
Approximation Algorithms for the Longest Run
Subsequence Problem
Yuichi Asahiro #

Kyushu Sangyo University, Fukuoka, Japan
Hiroshi Eto #

Kyushu Institute of Technology, Iizuka, Japan

Mingyang Gong #

Uniersity of Alberta, Edmonton, Canada
Jesper Jansson #

Kyoto University, Kyoto, Japan

Guohui Lin #

Uniersity of Alberta, Edmonton, Canada
Eiji Miyano #

Kyushu Institute of Technology, Iizuka, Japan

Hirotaka Ono #

Nagoya University, Nagoya, Japan
Shunichi Tanaka #

Kyushu Institute of Technology, Iizuka, Japan

Abstract
We study the approximability of the Longest Run Subsequence problem (LRS for short). For a
string S = s1 · · · sn over an alphabet Σ, a run of a symbol σ ∈ Σ in S is a maximal substring of
consecutive occurrences of σ. A run subsequence S′ of S is a sequence in which every symbol σ ∈ Σ
occurs in at most one run. Given a string S, the goal of LRS is to find a longest run subsequence S∗

of S such that the length |S∗| is maximized over all the run subsequences of S. It is known that
LRS is APX-hard even if each symbol has at most two occurrences in the input string, and that LRS
admits a polynomial-time k-approximation algorithm if the number of occurrences of every symbol
in the input string is bounded by k. In this paper, we design a polynomial-time k+1

2 -approximation
algorithm for LRS under the k-occurrence constraint on input strings. For the case k = 2, we further
improve the approximation ratio from 3

2 to 4
3 .

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Longest run subsequence problem, bounded occurrence, approximation
algorithm

Digital Object Identifier 10.4230/LIPIcs.CPM.2023.2

Funding This work is partially supported by NSERC Canada, and JSPS KAKENHI Grant Numbers
JP17K00024, JP20H05967, JP21K11755, JP21K19765, JP22H00513, JP22H03550, and JP22K11915.

Acknowledgements The authors would like to thank the anonymous reviewers for their suggestions
and detailed comments that helped to improve the presentation of the paper.

1 Introduction

The main goal of genome analysis is to study and compare genetic content among organisms,
and thus genome sequencing to determine the complete sequence of a genome is one of its
most important stages. Since the first whole genome was obtained [10], genome sequencing
technologies have significantly improved. Almost all the current DNA sequencing technologies
are based on the following process: First, tens or hundreds of millions of fragments from
random positions on the DNA sequence are read via shotgun sequencing. Second, these
randomly extracted fragments, called reads, are merged to form a set of contiguous sequences,
called contigs, by using an assembly algorithm. Then, the contigs are ordered correctly in a
phase called scaffolding. One commonly used approach for scaffolding is to rearrange contigs
by comparing two or more incomplete assemblies of related samples (see, for example, [8]).

© Yuichi Asahiro, Hiroshi Eto, Mingyang Gong, Jesper Jansson, Guohui Lin, Eiji Miyano,
Hirotaka Ono, and Shunichi Tanaka;
licensed under Creative Commons License CC-BY 4.0

34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023).
Editors: Laurent Bulteau and Zsuzsanna Lipták; Article No. 2; pp. 2:1–2:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:asahiro@is.kyusan-u.ac.jp
https://orcid.org/0000-0002-9801-3285
mailto:eto@ai.kytech.ac.jp
https://orcid.org/0000-0003-1456-1987
mailto:mgong4@ualberta.ca
mailto:jj@i.kyoto-u.ac.jp
https://orcid.org/0000-0001-6859-8932
mailto:guohui@ualberta.ca
https://orcid.org/0000-0003-4283-3396
mailto:miyano@ai.kyutech.ac.jp
https://orcid.org/0000-0002-4260-7818
mailto:ono@nagoya-u.jp
https://orcid.org/0000-0003-0845-3947
mailto:syunichi.tanaka506@mail.kyutech.jp
https://doi.org/10.4230/LIPIcs.CPM.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Approximation Algorithms for the Longest Run Subsequence Problem

In the context of the scaffolding phase of genome assembly, the One-Sided Scaffold
Filling problem [9], Two-Sided Scaffold Filling problem [7], One-Side-Filled
Longest Common Subsequence problem [3], and Two-Side-Filled Longest Common
Subsequence problem [4] were formulated as combinatorial optimization problems on
two strings. For those problems, their computational complexities were proved, and then
fixed-parameter tractable algorithms, approximation algorithms, and exponential-time exact
algorithms were proposed in [2, 3, 4, 7]. Very recently, as a different formulation of the
scaffolding phase, Schrinner et al. [11, 12] introduced the Longest Run Subsequence
problem (LRS for short), defined as follows: For a string S = s1 · · · sn over an alphabet Σ,
a run of a symbol σ ∈ Σ in S is a maximal substring of consecutive occurrences of σ. A run
subsequence S′ of S is a sequence in which every symbol σ ∈ Σ occurs in at most one run.
Given a string S, the goal of LRS is to find a longest run subsequence S∗ of S such that the
length |S∗| is maximized over all the run subsequences of S.

▶ Example 1. Consider the string S = abacacbbab over the alphabet Σ = {a, b, c}. It
contains (i) four runs of symbol a, i.e., a in the first position, a in the third position, a in the
fifth position, and a in the ninth position, (ii) three runs of symbol b, i.e., b in the second
position, bb in the seventh and eighth positions, and b in the tenth position, and (iii) two
runs of c, i.e., c in the fourth position, and c in the sixth position in S. The numbers of
occurrences of a, b, and c are four, four, and two, respectively.

An optimal solution to LRS on input S is S∗ = aaccbbb. For example, the leftmost run aa

of length two in S∗ is obtained from the leftmost substring aba in S by deleting the second
character b. One sees that S∗ is a run subsequence, i.e., S∗ contains (at most) one run for
every symbol. The length of S∗ is seven. Note that S′ = aaacbbb is another optimal solution
since |S′| is also seven. ⌟

Schrinner et al. [12] showed that LRS is NP-hard. Subsequently, Dondi and Sikora [5]
showed that LRS is APX-hard even if each symbol has at most two occurrences in the input
string, and that LRS admits a polynomial-time min{|Σ|, k}-approximation algorithm if the
number of occurrences of every symbol in the input string is bounded by k.

In this paper, we propose the following improved approximation algorithms for LRS:
We first design a polynomial-time k+1

2 -approximation algorithm for LRS, when the number
of occurrences of every symbol is at most k.
For the case k = 2, we further improve the approximation ratio from 3

2 to 4
3 .

Related work. The fixed-parameter tractability and the parameterized complexity of LRS
have been previously investigated [5, 12]: Schrinner et al. [12] showed that there is an
O(|Σ| · |S| ·2|Σ|)-time algorithm, given a string S over an alphabet Σ as input of LRS, i.e., LRS
is fixed-parameter tractable when parameterized by the size |Σ| of the alphabet on which the
input string is defined. Dondi and Sikora [5] showed that LRS can be solved by a randomized
algorithm in O(2r · r · |S|3) time and polynomial space, where r is the number of different
runs in a solution, and thus r ≤ |S|. They also proved that LRS admits a polynomial kernel
when parameterized by the length of the solution, but that it does not admit a polynomial
kernel when parameterized by the size |Σ| of the alphabet or by the number r of runs.

2 Preliminaries

Let Σ be a finite alphabet of symbols. A string S = s1 · · · sn is a sequence of n characters,
each of which is a symbol in Σ. Two or more characters in S can be the same symbol in Σ.
For a string S = s1 · · · sn, |S| denotes the length of S, i.e., |S| = n. A subsequence of S is a

Y. Asahiro, H. Eto, M. Gong, J. Jansson, G. Lin, E. Miyano, H. Ono, and S. Tanaka 2:3

sequence si1 · · · sim , such that 1 ≤ i1 < i2 < · · · < im ≤ |S|. Let S[i] denote the character of
S in the ith position for 1 ≤ i ≤ |S|, and S[i, j] denote the substring of S that starts from
the ith position and ends at the jth position. For a symbol σ, we denote by σk a string that
is the concatenation of k occurrences of symbol σ for some integer k ≥ 1. A run in S is a
substring S[i, j] such that: (1) S[i] = S[i + 1] = · · · = S[j]; (2) S[i − 1] ̸= S[i] if i > 1; and
(3) S[j + 1] ̸= S[j] if j < |S|. For any σ ∈ Σ, a run in S of the form σk is called a length-k
σ-run in S. Observe that if S[i, j] is a σ-run, then it has length j − i + 1. Given a string
S on alphabet Σ, a run subsequence S′ of S is a subsequence in which every symbol σ ∈ Σ
occurs in at most one run.

Let occ(σ) be the number of occurrences of σ in the input string S. Let occmax(S) =
maxσ∈S occ(σ). For example, consider a string S = abacaabbab. Then, S includes four a-runs,
a, a, a2, and a, three b-runs, b, b2, and b, and one length-1 c-run. The number occ(a) of
occurrences of a is five. Also, occ(b) = 4 and occ(c) = 1. Therefore, occmax(S) = 5.

Our problem LRS can be formulated as follows:

▶ Problem 2 (Longest Run Subsequence problem, LRS). Given an alphabet Σ and a
string S = s1 · · · sn with si ∈ Σ, the goal of LRS is to find a longest run subsequence S∗ of S,
i.e., every σ ∈ Σ occurs in at most one run in S∗ and the length |S∗| is maximized over all
the run subsequences of S.

Schrinner et al. [12] show that LRS is NP-hard by giving a polynomial-time reduction
from the Linear Ordering problem, which is shown to be NP-hard in [6]. In this paper
we consider the following restricted LRS:

▶ Problem 3 (k-Longest Run Subsequence problem, k-LRS). If the maximum number
occmax(S) of occurrences of symbols in the input S is bounded by k, then the problem is
called the k-Longest Run Subsequence problem, k-LRS.

One sees that 1-LRS is trivial since the length of all the runs in the input string S is one,
and thus the input S itself is the optimal run subsequence. Dondi and Sikora [5] show that
2-LRS remains hard even from the approximation point of view; they give an L-reduction
from the Minimum Independent Set on Cubic Graph problem, which is shown to be
APX-hard in [1]:

▶ Proposition 4 ([5]). 2-LRS is APX-hard.

Suppose that an input string of k-LRS is S over an alphabet Σ. Also, without loss of
generality, we assume here that every symbol in Σ appears at least once, and the maximum
number occmax(S) of occurrences of symbols in S is k. Note that the length of an optimal run
subsequence is bounded by k|Σ|. Consider the following two simple algorithms, (i) and (ii):

(i) Arbitrarily select one run of every symbol σ ∈ Σ in S, and construct a run subsequence
S′ by concatenating all the selected runs.

One sees that |S′| is at least |Σ|. Therefore, we can conclude that k-LRS is k-approximable.

(ii) Find a symbol, say, σ of the maximum occurrences k, and construct another run
subsequence S′′ = σk.

Then, we can conclude that k-LRS is |Σ|-approximable. By using those two algorithms,
we obtain the following proposition:

▶ Proposition 5 ([5]). There is a min(|Σ|, k)-approximation algorithm for k-LRS.

Since min(|Σ|, k) ≤
√

|S|, the above proposition implies the following:

▶ Corollary 6 ([5]). The general LRS problem admits a
√

|S|-approximation algorithm.

CPM 2023

2:4 Approximation Algorithms for the Longest Run Subsequence Problem

3 A polynomial-time k+1
2 -approximation algorithm for k-LRS

In this section, we improve the approximation ratio for k-LRS from k to k+1
2 . Our approxim-

ation algorithm ALG uses a very natural idea:

Algorithm ALG. Given an input string S over an alphabet Σ, ALG selects a longest σ-run in
S for each σ ∈ Σ, and outputs the concatenation of all the selected longest runs.

▶ Example 7. Consider the input string S = abacaabbab (for 5-LRS). The longest a-run,
b-run, c-run are aa in the fifth and sixth positions, bb in the seventh and eighth positions,
and c in the fourth position. Therefore, the output of ALG is ALG = caabb. ⌟

We now prove that the above simple algorithm achieves the claimed approximability
bound:

▶ Theorem 8. ALG is a polynomial-time k+1
2 -approximation algorithm for k-LRS.

Proof. Clearly, ALG returns a valid solution since one run is selected for every symbol in
S, and runs in polynomial time. We bound its approximation ratio in the following. Let S

be an input string of k-LRS. We assume that S consists of m symbols, i.e., |Σ| = m, and
occmax(S) = k. Then, suppose that OPT and ALG are solutions obtained by an optimal
algorithm and our algorithm ALG, respectively, for the input S. We consider the following
two cases: (Case 1) The length of every run in S is one, and (Case 2) the length of some
run in S is at least two.

(Case 1). Suppose that the length of every run in S is one. Let mℓ be the number of
symbols in OPT such that the length of the run of those symbols is exactly ℓ (≤ k).

First, the following two equalities hold:

|OPT | =
k∑

i=1
i · mi; and (1)

|ALG| = m. (2)

Let D be the number of characters deleted from S by the optimal algorithm. Since

|Σ| =
k∑

i=0
mi = m and occmax(S) = k, the following is satisfied:

|OPT | = |S| − D ≤ km − D. (3)

We now derive a lower bound on D. Suppose that a symbol σ2 in S appears exactly
twice in the optimal solution OPT , i.e., OPT contains the length-2 σ2-run σ2σ2. Recall
that the length of all the runs in the input string S is one. Namely, there is at least one
different character, say, σ′ between two σ2’s in S. That is, σ′ must be deleted from S in
order to obtain the length-2 σ2-run. Since OPT contains m2 symbols such that the length
of the runs of those symbols is exactly two, the total number of deleted characters from S to
obtain the length-2 runs is at least m2. It is important to note that the character-deletion to
obtain each run is independently carried out, and therefore the number of deleted characters
is not doubly counted. Similarly, the total number of deleted characters from S to obtain the
length-ℓ runs is at least (ℓ − 1)mℓ for each 3 ≤ ℓ ≤ k. As a result, we obtain the following
lower bound on D:

D ≥ m2 + 2m3 + · · · + (k − 1)mk =
k∑

i=2
(i − 1)mi =

k∑
i=1

(i − 1)mi. (4)

Y. Asahiro, H. Eto, M. Gong, J. Jansson, G. Lin, E. Miyano, H. Ono, and S. Tanaka 2:5

From Eq.(3) and Eq.(4), the following inequality holds:

|OPT | ≤ km −
k∑

i=1
(i − 1)mi.

From Eq.(1), this can be rewritten as:

|OPT | ≤ (k + 1)m − |OPT |,

and then rearranged to give:

|OPT | ≤ (k + 1)m
2 .

From Eq.(2), we obtain the following approximation ratio:

|OPT |
|ALG|

≤ k + 1
2 .

(Case 2). Suppose that the length of a σ-run in S is at least two and S consists of symbols
in Σ. For every such symbol σ ∈ Σ, we consider a different symbol σ, called a dummy symbol.
Then, we insert σ between every consecutive two symbols σσ in S so that the two σ’s are
not consecutive. Hence we obtain a longer sequence Sd such that the length of all the runs
in Sd is one. For example, consider a string

S = abacaabbbab.

Then, we insert a dummy a between the fifth and the sixth positions, a dummy b between
the seventh and the eighth positions, and the other dummy b between the eighth and the
ninth positions as follows:

Sd = abacaaabbbbbab.

Note that the number of occurrences of each dummy σ is at most k − 1 since the maximum
number occmax(S) of occurrences of (original) symbols in S is bounded by k. Suppose that
OPTd and ALGd are solutions obtained by an optimal algorithm and our algorithm ALG,
respectively, for the input Sd. One sees that the maximum number occmax(Sd) of occurrences
of symbols in Sd is also bounded by k. Therefore, from the arguments in (Case 1), the
following inequality is satisfied:

|OPTd|
|ALGd|

≤ k + 1
2 . (5)

The original input S is a subsequence of Sd. Hence, the following clearly holds:

|OPT | ≤ |OPTd|. (6)

Now consider ALG and ALGd. (i) For each symbol σ such that the length of all the
σ-runs is one, its dummy σ is not inserted into Sd. Hence, ALG and ALGd contain one σ,
but, of course, neither contains any σ. (ii) If the maximum length of a σ-run in S is (at
least) two for some symbol σ, then ALG contains (at least) two σ’s. On the other hand,
ALGd contains one σ and one dummy σ instead. From (i) and (ii), we have:

|ALG| ≥ |ALGd|. (7)

CPM 2023

2:6 Approximation Algorithms for the Longest Run Subsequence Problem

From the three inequalities (5), (6), and (7), the following approximation ratio is obtained
again:

|OPT |
|ALG|

≤ |OPTd|
|ALGd|

≤ k + 1
2 .

For both cases (Case 1) and (Case 2), the approximation ratio of ALG is bounded above
by k+1

2 . ◀

▶ Remark 9. To see that the approximation analysis above is tight, consider the following
string S, where |S| = n = 2kℓ, and σi ̸= σj for i ̸= j.

S =
2k︷ ︸︸ ︷

σ1σ2σ1σ2 · · · σ1σ2

2k︷ ︸︸ ︷
σ3σ4σ3σ4 · · · σ3σ4 · · ·

2k︷ ︸︸ ︷
σ2ℓ−1σ2ℓσ2ℓ−1σ2ℓ · · · σ2ℓ−1σ2ℓ .

Namely, the length-2k prefix string contains k σ1’s and k σ2’s alternatively. The next string
of length 2k contains k σ3’s and k σ4’s alternatively, and so on. Then, we can obtain the
following run subsequence S′ by deleting k − 1 σ2’s from the first length-2k prefix string,
k − 1 σ4’s from the next string of length 2k, and so on:

S′ = σk
1 σ2σk

3 σ4 · · · σk
2ℓ−1σ2ℓ.

Hence, the length of OPT is at least |S′| = (k + 1)ℓ. On the other hand, the solution ALG

of our algorithm ALG for S contains one of the k σi’s for each 1 ≤ i ≤ 2ℓ:

ALG = σ1σ2 · · · σ2ℓ.

The length of ALG is 2ℓ. As a result,

|OPT |
|ALG|

≥ k + 1
2 .

This shows that the analysis of the approximation ratio in the proof of Theorem 8 is tight. ⌟

Recall that we can always return a run subsequence of length k as shown in the previous
section, and k-LRS is |Σ|-approximable. Therefore, we obtain the following corollary:

▶ Corollary 10. There is a polynomial-time min{|Σ|, k+1
2 }-approximation algorithm for

k-LRS.

4 A polynomial-time 4
3-approximation algorithm for 2-LRS

For 2-LRS, ALG achieves the approximation ratio of 3
2 . In this section we improve the

approximation ratio to 4
3 .

As shown in Remark 9, the following string S is a bad example for ALG.

S = ababcdcdefef.

One sees that from the leftmost substring S[1, 4] = abab of length four (resp. S[5, 8] = cdcd

and S[9, 12] = efef), we can only obtain a run subsequence of length at most three, i.e.,
the length of any optimal solution is at most nine. Therefore, one of the possible optimal
solution OPT for S is:

OPT = aabccdeef.

Y. Asahiro, H. Eto, M. Gong, J. Jansson, G. Lin, E. Miyano, H. Ono, and S. Tanaka 2:7

The solution ALG of ALG for S is:

ALG = abcdef.

Namely, OPT has two a’s (resp. two c’s and two e’s), but ALG has only one a (resp. one
c and one e). This observation suggests to us that if there is only one character, say, σ′

between two occurrences of a symbol σ, then we should delete σ′ and obtain a run σσ of
length two. This is a basic strategy of our new algorithm ALG2.

Before describing details of ALG2, we give some definitions which are used in the following.
Let S be an input string. Assume that all the symbols in Σ appear in S. We define several
subsets of Σ in the following.

Let Σ1 = {σ | occ(σ) = 1, σ ∈ Σ} be a set of symbols that appear exactly once in the
input string S.
Let Σ2 = {σ | occ(σ) = 2, σ ∈ Σ} be a set of symbols that appear exactly twice in the
input string S.

Note that Σ = Σ1 ∪ Σ2 in 2-LRS. Now, we consider a symbol σ ∈ Σ2 and define several
disjoint subsets of Σ2. In the following, by distance we mean the number of characters
between the two occurrences of a symbol.

If two σ’s consecutively appear in S, then we call σ a distance-0 symbol. Let Σ2,0 be a
subset of all the distance-0 symbols in Σ2.
If there is one character between two σ’s, then we call σ a distance-1 symbol. Let Σ2,1 be
a subset of all the distance-1 symbols in Σ2.
We define Σ2,≥2 = Σ2 \ (Σ2,0 ∪ Σ2,1), i.e., for each σ ∈ Σ2,≥2, σ appears twice in S and
there are at least two characters between the two σ’s.

Next, consider a symbol γ ∈ Σ1. As a special case, the left and the right symbols of γ

can be the same symbol γ′ ∈ Σ2,1, i.e., the input string S possibly contains a substring γ′γγ′

of length 3, called a special triple.
Let Γ1 be a set of center symbols of special triples. Note that Γ1 ⊆ Σ1.
Let Γ2,1 be a set of left and right symbols of special triples. Note that Γ2,1 ⊆ Σ2,1.

One sees that |Γ1| = |Γ2,1|.
Finally, consider two symbols σ and σ′ in Σ2,1 \ Γ2,1 in the input string S such that

the substring(s) containing σ and σ′ can be represented by (i) S = · · · σσ′σσ′ · · · , or
(ii) S = · · · σλσ · · · σ′λ′σ′ · · · , where both λ and λ′ are in Σ2,≥2. (i) If S contains σσ′σσ′ as
a substring, then we say that a pair of σ and σ′ is called a Ψ-pair. Then, σ and σ′ belong to
a set Ψ2,1. (ii) If λ = λ′, then we say that a pair of σ and σ′ is a Λ-pair related to λ. Then,
σ and σ′ belong to a set Λ2,1 and λ belongs to Λ2,≥2. Note that |Λ2,1| = 2|Λ2,≥2|.

Algorithm. The following is a description of our algorithm ALG2. During execution of ALG2,
we determine which characters are included into the run subsequence ALG2 or not, step
by step. Finally, ALG2 outputs the concatenation of the characters (or the subsequences)
included into ALG2 in each step.

Algorithm ALG2.

Input An input string S over an alphabet Σ such that every symbol in Σ appears at
most twice.

Output A run subsequence.

CPM 2023

2:8 Approximation Algorithms for the Longest Run Subsequence Problem

Step 1. Count the number of occurrences of every symbol in Σ, and divide Σ to two
subsets Σ1 and Σ2. Then, examine the distance of every symbol in Σ2, and obtain
Σ2,0, Σ2,1, and Σ2,≥2.

Step 2. Find all the special triples, all the Ψ-pairs, and all the Λ-pairs.
Step 3. For every σ ∈ Σ2,0, the length-2 σ-run σ2 is included into ALG2.
Step 4. For every σ ∈ Σ2,1, execute the following:

(i) For every special triple γ′γγ′, the first two characters γ′ ∈ Γ2,1 and γ ∈ Γ1 are
included into ALG2. That is, the third character γ′ of that special triple is not
included into ALG2.

(ii) For every Ψ-pair of σ and σ′, i.e., for each string σσ′σσ′, its subsequence
σσ′σ′ is included into ALG2. That is, the third character σ of that string is not
included into ALG2.

(iii) For every Λ-pair related to λ of σ and σ′, i.e., for two strings σλσ and σ′λσ′,
two subsequences σλ, and σ′2 are included into ALG2. That is, the third
character σ of the former string and the second character λ of the latter string
are not included into ALG2.

(iv) For every σ ∈ Σ2,1 \ (Γ2,1 ∪ Ψ2,1 ∪ Λ2,1), σ2 is included into ALG2. That is,
the character between the two σ’s is not included into ALG2.

Step 5. For every σ ∈ Σ2,≥2 \ Λ2,≥2, only the first occurrence of σ is included into
ALG2. That is, if neither of the two occurrences of σ is determined whether or not
to be included into ALG2, then the first occurrence is included into ALG2 and the
other not into ALG2

1. If only one occurrence remains undetermined, then it is
included into ALG2.

Step 6. Every σ ∈ Σ1 \ Γ1 is included into ALG2.
Step 7. Output the concatenation of the characters and the subsequences included

into ALG2 in Step 3 through Step 6 as a run subsequence, and then halt.

▶ Remark 11. Importantly, the output run subsequence of ALG2 includes at least one
occurrence of every symbol in Σ. ⌟

▶ Example 12. To clarify the behavior of ALG2, we take a look at the following input string
of length 20:

S = abacdbdecefgfhhijkjk.

One sees that Σ1 = {g, i}, Σ2,0 = {h}, Σ2,1 = {a, d, e, f, j, k}, and Σ2,≥2 = {b, c}.
(Step 3) S[14, 15] = hh is included into ALG2. (Step 4-(i)) Since f ∈ Σ2,1 and g ∈ Σ1,
S[10, 12] = fgf is a special triple. Therefore, we select fg from fgf . (Step 4-(ii)) Since there
is a substring S[17, 20] = jkjk, the pair of j and k is a Ψ-pair, Ψ2,1 = {j, k}. Then, jkk is
included into ALG2. (Step 4-(iii)) S contains S[1, 3] = aba and S[5, 7] = dbd and thus the
pair of a and d is a Λ-pair related to b; Λ2,1 = {a, d} and Λ2,≥2 = {b}. Hence, ab and dd are
included into ALG2. (Step 4-(iv)) From S[8, 10] = ece, we obtain a run e2 of length two, and
S[9] = c is not included into ALG2. (Step 5) The fourth character c is included into ALG2
since c ∈ Σ2,≥2 \ Γ2,≥2 and S[9] = c is not included into ALG2 in Step 4-(iv). (Step 6) The

1 Alternatively, we can choose any one of the two occurrences of each symbol, to obtain the same
approximation ratio.

Y. Asahiro, H. Eto, M. Gong, J. Jansson, G. Lin, E. Miyano, H. Ono, and S. Tanaka 2:9

16th character i is included into ALG2 since i ∈ Σ1 \ Γ1. (Step 7) Finally, the following
concatenation of the characters and the subsequences obtained in Step 3 through Step 6 is
output as the run subsequence ALG2 of length 15:

ALG2 = abcddeefghhijkk.

⌟

▶ Theorem 13. ALG2 is a polynomial-time 4
3 -approximation algorithm for 2-LRS.

Proof. Clearly, ALG2 returns a valid solution and runs in polynomial time. We bound its
approximation ratio in the following. Suppose that OPT and ALG2 are run subsequences
obtained by an optimal algorithm and our algorithm ALG2, respectively, for the input string S.

We assume that the optimal run subsequence OPT consists of the following symbols
(OPT1 through OPT4) or characters in special triples (OPT5):
(OPT1) Consider symbols in Σ2,≥2. Suppose that there are m2,≥2,2 symbols such that two

occurrences of each of them are included into OPT by deleting all the characters between
two occurrences. Also, suppose that there are m2,≥2,1 (resp. m2,≥2,0) symbols such that
one occurrence (resp. no occurrence) of each of them is included into OPT .

(OPT2) Consider symbols in Σ2,1 \ Γ2,1. Suppose that there are m2,1,2 symbols such that
two occurrences of each of them are included into OPT by deleting one character between
two occurrences. Also, suppose that there are m2,1,1 (resp. m2,1,0) symbols such that
one occurrence (resp. no occurrence) of each of them is included into OPT .

(OPT3) Consider symbols in Σ2,0. Suppose that there are m2,0,2 (resp. m2,0,0) symbols
such that two occurrences (resp. no occurrence) of each of them are included into OPT .
Remark that since the goal is to maximize the length of the run subsequence, we can
assume that two occurrences (one run of length two) of the symbol in Σ2,0 are completely
included into OPT , or completely deleted.

(OPT4) Consider symbols in Σ1 \ Γ1. Suppose that there are m1,1 (resp. m1,0) symbols
such that one occurrence (resp. no occurrence) of each of them is included into OPT .

(OPT5) Consider special triples. For example, take a look at γ′γγ′ where γ ∈ Γ1 and
γ′ ∈ Γ2,1. One sees that we cannot select all the three characters into any solution
subsequence since it can contain at most one run for every symbol. Therefore, OPT

includes at most two characters of the special triple, γ′2, γ′γ, or γγ′. Since the goal is to
maximize the length of the run subsequence, we can assume that OPT includes one of
the two characters of the special triple, or does not include any character from the special
triple. Suppose that there are mγ,2 (resp. mγ,0) special triples such that two characters
(resp. no character) of each of them are included into OPT .

Then, the length of OPT is calculated as follows:

|OPT | =
OPT1︷ ︸︸ ︷

2m2,≥2,2 + m2,≥2,1 +
OPT2︷ ︸︸ ︷

2m2,1,2 + m2,1,1 +
OPT3︷ ︸︸ ︷

2m2,0,2 +
OPT4︷︸︸︷
m1,1 +

OPT5︷ ︸︸ ︷
2mγ,2 . (8)

Now, let D be the number of deleted symbols from S by the optimal algorithm. Then, D

is counted by the above assumption:

D =
OPT1︷ ︸︸ ︷

m2,≥2,1 + 2m2,≥2,0 +
OPT2︷ ︸︸ ︷

m2,1,1 + 2m2,1,0 +
OPT3︷ ︸︸ ︷

2m2,0,0 +
OPT4︷︸︸︷
m1,0 +

OPT5︷ ︸︸ ︷
mγ,2 + 3mγ,0 . (9)

Next, we consider a lower bound on D. As for symbols in Σ2,≥2, we assumed in (OPT1)
that there are m2,≥2,2 symbols such that two occurrences of each of them are included into
OPT , i.e., at least two characters between the two occurrences must be deleted. Also, as

CPM 2023

2:10 Approximation Algorithms for the Longest Run Subsequence Problem

for symbols in Σ2,1 \ Γ2,1, we assumed in (OPT2) that there are m2,1,2 symbols such that
two occurrences of each of them are included into OPT , i.e., one character between the two
occurrences must be deleted. As a result, the following inequality holds:

D ≥ 2m2,≥2,2 + m2,1,2. (10)

Now, we estimate the length of the output run subsequence of ALG2.
(ALG1) Consider symbols in Σ2,0. In Step 3, two occurrences of every symbol in Σ2,0 are

included into ALG2, i.e., 2m2,0,2 + 2m2,0,0 characters are included into ALG2.
(ALG2) Consider symbols in Γ2,1. In Step 4-(i), one occurrence of every symbol in Γ2,1 is

included into ALG2, i.e., mγ,2 + mγ,0 characters are totally included in ALG2.
(ALG3) Consider symbols in Σ1. In Step 4-(i), every symbol in Γ1 (⊆ Σ1) is included into

ALG2. In Step 6, every symbol in Σ1 \ Γ1 is included into ALG2. That is, all the symbols
in Σ1 are included into ALG2. In total, m1,1 +m1,0 +mγ,2 +mγ,0 characters are included
into ALG2.

(ALG4) Consider symbols in Σ2,≥2. In Step 4-(iii), one occurrence of every symbol in Λ2,≥2
(⊆ Σ2,≥2) is included into ALG2. Also, in Step 5, one occurrence of every symbol in
Σ2,≥2 \ Λ2,≥2 is included into ALG2. In total, m2,≥2,2 + m2,≥2,1 + m2,≥2,0 characters are
included into ALG2.

(ALG5) Consider symbols in Σ2,1 \ Γ2,1. Recall that |Σ2,1 \ Γ2,1| = m2,1,2 + m2,1,1 + m2,1,0.
Consider a Ψ-pair of σ and σ′, i.e., a substring σσ′σσ′ of length four in S. In Step 4-(ii),
three characters σ, σ′, and σ′ are selected from the Ψ-pair of σ and σ′. Namely, we can
see that three characters per two symbols are included into ALG2. Also, in Step 4-(iii),
three characters σ, σ′, and σ′ are selected from every Λ-pair of σ and σ′. Again, three
characters per two symbols are included into ALG2. In Step 4-(iv), two occurrences of
every symbol in (Σ2,1 \ Γ2,1) \ (Ψ2,1 ∪ Λ2,1) are included into ALG2. As a result, at least
3
2 (m2,1,2 + m2,1,1 + m2,1,0) characters are included into ALG2.

Then, the following inequality on the length of ALG2 holds:

|ALG2| ≥
ALG4︷ ︸︸ ︷

m2,≥2,2 + m2,≥2,1 + m2,≥2,0 +

ALG5︷ ︸︸ ︷
3
2(m2,1,2 + m2,1,1 + m2,1,0)

+
ALG1︷ ︸︸ ︷

2m2,0,2 + 2m2,0,0 +
ALG2 and ALG3︷ ︸︸ ︷

m1,1 + m1,0 + 2mγ,2 + 2mγ,0 . (11)

From Eq.(9) and Eq.(10), we obtain the following inequality:

1
3(m2,≥2,1 + 2m2,≥2,0 − m2,1,2 + m2,1,1 + 2m2,1,0 + 2m2,0,0 + m1,0 + mγ,2 + 3mγ,0)

≥ 2
3m2,≥2,2. (12)

Therefore, from Eq.(8) and Eq.(12), |OPT | is bounded as follows:

|OPT | =
(

4
3m2,≥2,2 + 2

3m2,≥2,2

)
+ m2,≥2,1 + 2m2,1,2 + m2,1,1

+ 2m2,0,2 + m1,1 + 2mγ,2

≤ 4
3m2,≥2,2 + 4

3m2,≥2,1 + 2
3m2,≥2,0 + 5

3m2,1,2 + 4
3m2,1,1 + 2

3m2,1,0

+ 2m2,0,2 + 2
3m2,0,0 + m1,1 + 1

3m1,0 + 7
3mγ,2 + mγ,0 (13)

Y. Asahiro, H. Eto, M. Gong, J. Jansson, G. Lin, E. Miyano, H. Ono, and S. Tanaka 2:11

One can verify that the following is satisfied from Eq.(11) and Eq.(13):

|OPT |
|ALG2|

≤ 4
3 . ◀

▶ Remark 14. Again, we can show the tightness for the approximation ratio 4
3 of ALG2.

Consider the following string S, where |S| = n = 6ℓ.

S = σ1σ2σ3σ1σ2σ3σ4σ5σ6σ4σ5σ6 · · · σ3ℓ−2σ3ℓ−1σ3ℓσ3ℓ−2σ3ℓ−1σ3ℓ.

Then, we can find the following run subsequence S′:

S′ = σ2
1σ2σ3σ2

4σ5σ6 · · · σ2
3ℓ−2σ3ℓ−1σ3ℓ

Therefore, the length of OPT is at least |S′| = 4ℓ. On the other hand, the solution of our
algorithm ALG2 for S contains only one of the two σi’s for each 1 ≤ i ≤ 3ℓ since every symbol
is in Σ2,≥2:

ALG2 = σ1σ2 · · · σ3ℓ.

The length of ALG2 is 3ℓ. As a result,

|OPT |
|ALG2|

≥ 4
3 .

This shows that the above approximation analysis is tight. ⌟

5 Conclusion

We have presented a polynomial-time k+1
2 -approximation algorithm for k-LRS, where the

number of occurrences of every symbol in the input string is at most k. Then, for the
case k = 2, we have reduced the approximation ratio to 4

3 . The current approximation
algorithm for 2-LRS is a little bit complicated, and thus might be simplified to obtain the
same approximation ratio. Future work is to further improve the approximation ratio of
4
3 for 2-LRS, and to design an even better approximation algorithm for general k-LRS. It
would also be useful to derive tight bounds on the polynomial-time approximation hardness
of k-LRS in terms of k.

References
1 Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic graphs. Theor.

Comput. Sci., 237(1-2):123–134, 2000. doi:10.1016/S0304-3975(98)00158-3.
2 Yuichi Asahiro, Jesper Jansson, Guohui Lin, Eiji Miyano, Hirotaka Ono, and Tadatoshi

Utashima. Polynomial-time equivalences and refined algorithms for longest common sub-
sequence variants. In Hideo Bannai and Jan Holub, editors, 33rd Annual Symposium on
Combinatorial Pattern Matching, CPM 2022, June 27-29, 2022, Prague, Czech Republic,
volume 223 of LIPIcs, pages 15:1–15:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.CPM.2022.15.

3 Mauro Castelli, Riccardo Dondi, Giancarlo Mauri, and Italo Zoppis. The longest filled common
subsequence problem. In Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter, editors,
28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, July 4-6, 2017,
Warsaw, Poland, volume 78 of LIPIcs, pages 14:1–14:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.CPM.2017.14.

CPM 2023

https://doi.org/10.1016/S0304-3975(98)00158-3
https://doi.org/10.4230/LIPIcs.CPM.2022.15
https://doi.org/10.4230/LIPIcs.CPM.2017.14

2:12 Approximation Algorithms for the Longest Run Subsequence Problem

4 Mauro Castelli, Riccardo Dondi, Giancarlo Mauri, and Italo Zoppis. Comparing incomplete
sequences via longest common subsequence. Theor. Comput. Sci., 796:272–285, 2019. doi:
10.1016/j.tcs.2019.09.022.

5 Riccardo Dondi and Florian Sikora. The longest run subsequence problem: Further complexity
results. In Pawel Gawrychowski and Tatiana Starikovskaya, editors, 32nd Annual Symposium
on Combinatorial Pattern Matching, CPM 2021, July 5-7, 2021, Wrocław, Poland, volume
191 of LIPIcs, pages 14:1–14:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.CPM.2021.14.

6 Martin Grötschel, Michael Jünger, and Gerhard Reinelt. A cutting plane algorithm for the
linear ordering problem. Oper. Res., 32(6):1195–1220, 1984. doi:10.1287/opre.32.6.1195.

7 Haitao Jiang, Chunfang Zheng, David Sankoff, and Binhai Zhu. Scaffold filling under the
breakpoint and related distances. IEEE ACM Trans. Comput. Biol. Bioinform., 9(4):1220–1229,
2012. doi:10.1109/TCBB.2012.57.

8 Junwei Luo, Yawei Wei, Mengna Lyu, Zhengjiang Wu, Xiaoyan Liu, Huimin Luo, and Chaokun
Yan. A comprehensive review of scaffolding methods in genome assembly. Briefings Bioinform.,
22(5), 2021. doi:10.1093/bib/bbab033.

9 Adriana Muñoz, Chunfang Zheng, Qian Zhu, Victor A. Albert, Steve Rounsley, and David
Sankoff. Scaffold filling, contig fusion and comparative gene order inference. BMC Bioinform.,
11:304, 2010. doi:10.1186/1471-2105-11-304.

10 F. Sanger, G.M. Air, B.G. Barrell, N.L. Brown, A.R. Coulson, J.C. Fiddes, C.A. Hutchison
III, P.M. Slocombe, and M. Smith. Nucleotide sequence of bacteriophage ϕx174 DNA. Nature,
265:687–695, 1977.

11 Sven Schrinner, Manish Goel, Michael Wulfert, Philipp Spohr, Korbinian Schneeberger, and
Gunnar W. Klau. The longest run subsequence problem. In Carl Kingsford and Nadia Pisanti,
editors, 20th International Workshop on Algorithms in Bioinformatics, WABI 2020, September
7-9, 2020, Pisa, Italy (Virtual Conference), volume 172 of LIPIcs, pages 6:1–6:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.WABI.2020.6.

12 Sven Schrinner, Manish Goel, Michael Wulfert, Philipp Spohr, Korbinian Schneeberger,
and Gunnar W. Klau. Using the longest run subsequence problem within homology-based
scaffolding. Algorithms Mol. Biol., 16(1):11, 2021. doi:10.1186/s13015-021-00191-8.

https://doi.org/10.1016/j.tcs.2019.09.022
https://doi.org/10.1016/j.tcs.2019.09.022
https://doi.org/10.4230/LIPIcs.CPM.2021.14
https://doi.org/10.1287/opre.32.6.1195
https://doi.org/10.1109/TCBB.2012.57
https://doi.org/10.1093/bib/bbab033
https://doi.org/10.1186/1471-2105-11-304
https://doi.org/10.4230/LIPIcs.WABI.2020.6
https://doi.org/10.1186/s13015-021-00191-8

	1 Introduction
	2 Preliminaries
	3 A polynomial-time frac{k+1}{2}-approximation algorithm for k-LRS
	4 A polynomial-time 4/3-approximation algorithm for 2-LRS
	5 Conclusion

