk) ∈ X × Z, define: (1) Mxi,zk

as the subset of M contain-
ing all triples of the form (xi, y, zk) where y ∈ Y ; and (2) Sxi,zk

to be a tree
obtained from a binary caterpillar tree with |Mxi,zk

| + 1 leaves distinctly la-
beled by Mxi,zk

and where one of the bottommost leaves has been replaced
by the root of Bxi,zk

. See Fig. 3. For every yj ∈ Y , define: (1) Myj as the
subset of M containing all triples of the form (x, yj , z) where x ∈ X and
z ∈ Z; and (2) Uyj

to be a binary caterpillar tree with |Myj
| + q leaves in

which the |Myj | leaves closest to the root are distinctly labeled by Myj
and

the rest are unlabeled nodes referred to as vyj ,zk
for 1 ≤ k ≤ q. Then, for
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every zk ∈ Z, define Wzk
to be a tree obtained from the binary caterpil-

lar tree with q leaves by replacing the leaves with the roots of Bx1,zk
, . . . ,

Bxq,zk
.

Next, let P be any sorting network (see, e.g., [6]) for q elements with a
polynomial number p of comparator stages. Build a directed acyclic graph Q
from P with (p + 1) · q nodes {Qi,j | 1 ≤ i ≤ p+1, 1 ≤ j ≤ q} such that there
is a directed edge (Qi,j , Qi+1,j) for every 1 ≤ i ≤ p and 1 ≤ j ≤ q, and two
directed edges (Qi,j , Qi+1,k) and (Qi,k, Qi+1,j) for every comparator (j, k) at
stage i in P for 1 ≤ i ≤ p, as illustrated in Fig. 4. Furthermore, construct q
directed paths {G1, . . . , Gq} where each Gk = (G1,k, . . . , Gq,k).

Let N1 be a phylogenetic network (in fact, a leaf-labeled binary tree) ob-
tained by attaching to a directed path (m1, m2, . . . , mq2+q+2), in order of non-
decreasing distance from m1, the roots of Ax0 , Sx1,z1 , Sx1,z2 , . . . , Sx1,zq , Ax1 ,
Sx2,z1 , . . . , Sxq,zq

, Axq
, and Axq+1 , and letting m1 be the root of N1. See Fig. 5.

The phylogenetic network N2 is obtained by first attaching to a directed path
(n1, n2, . . . , n2q+2), in order of non-decreasing distance from n1, the root of
Ax0 , the node Q1,1, the root of Ax1 , the node Q1,2, the root of Ax2 , . . . , the
root of Axq , and the root of Axq+1 , and letting n1 be the root of N2. Then,
for j ∈ {1, . . . , q}, let Qp+1,j coincide with the root of Uyj , and for every
1 ≤ j ≤ q and 1 ≤ k ≤ q add a directed edge (vyj ,zk

, Gj,k). Next, for ev-
ery 1 ≤ k ≤ q add a directed edge from Gq,k to the root of Wzk

. Finally, for
every node in N1 and N2 having indegree 1 and outdegree 1, contract its outgo-
ing edge.

Lemma 9. There exists an agreement subnetwork of (N1, N2) with q7 + 2q6 +
q5 + q leaves if and only if M has a matching of size q.

Theorem 4. MASN is NP-hard even if restricted to k = 2.

3
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: Wzk
:

Fig. 3. Assume Mx8,z3 = {(x8, y1, z3), (x8, y3, z3), (x8, y4, z3), (x8, y7, z3)} and My4 =
{(x4, y4, z5), (x8, y4, z3)}. Sx8,z3 and Uy4 are shown on the left and in the center, re-
spectively. The structure of each Wzk is shown on the right
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Fig. 4. The sorting network P on the left yields a directed acyclic graph Q
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Fig. 5. The phylogenetic networks N1 and N2

5 Open Problems

Does MASN for other types of structurally restricted phylogenetic networks
admit efficient algorithms? In particular, is it possible to extend our method in



592 J. Jansson and W.-K. Sung

Section 3 to two networks in which every hybrid node has exactly one split node?
An example of such a network is shown in Fig. 6. It would also be interesting to
investigate if any other problems which are hard to solve for unrestricted phylo-
genetic networks but solvable in polynomial time for galled-trees (i.e., networks
with nesting depth 1)4 can be solved efficiently for nested phylogenetic networks.

dcb

ea

Fig. 6. This network is not nested, yet every hybrid node has exactly one split node and
every split node has exactly one hybrid node, i.e., the converse of Lemma 1 is not true

We believe MASN for more than two nested phylogenetic networks can be
solved in polynomial time when k = O(1). On the other hand, if the outdegree 2
constraint in the definition of phylogenetic networks is removed, MASN seems
to be NP-hard already for two networks with nesting depth 1. The final open
question is: can the running time of our algorithm for two nested phylogenetic
networks be improved, e.g., by applying sparsification techniques?
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