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Abstract. Given a set T of rooted, unordered trees, where each Ti ∈ T
is distinctly leaf-labeled by a set Λ(Ti) and where the sets Λ(Ti) may over-
lap, the maximum agreement supertree problem (MASP) is to construct
a distinctly leaf-labeled tree Q with leaf set Λ(Q) ⊆

⋃
Ti∈T Λ(Ti) such

that |Λ(Q)| is maximized and for each Ti ∈ T , the topological restriction
of Ti to Λ(Q) is isomorphic to the topological restriction of Q to Λ(Ti).
Let n =

∣
∣⋃

Ti∈T Λ(Ti)
∣
∣, k = |T |, and D = maxTi∈T

{
deg(Ti)

}
. We

first show that MASP with k = 2 can be solved in O
(√

D n log(2n/D)
)

time, which is O(n log n) when D = O(1) and O(n1.5) when D is un-
restricted. We then present an algorithm for MASP with D = 2 whose
running time is polynomial if k = O(1). On the other hand, we prove
that MASP is NP-hard for any fixed k ≥ 3 when D is unrestricted, and
also NP-hard for any fixed D ≥ 2 when k is unrestricted even if each
input tree is required to contain at most three leaves. Finally, we describe
a polynomial-time (n/ log n)-approximation algorithm for MASP.

1 Introduction

An important objective in phylogenetics is to develop methods for merging a col-
lection of phylogenetic trees on overlapping sets of taxa into a single supertree so
that no (or as little as possible) branching information is lost. Ideally, the result-
ing supertree can then be used to deduce evolutionary relationships between taxa
which do not occur together in any one of the input trees. Supertree methods are
useful because most individual studies investigate relatively few taxa [22] and
because sample bias leads to certain taxa being studied much more frequently
than others [4]. Also, supertree methods can combine trees constructed for differ-
ent types of data or under different models of evolution. Furthermore, although
computationally expensive methods for constructing reliable phylogenetic trees
are infeasible for large sets of taxa, they can be applied to obtain highly accurate
trees for smaller, overlapping subsets of the taxa that may then be merged using
less computationally intense, supertree-based techniques (see, e.g., [7,16,20]).

Since the set of trees which is to be combined may in practice contain con-
tradictory branching structure (for example, if the trees have been constructed
from data originating from different genes or if the experimental data contains
errors), a supertree method needs to specify how to resolve conflicts. In this pa-
per, we consider maximum agreement supertrees. The intuitive idea is to identify
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Fig. 1. Let T be the tree on the left. Then T | {a, c, d, h} is the tree shown on the right.

and remove a smallest possible subset of the taxa so that the remaining taxa can
be combined without conflicts. In this way, one would get an indication of which
ancestral relationships can be regarded as resolved and which taxa need to be
subjected to further experiments. We formalize the above as a computational
problem called the maximum agreement supertree problem (MASP).

Further motivation for studying maximum agreement supertrees comes from
the relation to a well-studied problem known as the maximum agreement subtree
problem (MAST) in which the input is a set of leaf-labeled trees and the goal is
to compute a tree contained in all of the input trees with as many labeled leaves
as possible. Our results in this paper complement those previously known for
MAST. The computational complexity of MAST has been closely investigated
(see Section 1.2), motivated by the practical usefulness of maximum agreement
subtrees. For example, maximum agreement subtrees can be used not only to
identify small problematic subsets of taxa during phylogenetic reconstruction,
but also to measure the similarity of a given set of trees [9,11,19] or to estimate
a classification’s stability to small changes in the data [11]. Moreover, MAST-
based algorithms have been used to prepare and improve bilingual context-using
dictionaries for automated language translation systems [8,21].

1.1 Problem Definitions

Let T be a tree whose leaves are labeled by a set S. We say that T is distinctly
leaf-labeled by S if no two leaves in T have the same label. Below, each leaf
in such a tree is identified with its corresponding label in S. Given a rooted,
unordered, distinctly leaf-labeled tree T and a set S′, the topological restriction
of T to S′ (denoted by T |S′) is the tree obtained by deleting from T all nodes
which are not on any path from the root to a leaf in S′ along with their incident
edges, and then contracting every edge between a node having just one child and
its child (see Fig. 1). For any tree T , denote its set of leaves by Λ(T ).

Let T = {T1, T2, ..., Tk} be a set of rooted, unordered trees, where each Ti is
distinctly leaf-labeled and where the sets Λ(Ti) may overlap. A total agreement
supertree of T is a tree Q such that Q is distinctly leaf-labeled by

⋃
Ti∈T Λ(Ti)

and Q |Λ(Ti) is isomorphic to Ti for every Ti ∈ T . Note that two or more
trees in T may contain conflicting branching information, in which case a total
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agreement supertree of T does not exist. The total agreement supertree prob-
lem (TASP) is: Given a set T of distinctly leaf-labeled, rooted, unordered trees,
output a total agreement supertree of T if one exists, otherwise output null.

When T = {T1, T2, ..., Tk} is specified, we write S =
⋃

Ti∈T Λ(Ti) and call S
the leaf set of T . For any S′ ⊆ S, we let T |S′ denote the set {T1 |S′, T2 |S′, ...,
Tk |S′}. If there exists a total agreement supertree Q of T |S′ then we say that
S′ is consistent with T and call Q an agreement supertree of T . A maximum
agreement supertree of T is an agreement supertree of T with as many leaves as
possible. The maximum agreement supertree problem (MASP) is: Given a set T
of distinctly leaf-labeled, rooted, unordered trees, output a maximum agreement
supertree of T . An agreement subtree of T is a tree U such that for some S′ ⊆ S
it holds that U is distinctly leaf-labeled by S′ and Ti |S′ is isomorphic to U for
every Ti ∈ T . A maximum agreement subtree of T is an agreement subtree of T
with the maximum possible number of leaves. The maximum agreement subtree
problem (MAST), also referred to in the literature as the maximum homeomor-
phic subtree problem (MHT), is to find a maximum agreement subtree of T .

Throughout this paper, we let n denote the cardinality of the leaf set and
k the number of input trees, i.e., n =

∣
∣⋃

Ti∈T Λ(Ti)
∣
∣ and k = |T | in the problem

definitions above. We let D = maxTi∈T
{
deg(Ti)

}
, where deg(Ti) is the degree1

of Ti. We assume that none of the trees in T have a node with degree 1, so that
each tree contains O(n) nodes. Note that if we are given a subset S′ of S which is
consistent with T , then we can efficiently construct a total agreement supertree
of T |S′ using the algorithm for TASP by Henzinger et al. [16] (see also Lemma 7
in Section 5). Hence, we focus on the subproblem of MASP of computing a
maximum cardinality subset S′ of S such that S′ is consistent with T .

A rooted triplet is a distinctly leaf-labeled, binary, rooted, unordered tree with
three leaves. The unique rooted triplet on {a, b, c} in which the lowest common
ancestor of a and b is a proper descendant of the lowest common ancestor of a
and c (or equivalently, where the lowest common ancestor of a and b is a proper
descendant of the lowest common ancestor of b and c) is denoted by ({a, b}, c).

1.2 Previous Results

Comprehensive surveys of existing methods for constructing supertrees can be
found in [4,20,22]. Below, we mention some known results related to MASP.

Aho, Sagiv, Szymanski, and Ullman [1] presented an algorithm which can
be used to solve TASP in O(kn) time when all trees in T are rooted triplets.
Several years later, Henzinger, King, and Warnow [16] showed how to modify
the algorithm to solve TASP for any T in min

{
O(Nn0.5), O(N + n2 log n)

}

time, where N =
∑

Ti∈T |Ti| is the total number of nodes in T . In contrast,
the analog of TASP for unrooted trees is NP-hard, even if all of the input trees
are quartets (distinctly leaf-labeled, unrooted trees each having four leaves and
no nodes with precisely two neighbors) [23]. A polynomial-time algorithm for

1 The degree of a node u in a rooted tree is the number of children of u. The degree
of a rooted tree T is the maximum degree of all nodes in T .
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computing an unrooted total agreement supertree if one exists when all k input
trees are binary and k = O(1) was given by Bryant in [6].

The computational complexity of MAST has been studied extensively
(e.g., [3,5,8,9,10,11,14,15,19,24]). Today, the fastest known algorithm for
MAST for two trees, invented by Kao, Lam, Sung, and Ting [19], runs in
O

(√
D n log(2n/D)

)
time, which is O(n log n) when D = O(1) and O(n1.5) when

D is unrestricted.
Amir and Keselman [3] considered the case of k ≥ 3 input trees. They proved

that MAST is NP-hard for three trees with unrestricted degrees, but solvable in
polynomial time for three or more trees if the degree of at least one of the trees
is bounded by a constant. For the latter case, Farach, Przytycka, and Thorup [9]
gave an algorithm with improved efficiency running in O(kn3+nd) time, where d
is an upper bound on at least one of the input trees’ degrees; Bryant [5] proposed
a conceptually different algorithm with the same running time.

Hein, Jiang, Wang, and Zhang [15] proved the following inapproximability
result: MAST for three trees with unrestricted degrees cannot be approximated
within a factor of 2logδ n in polynomial time for any constant δ < 1, unless
NP ⊆ DTIME[2polylog n]. Ga̧sieniec, Jansson, Lingas, and Östlin [14] proved that
MAST cannot be approximated within a factor of nε for any constant ε where
0 ≤ ε < 1

9 in polynomial time unless P = NP, even for instances containing
only trees of height 2, and showed that if the number of trees is bounded by a
constant and all the input trees’ heights are bounded by a constant then MAST
can be approximated within a constant factor in O(n log n) time.

A problem related to MASP and MAST is the maximum refinement subtree
problem (MRST). Its goal is to construct a tree W with Λ(W ) ⊆ S which max-
imizes |Λ(W )| such that for each Ti ∈ T , Ti |Λ(W ) can be obtained from W
by applying a series of edge contractions. MRST is NP-hard for k = 2 if D is
unrestricted [15] but solvable in polynomial time if k = O(1) and D = O(1) [12].
Another related problem is the maximum compatible subset of rooted triplets
problem (MCSR) in which the input is a set T of rooted triplets and the ob-
jective is to find a T ′ ⊆ T of maximum cardinality such that there exists a
total agreement supertree of T ′. MCSR is NP-hard [5,18]; two polynomial-time
approximation algorithms for MCSR were given in [14].

1.3 Our Results and Organization of Paper

In Section 2, we make use of known positive and negative results for MAST to
obtain an efficient algorithm for MASP restricted to k = 2 and an NP-hardness
proof for MASP restricted to any fixed k ≥ 3, respectively. The algorithm for
k = 2 runs in O

(√
D n log(2n/D)

)
time, which is O(n log n) when D = O(1) and

O(n1.5) when D is unrestricted. Then, in Section 3, we present a more complex
MAST-based algorithm for solving MASP with D = 2. It runs in O(k(2n)3k2

)
time, which is polynomial when k = O(1). In Section 4, we prove that MASP is
NP-hard even if all of the input trees are required to be rooted triplets (i.e., D = 2
and k is unrestricted). Finally, in Section 5, we describe a simple polynomial-time
approximation algorithm for MASP which is guaranteed to find an approximate
solution with at least log n

n times the number of leaves in an optimal solution.
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2 Preliminaries

We first investigate the close relationship between MASP and MAST.

Lemma 1. For any set T = {T1, T2, ..., Tk} of distinctly leaf-labeled, rooted,
unordered trees such that Λ(T1) = Λ(T2) = ... = Λ(Tk), an optimal solution to
MASP for T is an optimal solution to MAST for T and vice versa.

Proof. Write S = Λ(T1) = Λ(T2) = ... = Λ(Tk), let Q be any agreement
supertree of T , and let S′ = Λ(Q). Then, by definition, Q |Λ(Ti |S′) = Ti |S′ for
every Ti ∈ T . Now, Λ(Ti |S′) = S ∩ S′ = S′, so Ti |S′ = Q |S′ = Q for every
Ti ∈ T , which means that Q is an agreement subtree of T . Conversely, let U be
an agreement subtree of T whose leaves are distinctly labeled by some set S′. For
every Ti ∈ T , we have Ti |S′ = U . Then U |Λ(Ti |S′) = (Ti |S′) |Λ(Ti |S′) =
Ti |S′ for every Ti ∈ T , i.e., U is an agreement supertree of T . ��

Theorem 1. MASP with k = 2 can be solved in O
(√

D n log(2n/D)
)

time.

Proof. Given an instance T = {T1, T2} of MASP with k = 2, let L =
Λ(T1) ∩ Λ(T2) and run the algorithm of Kao, Lam, Sung, and Ting [19] on
the instance T |L to obtain a maximum agreement subtree U of T |L. This
takes O

(√
D n log(2n/D)

)
time. By Lemma 1, U is also a maximum agree-

ment supertree of T |L. Next, for every leaf which appears in exactly one of T1
and T2, insert it into U according to its position in T1 or T2. More precisely, let
X = L\Λ(U) and first compute T ′

1 = T1 | (Λ(T1)\X) and T ′
2 = T2 | (Λ(T2)\X)

in O(n) time. For any node u ∈ U , let T ′
1(u) and T ′

2(u) be the node in T ′
1

and T ′
2 respectively corresponding to u. Construct a tree Q as follows: initially,

set Q = T ′
1, then for each edge (u, v) of U , where we assume u is the parent

of v, replace the edge in Q between T ′
1(v) and its parent with the path in T ′

2
between T ′

2(v) and T ′
2(u). Q can be constructed using a total of O(n) time. It is

straightforward to show that Q is a maximum agreement supertree of T . ��

The running time given in Theorem 1 is O(n log n) for two trees whose degrees
are bounded by a constant and O(n1.5) for two trees with unrestricted degrees.

The NP-hardness of MAST for any fixed k ≥ 3 when D is unrestricted [3]
together with Lemma 1 yield the following theorem (in fact, Lemma 1 can be used
to show that the inapproximability results of [14] and [15] for MAST mentioned
in Section 1.2 hold for MASP as well).

Theorem 2. For any fixed k ≥ 3, MASP with unrestricted D is NP-hard.

3 A Polynomial-Time Algorithm for D = 2, k = O(1)

In this section, we show how MASP restricted to D = 2 can be reduced to MAST
for a set of k distinctly leaf-labeled binary trees having O((2n)k2

) leaves.2 Hence,
we can solve MASP with D = 2 in polynomial time if k = O(1).
2 The proofs and figures in this section have been omitted due to space constraints.

They can be found in the full-length version of our paper.
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Without loss of generality, assume that every a ∈ S appears in at least two
trees in T . (If a appears in exactly one tree in T , we can obtain a maximum agree-
ment supertree of T as follows: (1) Remove a from T ; (2) compute a maximum
agreement supertree T ′ for the modified T ; and (3) insert a into T ′ according to
its position in the original T , as described in the proof of Theorem 1 above.)

MASP is first transformed to MAST for non-distinctly leaf-labeled trees;
then, the latter problem is transformed to MAST. Here, by an agreement subtree
of a set R = {R1, R2, . . . , Rk} of non-distinctly leaf-labeled trees, we mean a
distinctly leaf-labeled tree which is a homeomorphic subtree of every Ri ∈ R.

We now describe our transformation from MASP to MAST for a set R =
{R1, R2, . . . , Rk} of non-distinctly leaf-labeled binary trees. To obtain each Ri:

1. Set Ri,0 = Ti.
2. For j = 1 to k, do

a) Let L = Λ(Tj) \
⋃

j′∈{1,...,j−1}∪{i} Λ(Tj′) and let U = Tj |L.
b) Initially, set Ri,j = Ri,j−1. Generate |Ri,j−1| − 1 copies of U and attach

one to every edge of Ri,j . Let r be a new node having the current Ri,j

and another copy of U as its two subtrees, and make r the root of Ri,j .
3. Set Ri = Ri,k.

Based on the above construction, for every i, any label in Λ(Ti) appears
exactly once in Ri, and Ti is a homeomorphic subtree of Ri. Also, R satisfies:

Lemma 2. For every Ri ∈ R, the number of leaves in Ri is at most (2n)k and
the height of Ri is at most 2kn.

Lemma 3. For any tree X which is distinctly leaf-labeled by some S′ ⊆ S, X is
an agreement supertree of T if and only if X is an agreement subtree of R.

Next, we transform MAST for the set R of non-distinctly leaf-labeled binary
trees to MAST for a set P = {P1, P2, . . . , Pk} of binary trees which are distinctly
leaf-labeled by {a1

b1,b2,...,bk
, a2

b1,b2,...,bk
| a ∈ S, 1 ≤ i ≤ k, 1 ≤ bi ≤ γa[i]}, where

γa[i] is the number of occurrences of leaf label a in Ri.
To describe the transformation, we need some additional notation. For every

a ∈ S, define a([b1..d1], [b2..d2], . . . , [bk..dk]), where bi ≤ di for all 1 ≤ i ≤ k,
to be a rooted caterpillar with

∏k
i=1(2(di − bi + 1)) leaves labeled (in order of

non-decreasing distance from the root) by a1
b1,b2,...,bk

, a2
b1,b2,...,bk

, a1
b1,b2,...,bk+1,

a2
b1,b2,...,bk+1, . . . , a1

d1,d2,...,dk
, a2

d1,d2,...,dk
. Define ā([b1..d1], [b2..d2], . . . , [bk..dk])

as the reversed caterpillar of a([b1..d1], [b2..d2], . . . , [bk..dk]). For every leaf in
Ri labeled by a, such a leaf is called the jth occurrence of a in Ri if, according
to pre-order traversal of Ri, it is the jth visited leaf which is labeled by a.

For i = 1, 2, . . . , k, the tree Pi is constructed from Ri by replacing, for every
a ∈ S, the leaf labeled by a with a caterpillar tree a() or ā() as follows.

1. Set Pi = Ri.
2. For every a ∈ S,

– if Ti is the first tree containing a among T1, T2, . . . , Ti, then (in this case,
Pi contains exactly one a, that is, γa[i] = 1) replace a in Pi by the
caterpillar ā([1..γa[1]], . . . , [1..γa[i−1]], [1..1], [1..γa[i+1]], . . . , [1..γa[k]]).
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– else for j = 1, 2, . . . , γa[i], replace the jth occurrence of a in Pi by the
caterpillar a([1..γa[1]], . . . , [1..γa[i− 1]], [j..j], [1..γa[i + 1]], . . . , [1..γa[k]]).

It is easy to check that each Pi is distinctly labeled by {a1
b1,b2,...,bk

, a2
b1,b2,...,bk

|
a ∈ S, 1 ≤ i ≤ k, 1 ≤ bi ≤ γa[i]}. In addition, for every label a ∈ S, there exists
exactly one tree Pi which contains the caterpillar ā() while the rest of the trees in
P contain caterpillars of the form a(). Below, more properties of P are described.

Lemma 4. For every Pi, |Λ(Pi)| = O((2n)k2
).

Lemma 5. For any a ∈ S, a MAST of P has ≤ 2 leaves of the form a�
b1,b2,...,bk

.

Lemma 6. For any integer x, the size of the MAST of R is ≥ x if and only if
the size of the MAST of P is ≥ 2x.

A MASP of T can now be computed by applying the algorithm of Bryant [5]
or Farach et al. [9] (see Section 1.2) to P. Since the number of leaves in P is less
than (2n)k2

and all trees are binary, we obtain the main theorem of this section.

Theorem 3. Given a set of k binary trees T which are labeled by n distinct
labels, their maximum agreement supertree can be computed in O(k(2n)3k2

) time.

4 MASP with D = 2 Is NP-Hard

Theorem 2 states that MASP is an NP-hard problem for any fixed k ≥ 3 when
D is unrestricted. We now show that MASP remains NP-hard if restricted to in-
stances with D = 2 but where k is left unrestricted. In fact, we prove that MASP
is NP-hard even if all of the input trees are required to be rooted triplets. Our
NP-hardness proof consists of a polynomial-time reduction from the independent
set problem which is known to be NP-hard (see, e.g., [13]).

The independent set problem
Instance: An undirected graph G = (V, E) and a positive integer I.
Question: Is there a subset V ′ of V with |V ′| = I such that V ′ is an independent

set, i.e., such that no two vertices in V ′ are joined by an edge in E?

The maximum agreement supertree problem restricted to rooted
triplets, decision problem version (MASPR-d)
Instance: A set T of rooted triplets with leaf set S and a positive integer K.
Question: Is there a subset S′ of S with |S′| = K which is consistent with T ?

Theorem 4. MASP is NP-hard even if restricted to rooted triplets.

Proof. Given an arbitrary instance (G, I) of the independent set problem, con-
struct an instance of MASPR-d as follows. Let S = V ∪

{
ze | e ∈ E

}
and set

K = I + |E|. For each edge e in E, include the two rooted triplets ({a, ze}, b)
and ({b, ze}, a) in T , where e = {a, b}. Claim: G has an independent set of size I
if and only if there exists a subset S′ of S of size K which is consistent with T .
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Proof of claim: Suppose there exists an independent set W in G of size I.
Then S′ = W ∪

{
ze | e ∈ E

}
with |S′| = I + |E| is consistent with T since T |S′

contains no rooted triplets (if T |S′ had a rooted triplet ({x, z{x,y}}, y) then x
and y would be joined by an edge in E and thus could not both belong to W ).

Conversely, suppose there exists a consistent subset S′ of S of size K. For
each {x, y} ∈ E, if z{x,y} 
∈ S′ but at least one of x and y belongs to S′ then
replace x or y in S′ by z{x,y}, and if none of x, y, and z{x,y} are contained in S′

then replace any element in S′ belonging to V by z{x,y} (such an element always
exists because K > |E|). The resulting set S′′ will have the form W∪

{
ze | e ∈ E

}

with W ⊆ V and |S′′| = K, and will still be consistent with T . Next, observe
that by the construction of T , for each {x, y} ∈ E at most two of x, y, and
z{x,y} can be included in any subset of S which is consistent with T . Therefore,
for each {x, y} ∈ E, since z{x,y} ∈ S′′ it holds that S′′ cannot contain both x
and y. Thus, W is an independent set and |W | = K − |E| = I.

Hence, MASPR-d is NP-hard and the theorem follows. ��

5 A Polynomial-Time (n/ log n)-Approximation
Algorithm

By the comments preceding Theorem 2, it is highly unlikely that MASP in its
general form can be solved exactly or even approximated efficiently (say, within
a constant factor) in polynomial time. However, we can adapt one of Akutsu and
Halldórsson’s [2] algorithms for the largest common subtree problem to obtain
the following polynomial-time (n/ log n)-approximation algorithm for MASP:

Arbitrarily partition S into �n/ log n� sets S1, S2, ..., S�n/ log n�, each of
size at most 
log n� + 1. Then, check every subset S′

i of every set Si to
see if S′

i is consistent with T , and let Z be one such subset of maximum
cardinality. Return Z.
To see that this algorithm always returns a solution with at least log n

n times
the number of leaves in an optimal solution, let S∗ be a maximum consistent leaf
subset. Because of the pigeonhole principle, at least one of S1, S2, ..., S�n/ log n�

contains ≥ 1
�n/ log n� of the elements in S∗; thus, |Z| ≥ |S∗|

�n/ log n� ≥
|S∗|

n/ log n .

To implement the algorithm efficiently, we first note that the deterministic
algorithm for dynamic graph connectivity employed in the algorithm for TASP
of Henzinger et al. [16] can be replaced with a more recent one due to Holm et
al. [17] to yield the following improvement. We then obtain Theorem 5 below.

Lemma 7. TASP is solvable in min
{
O(N log2 n), O(N +n2 log n)

}
time, where

N =
∑

Ti∈T |Ti| is the total number of nodes in T .

Theorem 5. MASP can be approximated within a factor of n
log n in O(n2 ·

log log n) · min
{
O(k log log n), O(k + log n)

}
time. MASP restricted to rooted

triplets can be approximated within a factor of n
log n in O(k + n2 log2 n) time.

Finally, we remark that MAST can be approximated within a factor of n
log n

in O(kn2) time using the same technique.
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6 Concluding Remarks

Below, we summarize our results on how restricting the parameters D and k
affects the computational complexity of MASP. Arrows indicate when a result
follows directly from another by generalization (for example, MASP with D = 2
and unrestricted k is NP-hard, so the more general case D = O(1) and un-
restricted k cannot be any easier) or by specialization (e.g., the algorithm for
D = O(1) and k = 2 still works for the more restricted case D = 2 and k = 2).

MASP k = 2 k = O(1) k unrestricted

D = 2 O(n log n) O(k(2n)3k2
) NP-hard

(↓) (Theorem 3) (Theorem 4)
D = O(1) O(n log n) Open NP-hard

(Theorem 1) (↑)
D unrestricted O(n1.5) NP-hard NP-hard

(Theorem 1) (Theorem 2) (← or ↑)

We have also described a polynomial-time (n/ log n)-approximation algo-
rithm for MASP (Theorem 5).

It is interesting to note that MASP with D = 2 and unrestricted k is NP-hard
while on the other hand, MAST with D = 2 and unrestricted k can be solved
in O(kn3) time, i.e., in polynomial time, using the algorithm of Bryant [5] or
Farach et al. [9] (see Section 1.2). This means that for certain restrictions on
the parameters D and k, MASP and MAST cannot have the same computa-
tional complexity unless P = NP. Furthermore, although our results indicate
that MASP is computationally harder than MAST, the maximum refinement
subtree problem (see Section 1.2) does not seem any easier than MASP since it
is NP-hard already for k = 2 when D is unrestricted [15].

An open problem is to determine the computational complexity of MASP
with D = O(1) and k = O(1). We believe that this case is solvable in polynomial
time. We would also like to know if the running time of our algorithm for the
case D = 2 and k = O(1) can be improved.
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