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ABSTRACT

RNA molecules whose secondary structures contain similar substructures often have similar
functions. Therefore, an important task in the study of RNA is to develop methods for
discovering substructures in RNA secondary structures that occur frequently (also referred
to as motifs). In this paper, we consider the problem of computing an optimal local alignment
of two given labeled ordered forests F1 and F2. This problem asks for a substructure of F1

and a substructure of F2 that exhibit a high similarity. Since an RNA molecule’s secondary
structure can be represented as a labeled ordered forest, the problem we study has a direct
application to finding potential motifs. We generalize the previously studied concept of a
closed subforest to a gapped subforest and present the first algorithm for computing the
optimal local gapped subforest alignment of F1 and F2. We also show that our technique
can improve the time and space complexity of the previously most efficient algorithm for
optimal local closed subforest alignment. Furthermore, we prove that a special case of our
local gapped subforest alignment problem is equivalent to a problem known in the literature
as the local sequence-structure alignment problem (lssa) and modify our main algorithm to
obtain a much faster algorithm for lssa than the one previously proposed. An implementation
of our algorithm is available at www.comp.nus.edu.sg/∼bioinfo/LGSFAligner/. Its running
time is significantly faster than the original lssa program.

Key words: local forest alignment, gapped subforest, RNA secondary structure, local sequence-
structure motif, dynamic programming.

1. INTRODUCTION

Many areas of computer science use labeled ordered trees to represent hierarchically structured
information. It is often necessary to measure the similarity between two or more such trees or to

identify parts of the trees that are similar, e.g., in software construction and maintenance applications
(Baxter et al., 1998; Tai, 1979; Yang, 1991) or to find structural changes between different versions of

1A preliminary version of this article appeared in Proceedings of the 15th Annual International Symposium on
Algorithms and Computation (ISAAC, 2004), vol. 3341 of Lecture Notes in Computer Science, 569–580, Springer–
Verlag, 2004.

2School of Computing, National University of Singapore, 3 Science Drive 2, Singapore 117543.
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electronic documents for information management and data archiving purposes (Chawathe et al., 1996;
Wang et al., 1997). In computational molecular biology, labeled ordered trees can represent RNA molecules’
secondary structures (Höchsmann et al., 2003; Le et al., 1989; Shapiro and Zhang, 1990). By measuring and
comparing the similarity of secondary structure trees, researchers who investigate structural or evolutionary
relationships between RNA molecules may obtain additional clues (Collins et al., 2000; Höchsmann et al.,
2003; Shapiro and Zhang, 1990).1 Automated methods for finding shared substructures in RNA secondary
structure trees are also of great value; an important task in the study of RNA is to develop tools for
discovering frequently recurring patterns in their secondary structures (also known as motifs) which are
helpful when investigating the various functions in the cell of different types of RNA or when predicting the
secondary structure of a newly found RNA molecule (see, e.g., Backofen and Will [to appear], Höchsmann
et al. [2003], and Le et al. [1989]).

Two ways to measure the overall similarity between two labeled ordered trees are by using the tree edit
distance (Tai, 1979) or alignments of trees (Jiang et al., 1995). The problem of computing the optimal
alignment of two trees can be viewed as a special case of the tree edit distance problem (Jiang et al., 1995);
indeed, the fastest known algorithms for optimal alignment between two trees have lower time complexities
than the fastest known algorithms for the tree edit distance, both for unordered trees whose degrees are
bounded by a constant (Jiang et al., 1995; Zhang and Jiang, 1994) and for ordered trees whose degrees
are much smaller than their depths (Jiang et al., 1995; Zhang and Shasha, 1989). However, alignments
between trees as defined in Jiang et al. (1995) consider similarities on the global level only, in the sense
that every node in the input trees must be paired off with either a node in the other tree or a space. Recently,
Höchsmann et al. (2003) and Wang and Zhang (2000) extended the concept of a global alignment of trees
to a local alignment of trees by introducing problems in which the objective is to find two substructures of
the two input trees having the highest possible similarity, where the similarity between two substructures
is defined using the maximum score of a global alignment between them.

In this paper, we improve the time and space complexities of the main algorithm presented by Höchsmann
et al. (2003). Moreover, we further extend the set of mathematical definitions and notations for local
similarity in labeled forests by generalizing the concept of a closed subforest used by Höchsmann et al.
(2003) to what we call a gapped subforest. Based on this new concept, we define a computational problem
called the local gapped subforest alignment problem (lgsf ) that can express even more general patterns of
local similarities in two labeled ordered forests than the problem considered by Höchsmann et al. (2003)
and give an efficient algorithm for solving it. We also prove that a special case of lgsf which we refer
to as lgsfβ can be used to express the local sequence-structure alignment problem (lssa) presented by
Backofen and Will (to appear), implying that a slightly modified version of our algorithm for lgsf can be
applied to solve lssa much faster than the algorithm given by Backofen and Will (to appear) at the cost of
a minor increase in space complexity. Finally, we implement our improved algorithms for local subforest
alignment problems and apply them to find structural motifs of RNA secondary structures. We apply a
space-saving tabulation technique proposed by Höchsmann et al. (2003) to reduce the amount of memory
used by the program and perform experiments on real RNA secondary structures to investigate the results
of our algorithms in reality.

2. PROBLEM DEFINITIONS AND THE MOTIVATION

2.1. Preliminaries

We first introduce some basic terminology and notation used throughout this paper.

Labeled forests, closed subforests, and gapped subforests. Let � be a finite set of symbols. A rooted,
ordered forest whose nodes are labeled by symbols in � is called a �-labeled forest (or in short, forest).

1This seems especially useful when the strings representing the primary structures of the molecules cannot be reliably
aligned, as in the case of pRNA and mrpRNA studied by Collins et al. (2000). In general, if the RNA molecules to
be compared have evolved for a long time, methods that also take into account secondary structure information are
potentially more accurate than those that only rely upon the primary structure (Notredame et al., 1997).
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For any forest F , |F | represents the number of nodes in F . To simplify the presentation below, from here
on we will assume that the roots of the trees in any given forest share an imaginary (and arbitrarily labeled)
parent node. The degree of F , denoted by deg(F ), is the maximum number of children over all nodes in F

and the imaginary parent node of the roots of the trees in F .
Let u and v be nodes in a forest F . Nodes u and v are called siblings if and only if they have

the same parent node. We let l(u) and r(u) denote the sibling immediately to the left and to the right
of u, respectively, and let e(u) denote the right-most sibling of u. For technical reasons, we use the
convention that r(l(u)) = u even when l(u) is undefined (e.g., if u has no left sibling). Furthermore, we let
uL and uR denote the left-most and the right-most child of u. If u has no children, then we set uL = ∅ and
uR = ∅.

Define the sibling interval u..v as follows. If u = ∅ or v = ∅ then u..v = ∅. Similarly, if u and v have
different parents or if u is a right sibling of v, then u..v = ∅. Otherwise, u..v is the set containing u, v,
and all their siblings which are to the right of u and to the left of v. Denote by S(F ) the set of all sibling
intervals of the forest F , i.e., S(F ) = {u..v | u ∈ F, v ∈ F }. Observe that ∅ ∈ S(F ). Also observe that
the set S(F ) contains O(|F | · deg(F )) elements since there are at most deg(F ) nonempty sibling intervals
of the form u..v for each node u in F . Finally, let F [u..v] be the (possibly empty) forest consisting of all
subtrees of F rooted at the nodes in u..v.

Next, we define two types of subforests: closed subforests (originally introduced by Höchsmann et al.
[2003]) and gapped subforests. We need to distinguish two particular kinds of gapped subforests that we
call α- and β-gapped subforests.

Definition 1 (closed subforest). Let F and F ′ be two forests. F ′ is called a closed subforest of F if
there exists two nodes u, v in F (possibly with u = v) such that F ′ = F [u..v]. When u..v is not empty,
the parent node of F ′ is defined to be the common parent node of u and v in F .

Definition 2 (gapped subforest). Let F and F ′ be two forests. F ′ is called a gapped subforest of F

if there exists two nodes u, v in F (possibly with u = v) such that F ′ can be obtained by removing
from F [u..v] a set C of closed subforests where no two closed subforests belonging to C have the same
parent node. In this case, F ′ is also called a gapped subforest at F [u..v].

F ′ is called an α-gapped subforest at F [u..v] if F ′ is a gapped subforest at F [u..v] and F ′ can be
obtained from F [u..v] without removing any closed subforest of the form F [u..y] with u..y ⊆ u..v.

Lastly, F ′ is called a β-gapped subforest at F [u..v] if F ′ is a gapped subforest at F [u..v] and F ′ can
be obtained from F [u..v] without removing any closed subforest of the form F [x..y] with x..y ⊆ u..v.

See Fig. 1 for some examples. For any closed subforest F [u..v] of a forest F , we let gsf (F [u..v]) (also
written as gsf ∗(F [u..v])) denote the set of all gapped subforests at F [u..v]. Similarly, gsf α(F [u..v]) is the
set of all α-gapped subforests at F [u..v], and gsfβ(F [u..v]) is the set of all β-gapped subforests at F [u..v].
The next lemma relates gapped subforests, α-gapped subforests, and β-gapped subforests.

Lemma 1. gsf (F [u..u′]) = gsf α(F [u..u′]) ⋃
(∪u′′∈u..u′gsfβ(F [r(u′′)..u′]))

Proof. Suppose F ′ is a gapped subforest at F [u..u′]. If F ′ is nonempty and F ′ contains the node u,
then F ′ is an α-gapped subforest at F [u..u′]. If F ′ is nonempty and F ′ does not contain u, then since F ′
is a gapped subforest, F ′ must be a β-gapped subforest at F [r(u′′)..u′] for some u′′ ∈ u..l(u′). Finally, if
F ′ is the empty forest, then (by definition) F ′ is a β-gapped subforest at F [r(u′)..u′]. Conversely, every
α-gapped subforest at F [u..u′] and every β-gapped subforest at F [r(u′′)..u′] where u′′ ∈ u..u′ must be a
gapped subforest at F [u..u′]. Thus, Lemma 1 follows.

Global alignment of two forests. Given two �-labeled forests F and G, one way to measure their
similarity is by computing the score of an optimal global alignment between them, as defined below.
Global alignment of forests was first considered by Jiang et al. (1995).
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FIG. 1. (a) An example of a tree/forest F ; (b) the closed subforest F [u3..u4]; (c) a gapped subforest at F [u1..u1]
formed by excluding the closed subforests F [u3..u3], F [u9..u9], F [u15..u15], and F [u18..u19]. Note that the forest
in (b) is an α-gapped subforest at F [u3..u5] since it excludes only F [u5..u5]; however, it is not a β-gapped subforest
at F [u3..u5]. Also note that (b) and (c) are β-gapped subforests at F [u3..u4] and F [u1..u1], respectively.

Let “−” be a special symbol that does not belong to �. An insert operation on a (� ∪ {−})-labeled
forest F adds a new node u labeled by “−,” in such a way that u becomes the parent of a consecutive
subsequence of children2 of an existing node v and u becomes a child of v (here, we allow v to be the
imaginary parent node shared by all the roots of the trees in F ).

Let F and G be two �-labeled forests. A global alignment between F and G is any (�∪{−})×(�∪{−})-
labeled forest that can be obtained by first performing insert operations on F and G so that the two resulting
forests F ′ and G′ are isomorphic when labels are ignored and then overlaying F ′ on G′. In addition, it
is required that no node of the alignment corresponds to two nodes x ∈ F ′ and y ∈ G′ which are both
labeled by −. An example of a global alignment of two forests (in fact, two trees) is shown in Fig. 2.
The score of an alignment is the sum of the scores of all pairs of aligned nodes, where the score of a pair
of nodes is determined by a prespecified function µ defined on (� ∪ {−}) × (� ∪ {−}). In the following,
whenever we write µ(u, −), etc., where u is a node, we mean µ applied to the symbol that labels node u.

An optimal global alignment between a pair of �-labeled forests F and G is a global alignment between
them achieving the highest possible score.3 This score is also referred to as the similarity of F and G and
is denoted by sim(F, G).

2.2. Problem definitions

In general, the goal in a local forest alignment problem is to identify two subforests F ′ and G′ of two
given �-labeled forests F and G such that F ′ and G′ conform to some specified structural requirements
and the value of their optimal global alignment score sim(F ′, G′) is maximized. Here we define three
closely related local forest alignment problems which are studied in this paper.

2Observe that a consecutive subsequence can consist of zero elements.
3Jiang et al. (1995) defined an optimal alignment as one with the lowest possible score.
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FIG. 2. Let � = {a, b, c, d, e}, and define the scoring function µ as follows: for every x, y ∈ � with x �= y, let
µ(x, x) = 3, µ(x, y) = −1, and µ(x, −) = µ(−, x) = −2. Then the score of the global alignment in (c) between the
two �-labeled forests shown in (a) and (b) is 2.

1. The local closed subforest alignment problem (lcsf ): Find two closed subforests F ′ and G′ of F and G,
respectively, maximizing sim(F ′, G′). We have

lcsf (F, G) = max{sim(F [u..u′], G[v..v′]) | u..u′ ∈ S(F ), v..v′ ∈ S(G)}.
2. The local gapped subforest alignment problem (lgsf ): Find two gapped subforests F ′ and G′ of F

and G, respectively, maximizing sim(F ′, G′). We have

lgsf (F, G) = max{sim(F ′, G′) | F ′ ∈ gsf (F [u..u′]), G′ ∈ gsf (G[v..v′]),
u..u′ ∈ S(F ), v..v′ ∈ S(G)}.

3. The local β-gapped subforest alignment problem (lgsfβ): Find two β-gapped subforests F ′ and G′ of F

and G, respectively, maximizing sim(F ′, G′). We have

lgsfβ(F, G) = max{sim(F ′, G′) | F ′ ∈ gsfβ(F [u..u′]), G′ ∈ gsfβ(G[v..v′]),
u..u′ ∈ S(F ), v..v′ ∈ S(G)}.

2.3. Previous results

The first algorithm for optimal global alignment of two given labeled ordered trees was proposed by
Jiang et al. (1995). Their algorithm computes an optimal global alignment between two labeled ordered
trees T1 and T2 in O(|T1| · |T2| · (deg(T1)+deg(T2))

2) time. It was subsequently extended without affecting
the asymptotic running time to the problem of computing an optimal global alignment of two labeled
ordered trees with gap penalties by Wang and Zhao (2003). Wang and Zhao also showed how to reduce
the space complexity of the resulting algorithm from O(|T1| · |T2| · (deg(T1) + deg(T2))) to O(log(|T1|) ·
|T2| · (deg(T1)+deg(T2)) ·deg(T1)) by increasing the running time to O(|T1|2 · |T2| · (deg(T1)+deg(T2))

2).
A modification to the algorithm of Jiang et al. which yields a lower running time for similar trees was
given by Jansson and Lingas (2003). For some known results on computing the global tree edit distance
between two labeled ordered trees, see Jiang et al. (1995), Tai (1979), Zhang and Jiang (1994), and Zhang
and Shasha (1989).

As for computing optimal local alignments of labeled ordered trees, Höchsmann et al. (2003) gave an
algorithm for lcsf (they termed it the local closed subforest similarity problem) running in O(|F | · |G| ·
deg(F ) ·deg(G) · (deg(F )+deg(G))) time and O(|F | · |G| ·deg(F ) ·deg(G)) space. Backofen and Will (to
appear) studied a problem which they called the local sequence-structure alignment problem (this problem
is equivalent to our lgsfβ , as will be shown in Section 3) and gave an algorithm for solving it that runs in
O(|F |2 · |G|2 · (|F | + |G|)) time and O(|F | · |G|) space.

A problem related to local alignments of labeled ordered trees is known as the similar consensus problem
(Wang and Zhang, 2000). It asks for connected subgraphs T ′

1 and T ′
2 of two input labeled ordered trees T1
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Table 1. Time and Space Complexities for Some of the Previously Most Efficient
Algorithms for lcsf , lgsf , and lgsfβ

Problem Time complexity Space complexity

lcsf a O
(|F | · |G| · deg(F ) · deg(G) · (deg(F ) + deg(G))

)
O

(|F | · |G| · deg(F ) · deg(G)
)

lgsf Not studied before Not studied before
lgsfβ

b O
(|F |2 · |G|2 · (|F | + |G|)) O

(|F | · |G|)

aSee Höchsmann et al. (2003).
bSee Backofen and Will (to appear).

and T2 maximizing the optimal global alignment score between T ′
1 and T ′

2 such that T ′
1 is within a specified

distance d of T ′
2. The similar consensus problem was shown to be solvable in O(d2 · |T1| · |T2| · (deg(T1)+

deg(T2))
2) time by Wang and Zhang (2000).

We remark that in this paper, we focus on labeled ordered forest comparison. However, the secondary
structure of an RNA molecule can also be modeled as an annotated sequence (see, e.g., Evans [1999a]).
In the literature, there exist a number of results for problems involving constructing optimal global/local
alignments of or computing the edit distance of two given annotated sequences (Alber et al., 2004; Backofen
and Will, to appear; Bafna et al., 1995; Evans, 1999a, 1999b; Gramm et al., 2002; Jiang et al., 2002, 2004;
Lenhof et al., 1998; Lin et al., 2002). See also Section 3 for a further discussion on the relationship between
β-gapped subforests and a special type of annotated sequence.

Table 1 summarizes the time and space complexities of the previously most efficient algorithms for lcsf ,
lgsf , and lgsfβ .

2.4. Our results and organization of the paper

In Section 3, we prove that a special case of lgsfβ is equivalent to the local sequence-structure problem
considered by Backofen and Will (to appear) and describe practical applications of lgsf related to finding
structural motifs in RNA molecules. In Section 4, we introduce some additional matrix notations and derive
a number of recursive formulae which form the basis of our main dynamic programming-based algorithm
for lgsf , presented in Section 4.4. Next, in Sections 5.1 and 5.2 we refine our algorithm for lgsf to solve
lgsf β and lcsf more efficiently. We continue in Section 6 with the description of the implementation and
experimental results of the LGSFAligner program. In this program, we implement our improved algorithms
for local subforest alignment problems and apply them to find local structural motifs of RNA secondary
structures. Finally, in Section 7, we discuss possible future extensions of our work.

Table 2 summarizes the time and space complexities of our algorithms.

3. AN APPLICATION TO FINDING LOCAL RNA
SEQUENCE-STRUCTURE MOTIFS

An annotated sequence is defined as a tuple (S, P ), where S is a sequence s1, s2, . . . , sn of symbols
from a finite alphabet � and where P is a set of unordered pairs of positions in S referred to as arcs.
The secondary structure of an RNA molecule can be described using an annotated sequence over the

Table 2. Time and Space Complexities of Our Algorithms

Problem Time complexity Space complexity

lcsf (Section 5.2) O
(|F | · |G| · (deg(F ) + deg(G))2

)
O

(|F | · |G| · (deg(F ) + deg(G))
)

lgsf (Section 4.4) O
(|F | · |G| · deg(F ) · deg(G) · (deg(F ) + deg(G))

)
O

(|F | · |G| · deg(F ) · deg(G)
)

lgsfβ (Section 5.1) O
(|F | · |G| · (deg(F ) + deg(G))2

)
O

(|F | · |G| · (deg(F ) + deg(G))
)
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alphabet {A, C, G, U} by representing each hydrogen bond between a base pair in the sequence with an
arc (see, e.g., Backofen and Will [to appear], Evans [1999a, 1999b], Jiang et al. [2004], and Lin et al.
[2002]). The majority of all RNA secondary structures share the characteristic that no two arcs cross (i.e.,
there exist no two arcs (i, j) and (i′, j ′) such that i < i′ < j < j ′); an annotated sequence containing no
pair of crossing arcs is called nested.

Researchers have noticed that RNA molecules sharing similar local substructures (referred to as motifs)
often have similar functions. This observation motivates the problem of computing the maximum com-
mon local substructure of two RNA molecules. A number of ways to represent local substructures of an
RNA molecule’s secondary structure have been proposed. Among them, the local sequence-structure motif
(Backofen and Will, to appear) is one of the most effective. For example, it can represent the putative
SECIS-motif (Wilting et al., 1997) whereas many other methods fail (Backofen and Will, to appear).
Given an RNA secondary structure represented as a nested annotated sequence (S, P ), the annotated se-
quence (S′, P ′) is called a local sequence-structure motif of (S, P ) if and only if the following three
conditions hold:

• S′ is a subsequence of S, and P ′ is the subset of P induced from the subsequence S′.
• S′ is arc-complete for (S, P ); i.e., for every (i, j) ∈ P , either i, j ∈ S′ or i, j �∈ S′.
• Each exclusion of S′ has an immediate successor, where an interval sk..sl of S is called an exclusion

of S′ if sk, . . . , sl �∈ S′ but sk−1, sl+1 ∈ S′, and where the immediate successor of an exclusion sk..sl
of S′ is defined as the smallest arc (i, j) ∈ P ′ with i < k < l < j . Furthermore, no two exclusions
of S′ have the same immediate successor.

It is also common to represent an RNA secondary structure as a labeled ordered forest F in which
every leaf corresponds to a free base (i.e., a base that does not pair with any other base) in the sequence
and every internal node corresponds to an arc (i.e., two paired bases and the bond between them) in the
secondary structure, such that:

• for any two nodes u and v in F , v is a right sibling of u if and only if v corresponds to a free base or
an arc that lies to the right of the free base or the arc that u corresponds to, and

• for any two nodes u and v in F , v is the parent of u if and only if v corresponds to the smallest arc
enclosing the free base or the arc that u corresponds to. In other words, v corresponds to the immediate
successor of the free base or the arc that u corresponds to.

See, e.g., Fig. 6 and Fig. 7 of Höchsmann et al. (2003) for an example of this representation.
The following lemma shows that the local sequence-structure motifs of any nested annotated se-

quence (S, P ) and the β-gapped subforests of the forest representation for (S, P ) are equivalent.

Lemma 2. Let (S, P ) and (S′, P ′) be two nested annotated sequences, and let F and F ′ be their
respective forest representations. Motif (S′, P ′) is a local sequence-structure motif of (S, P ) if and only if
F ′ is a β-gapped subforest of F .

Proof. (⇒) Suppose (S′, P ′) is a local sequence-structure motif of (S, P ). First note that each exclu-
sion I of S′ is also arc-complete for (S, P ) (this is because if some arc in P connects a base in I and a
base in S′ then S′ would not be arc-complete for (S, P ), and if some arc in P connects a base in I and a
base in some other exclusion J of S′ then (S, P ) would not be a nested annotated sequence; in both cases,
a contradiction). Hence, each exclusion I of S′ corresponds to a closed subforest F [xi..yi] of F ′, i.e., F ′ is
obtained by removing some set C of closed subforests from some closed subforest F [u..v] of F . Next,
since no two exclusions of S′ have the same immediate successor, we conclude that all closed subforests
in C have different parent nodes, so F ′ is a gapped subforest of F . Finally, every exclusion of S′ must
have an immediate successor, implying that no closed subforest can be removed at the root level in F ′.
Hence, F ′ is a β-gapped subforest of F ′.

(⇐) Suppose F ′ is a β-gapped subforest of F . Then F ′ is obtained by removing some set C of closed
subforests from some closed subforest F [u..v] of F . Each arc (i, j) in P , along with the two bases at i

and j , is represented by an internal node in F , so there is no way to delete just one of i and j from S,
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i.e., the S′ corresponding to F ′ must be arc-complete for (S, P ). Next, since F ′ is a β-gapped subforest
of F , no closed subforest of F [u..v] has been removed at the root level in F ′, which means that every
closed subforest belonging to C has a parent node in F ′, so each corresponding exclusion of S′ has an
immediate successor in P ′. Lastly, all exclusions of S′ have different immediate successors because no
two closed subforests in C have the same parent node. Hence, (S′, P ′) is a local sequence-structure motif
of (S, P ).

Theorem 1. Let (S1, P1) and (S2, P2) be two nested annotated sequences, and let F1 and F2 be
their respective forest representations. The optimal local sequence-structure motif alignment of (S1, P1)

and (S2, P2) (defined by Backofen and Will [to appear]) is equivalent to the optimal local β-gapped
subforest alignment of F1 and F2.

Proof. For i ∈ {1, 2}, by Lemma 2, it holds that each local sequence-structure motif of (Si, Pi)

corresponds uniquely to a β-gapped subforest of Fi .

4. THE LOCAL GAPPED SUBFOREST ALIGNMENT PROBLEM (lgsf )

This section presents an algorithm to solve the local gapped subforest alignment problem.

4.1. Base lemma

The following lemma acts as the base for our algorithm.

Lemma 3. (Lemma 1 of Höchsmann et al. [2003]) Let F and G be two �-labeled forests and let A

be a global alignment of F and G. If F is an empty forest, then A and G are isomorphic when labels
are ignored and each node in A is labeled (−, �), where � is the label of the corresponding node in G,
and analogously if G is empty. If both of F and G are nonempty forests and u and v are the roots of the
left-most trees of F and G, respectively, then the root a of the left-most tree of A is labeled by either (x, y),
(x, −), or (−, y), where x is the label of u and y is the label of v. There are three cases:

1. If a is labeled by (x, y), then A[aL..aR] is an alignment of F [uL..uR] and G[vL..vR], and A[r(a)..e(a)]
is an alignment of F [r(u)..e(u)] and G[r(v)..e(v)].

2. If a is labeled by (x, −), then for some v′′ ∈ l(v)..e(v), A[aL..aR] is an alignment of F [uL..uR]
and G[v..v′′], and A[r(a)..e(a)] is an alignment of F [r(u)..e(u)] and G[r(v′′)..e(v)].

3. If a is labeled by (−, y), then for some u′′ ∈ l(u)..e(u), A[aL..aR] is an alignment of F [u..u′′]
and G[vL..vR], and A[r(a)..e(a)] is an alignment of F [r(u′′)..e(u)] and G[r(v)..e(v)].

4.2. Matrix notations

In order to compute lgsf (F, G) for the two given �-labeled forests F and G, our algorithm uses
dynamic programming to fill in nine matrices corresponding to different types of gapped subforests. For
every a, b ∈ {α, β, ∗}, we define one matrix Da−b of size |S(F )| · |S(G)| as follows:

Definition 3 (D-Matrix). For every a, b ∈ {α, β, ∗}, u..u′ ∈ S(F ), and v..v′ ∈ S(G), the matrix
element Da−b[u..u′; v..v′] is defined as the maximum of all global alignment scores of two subforests F ′
and G′, where F ′ ∈ gsf a(F [u..u′]) and G′ ∈ gsf b(G[v..v′]), i.e.,

Da−b[u..u′; v..v′] = max{sim(F ′, G′) | F ′ ∈ gsf a(F [u..u′]), G′ ∈ gsf b(G[v..v′])}.

The next lemma shows that the values of lgsf and lgsfβ for F and G are given by the maximum element
in D∗−∗ and Dβ−β , respectively. Thus, once the above matrices have been computed, lgsf as well as lgsfβ
for F and G can be obtained directly.
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Lemma 4. Let F and G be two �-labeled forests. Then we have

lgsf (F, G) = max{D∗−∗[u..u′; v..v′] | u..u′ ∈ S(F ), v..v′ ∈ S(G)},
lgsfβ(F, G) = max{Dβ−β [u..u′; v..v′] | u..u′ ∈ S(F ), v..v′ ∈ S(G)}.

Proof. By Definition 3 above, D∗−∗[u..u′; v..v′] = max{sim(F ′, G′) | F ′ ∈ gsf (F [u..u′]), G′ ∈
gsf (G[v..v′])}. Since lgsf (F, G) is equal to the maximum value of sim(F ′, G′) taken over all possible
F ′ ∈ gsf (F [u..u′]), G′ ∈ gsf (G[v..v′]), u..u′ ∈ S(F ), and v..v′ ∈ S(G)}, we obtain the equality for lgsf .
The equality for lgsfβ can be proved in the same way.

4.3. Recursive formulae

The next step is to derive recursive formulae for each of the nine types of matrices. It is straightforward
to compute the matrix entries when at least one of the two sibling intervals u..u′ and v..v′ is empty, so
below we assume that both u..u′ and v..v′ are nonempty. First of all, the general matrix D∗−∗ can be
expressed using the following lemma. The proof follows directly from Definitions 2 and 3 together with
Lemma 1.

Lemma 5 (general matrix).

D∗−∗[u..u′; v..v′] = max

⎧⎪⎪⎨
⎪⎪⎩

Dα−α[u..u′; v..v′]
max

v′′∈v..v′{D∗−β [u..u′; r(v′′)..v′]}
max

u′′∈u..u′{Dβ−∗[r(u′′)..u′; v..v′]}

Also using Definitions 2 and 3 and Lemma 1, it is simple to derive formulae for computing the matrices
Dα−∗, D∗−α , Dβ−∗, and D∗−β :

Lemma 6 (*-matrix). The recursive equations for Dα−∗, D∗−α, Dβ−∗, and D∗−β follow.

• Dα−∗[u..u′; v..v′] = max
{
Dα−α[u..u′; v..v′], max

v′′∈v..v′{Dα−β [u..u′; r(v′′)..v′]}}

• D∗−α[u..u′; v..v′] = max
{
Dα−α[u..u′; v..v′], max

u′′∈u..u′{Dβ−α[r(u′′)..u′; v..v′]}}

• Dβ−∗[u..u′; v..v′] = max
{
Dβ−α[u..u′; v..v′], max

v′′∈v..v′{Dβ−β [u..u′; r(v′′)..v′]}}

• D∗−β [u..u′; v..v′] = max
{
Dα−β [u..u′; v..v′], max

u′′∈u..u′{Dβ−β [r(u′′)..u′; v..v′]}}

Now we proceed to Dα−α , Dα−β , Dβ−α , and Dβ−β . These formulae are based on Lemma 3 and are
slightly more complicated than the previous ones, so we give a proof for the Dα−α-case and illustrate it
using Fig. 3.

Lemma 7 (alpha-alpha-matrix). Dα−α[u..u′; v..v′] =

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ(u, v) + D∗−∗[uL..uR; vL..vR] + D∗−∗[r(u)..u′; r(v)..v′]
µ(u, −) + max

v′′∈l(v)..v′{D∗−β [uL..uR; v..v′′] + D∗−α[r(u)..u′; r(v′′)..v′]}

µ(u, −) + max
v′′∈l(v)..v′{D∗−α[uL..uR; v..v′′] + D∗−β [r(u)..u′; r(v′′)..v′]}

µ(−, v) + max
u′′∈l(u)..u′{Dβ−∗[u..u′′; vL..vR] + Dα−∗[r(u′′)..u′; r(v)..v′]}

µ(−, v) + max
u′′∈l(u)..u′{Dα−∗[u..u′′; vL..vR] + Dβ−∗[r(u′′)..u′; r(v)..v′]}
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FIG. 3. Graphical illustration of Cases 1, 2a, and 2b in the proof of Lemma 7. The figures on the left and right
represent the gapped subforests F ′ and G′, respectively. The gap (which may be empty) in each figure corresponds to
the sibling interval that is excluded from the original forest. The separating lines show how F ′ and G′ are aligned in
each case.

Proof. Let F ′ ∈ gsf α(F [u..u′]) and G′ ∈ gsf α(G[v..v′]) be two α-gapped subforests at F [u..u′]
and G[v..v′] that maximize the value of sim(F ′, G′), and let A be an optimal global alignment of F ′
and G′ which attains this score. Let u∗, v∗, and a be the root of the left-most subtree of F ′, G′, and A,
respectively (i.e., u∗ = u and v∗ = v, but when we refer to u∗ and v∗, we mean the roots in F ′ and G′
rather than the roots in F and G). In accordance with Lemma 3, we consider three cases:

• Case 1: When a = (u∗, v∗), by Lemma 3, F ′[u∗
L..u∗

R] is aligned with G′[v∗
L..v∗

R], and F ′[r(u∗)..e(u∗)] is
aligned with G′[r(v∗)..e(v∗)]. See Fig. 3a. Since F ′ is an α-gapped subforest at F [u..u′], F ′[u∗

L..u∗
R] and

F ′[r(u∗)..e(u∗)] are gapped subforests at F [uL..uR] and F [r(u)..u′], respectively. Similarly, G′[v∗
L..v∗

R]
and G′[r(v∗)..e(v∗)] are gapped subforests at G[vL..vR] and G[r(v)..v′], respectively. Hence, the align-
ment score of A equals µ(u, v) + D∗−∗[uL..uR; vL..vR] + D∗−∗[r(u)..u′; r(v)..v′].

• Case 2: When a = (u∗, −), by Lemma 3, there exists some v′′ ∈ l(v∗)..e(v∗) such that F ′[u∗
L..u∗

R]
is aligned with G′[v∗..v′′], and F ′[r(u∗)..e(u∗)] is aligned with G′[r(v′′)..e(v∗)], and where r(v′′) is
not a node that has been excluded from G. Since F ′ is an α-gapped subforest at F [u..u′], F ′[u∗

L..u∗
R]

and F ′[r(u∗)..e(u∗)] are gapped subforests at F [uL..uR] and F [r(u)..u′]. Moreover, since G′ is an
α-gapped subforest at G[v..v′] and r(v′′) has not been excluded from G′, at least one of the following
two subcases must occur:
• Subcase 2a: G′[v∗..v′′] is a β-gapped subforest at G[v..v′′] and G′[r(v′′)..e(v∗)] is an α-gapped

subforest at G[r(v′′)..v′]. See Fig. 3b. Then the alignment score of A is equal to µ(u, −)+maxv′′∈l(v)..v′
{D∗−β [uL..uR; v..v′′] + D∗−α[r(u)..u′; r(v′′)..v′]}.

• Subcase 2b: G′[v∗..v′′] is an α-gapped subforest at G[v..v′′] and G′[r(v′′)..e(v∗)] is a β-gapped
subforest at G[r(v′′)..v′]. See Fig. 3c. Then the alignment score of A is equal to µ(u, −)+maxv′′∈l(v)..v′
{D∗−α[uL..uR; v..v′′] + D∗−β [r(u)..u′; r(v′′)..v′]}.

• Case 3: When a = (−, v∗), the proof is symmetric to the proof for Case 2.

From the above three cases, the lemma follows.

We can derive Lemmas 8 and 9 below for computing Dα−β [u..u′; v..v′], Dβ−α[u..u′; v..v′], and
Dβ−β [u..u′; v..v′] in the same way as Lemma 7.
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Lemma 8 (alpha-beta-matrix). Dα−β [u..u′; v..v′] =

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ(u, v) + D∗−∗[uL..uR; vL..vR] + D∗−β [r(u)..u′; r(v)..v′]
µ(u, −) + max

v′′∈l(v)..v′{D∗−β [uL..uR; v..v′′] + D∗−β [r(u)..u′; r(v′′)..v′]}

µ(−, v) + max
u′′∈l(u)..u′{Dβ−∗[u..u′′; vL..vR] + Dα−β [r(u′′)..u′; r(v)..v′]}

µ(−, v) + max
u′′∈l(u)..u′{Dα−∗[u..u′′; vL..vR] + Dβ−β [r(u′′)..u′; r(v)..v′]}

and analogously for Dβ−α[u..u′; v..v′].

Lemma 9 (beta-beta-matrix). Dβ−β [u..u′; v..v′] =

max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

µ(u, v) + D∗−∗[uL..uR; vL..vR] + Dβ−β [r(u)..u′; r(v)..v′]
µ(u, −) + max

v′′∈l(v)..v′{D∗−β [uL..uR; v..v′′] + Dβ−β [r(u)..u′; r(v′′)..v′]}

µ(−, v) + max
u′′∈l(u)..u′{Dβ−∗[u..u′′; vL..vR] + Dβ−β [r(u′′)..u′; r(v)..v′]}

FIG. 4. The dynamic programming algorithm for computing lgsf (F, G).
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4.4. The main algorithm

For any �-labeled forest F and u..u′, v..v′ ∈ S(F ), we write u..u′ ≺ v..v′ if either the set of nodes
in u..u′ are descendents of some node v′′ in v..v′, or if u..u′ is a subset of v..v′. Note that ≺ is a partial
order.

Our algorithm Compute-lgsf for computing the value of lgsf (F, G) for two given �-labeled forests F

and G is shown in Fig. 4. It uses Lemmas 5 to 9 to calculate Da−b[u..u′; v..v′] for all a, b ∈ {α, β, ∗}
and all sibling intervals u..u′ ∈ S(F ) and v..v′ ∈ S(G) according to the partial order ≺, and then obtains
lgsf (F, G) by applying Lemma 4.

The next lemma states the time and space complexity of our algorithm.

Lemma 10. Compute-lgsf runs in O(|F | · |G| ·deg(F ) ·deg(G) · (deg(F )+deg(G))) time and O(|F | ·
|G| · deg(F ) · deg(G)) space.

Proof. Since there are O(1) matrices of the form Da−b for a, b ∈ {∗, α, β}, each of which uses
O(|S(F )| · |S(G)|) space, and since |S(F )| = O(|F | · deg(F )) and |S(G)| = O(|G| · deg(G)), the total
space complexity is O(|F |·|G|·deg(F )·deg(G)). Similarly, as we need to fill in a total of O(|S(F )|·|S(G)|)
matrix entries and each entry can be computed in O(deg(F ) + deg(G)) time, the total time complexity is
O(|F | · |G| · deg(F ) · deg(G) · (deg(F ) + deg(G))).

Having filled in all entries of the nine Da−b-matrices for a, b ∈ {∗, α, β}, an optimal alignment can be
easily found using a standard traceback technique. The complexity will remain the same.

Theorem 2. The lgsf can be solved in O(|F | · |G| · deg(F ) · deg(G) · (deg(F ) + deg(G))) time and
O(|F | · |G| · deg(F ) · deg(G)) space.

5. ALGORITHMS FOR TWO VARIANTS OF THE LOCAL GAPPED
SUBFOREST ALIGNMENT PROBLEM

5.1. The local β-gapped subforest alignment problem (lgsfβ)

To improve the efficiency of the algorithm in Section 4.4 for lgsf when applied to lgsfβ , we introduce
a new matrix B of size |F | · |G|, defined as follows.

Definition 4 (B-matrix). For every node u in F and node v in G, the matrix element B[u; v] is
defined by B[u; v] = max{sim(F ′, G′) | F ′ ∈ gsfβ [u..u′], G′ ∈ gsfβ [v..v′], u′ ∈ F, v′ ∈ G}.

From the definitions of B and Dβ−β , we immediately obtain the following lemma.

Lemma 11. B[u; v] = max{Dβ−β [u..u′; v..v′] | u′ ∈ F, v′ ∈ G}

Together with Lemma 4, we also have the following lemma.

Lemma 12. lgsfβ(F, G) = max{B[u; v] | u ∈ F, v ∈ G}.

The computation of the elements of B can be recursively formulated as the following lemma.

Lemma 13. B[u; v] =

max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

µ(u, v) + D∗−∗[uL..uR; vL..vR] + max{B[r(u); r(v)], 0}
µ(u, −) + max

v′′∈l(v)..v′{D∗−β [uL..uR; v..v′′] + max{B[r(u); r(v′′)], 0}}

µ(−, v) + max
u′′∈l(u)..u′{Dβ−∗[u..u′′; vL..vR] + max{B[r(u′′); r(v)], 0}}



714 JANSSON ET AL.

Proof. The proof is similar to the proof of Lemma 7. Given u ∈ F and v ∈ G, let F ′ and G′ be
two β-gapped subforests at F [u..u′] and G[v..v′], taken over all possible β-gapped subforests at F [u..u′]
and G[v..v′] and all u′ ∈ F and all v′ ∈ G, that maximize the value of sim(F ′, G′). Let A be an optimal
global alignment of F ′ and G′ which attains this score, and let u∗, v∗, and a be the root of the left-most
subtree of F ′, G′, and A, respectively (i.e., u∗ = u and v∗ = v, but when we refer to u∗ and v∗, we mean
the roots in F ′ and G′ rather than the roots in F and G). In accordance with Lemma 3, we consider three
cases:

• Case 1: When a = (u∗, v∗), by Lemma 3, F ′[u∗
L..u∗

R] is aligned with G′[v∗
L..v∗

R], and F ′[r(u∗)..e(u∗)]
is aligned with G′[r(v∗)..e(v∗)]. Since F ′ and G′ are β-gapped subforests at F [u..u′] and G[v..v′], it
holds that F ′[u∗

L..u∗
R] and G′[v∗

L..v∗
R] are gapped subforests at F [uL..uR] and G[vL..vR], respectively,

and F ′[r(u∗)..e(u∗)] and G′[r(v∗)..e(v∗)] are β-gapped subforests at F [r(u)..u′] and G[r(v)..v′], re-
spectively. The score of the subalignment A′ of A between F ′[r(u∗)..e(u∗)] and G′[r(v∗)..e(v∗)] equals
B[r(u); r(v)] if B[r(u); r(v)] ≥ 0; otherwise, if B[r(u); r(v)] < 0 then by the optimality of A, we have
r(u∗)..e(u∗) = ∅ and r(v∗)..e(v∗) = ∅ so that the score of A′ must be 0. Hence, the alignment score of
A equals µ(u, v) + D∗−∗[uL..uR; vL..vR] + max{B[r(u); r(v)], 0}.

• Case 2: When a = (u∗, −), by Lemma 3, there exists some v′′ ∈ l(v∗)..e(v∗) such that F ′[u∗
L..u∗

R] is
aligned with G′[v∗..v′′] and F ′[r(u∗)..e(u∗)] is aligned with G′[r(v′′)..e(v∗)]. Since F ′ is a β-gapped
subforest at F [u..u′], we have that F ′[u∗

L..u∗
R] is a gapped subforest at F [uL..uR], and F ′[r(u∗)..e(u∗)] is

a β-gapped subforest at F [r(u)..u′]. The score of the subalignment A′ of A between F ′[r(u∗)..e(u∗)] and
G′[r(v′′)..e(v∗)] equals B[r(u); r(v′′)] if B[r(u); r(v′′)] ≥ 0; otherwise, by the optimality of A, the score
of A′ must be 0. Hence, the alignment score of A equals µ(u, −)+maxv′′∈l(v)..v′ {D∗−β [uL..uR; v..v′′]+
max{B[r(u); r(v′′)], 0}}.

• Case 3: When a = (−, v∗), the proof is symmetric to the proof for Case 2.

From the above three cases, the lemma follows.

To obtain lgsfβ(F, G), we compute all entries in B and then apply Lemma 12. By inspecting the recursive
equations in Lemma 13 and Lemmas 5–9, we note that it is unnecessary to fill in all entries in Da−b for
all a, b ∈ {α, β, ∗} to accomplish this. We just need to fill in, for all a, b ∈ {α, β, ∗}, the entries of the
form Da−b[u..u′; v..v′] where u′ = e(u) or v′ = e(v). This means that each of the nine Da−b-matrices can
be replaced by two smaller matrices D′

a−b and D′′
a−b of size |F | · |S(G)| and |G| · |S(F )|, respectively,

defined through D′
a−b[u; v..v′] = Da−b[u..e(u); v..v′] and D′′

a−b[u..u′; v] = Da−b[u..u′; v..e(v)].

Theorem 3. The lgsfβ can be solved in O(|F | · |G| · (deg(F ) + deg(G))2) time and O(|F | · |G| ·
(deg(F ) + deg(G))) space.

Proof. First precompute all D′
a−b- and D′′

a−b-matrices in the same way as all Da−b-matrices were
computed by algorithm Compute-lgsf in the previous section, then fill in all entries of B according to a
bottom-up, right-to-left ordering of the nodes using Lemma 13, and finally apply Lemma 12 to get the
solution to lgsfβ . Since there are only O(|F | · |S(G)| + |G| · |S(F )|) = O(|F | · |G| · (deg(F ) + deg(G)))

entries of the form D′
a−b[u; v..v′] and D′′

a−b[u..u′; v], where u..u′ ∈ S(F ) and v..v′ ∈ S(G), the total space
required is reduced to O(|F |·|G|·(deg(F )+deg(G))). Each entry can be computed in O(deg(F )+deg(G))

time, so the total time complexity is O(|F | · |G| · (deg(F ) + deg(G))2).

It follows from Theorem 1 and Theorem 3 that the local sequence-structure alignment problem (lssa)

described by Backofen and Will (to appear) for two given annotated sequences (S1, P1) and (S2, P2) can
be solved in O(|F | · |G| · (deg(F ) + deg(G))2) time and O(|F | · |G| · (deg(F ) + deg(G)) space, where
|F | = O(|S1|) and deg(F ) = O(|S1|), |G| = O(|S2|) and deg(G) = O(|S2|).

5.2. The local closed subforest alignment problem (lcsf )

Here we present a faster and more space-efficent algorithm for lcsf than the one given by Höchsmann
et al. (2003). Using the same technique as in Section 5.1, we define a matrix C of size |F | · |G| as follows:
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Definition 5 (C-matrix). For every node u in F and node v in G, the matrix element C[u; v] is
defined by C[u; v] = max{sim(F [u..u′], G[v..v′]) | u′ ∈ F, v′ ∈ G}.

Then, we have the following lemma:

Lemma 14. lcsf (F, G) = max{C[u; v] | u ∈ F, v ∈ G}

For convenience, we also define a matrix E of size |S(F )| · |S(G)| as follows.

Definition 6 (E-matrix). For every u..u′ ∈ S(F ) and v..v′ ∈ S(G), the matrix element E[u..u′; v..v′]
is defined by E[u..u′; v..v′] = sim(F [u..u′], G[v..v′]).

Now, the computation of the elements of C may be expressed recursively as the following lemma.

Lemma 15. C[u; v] =

max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

µ(u, v) + E[uL..uR; vL..vR] + max{C[r(u); r(v)], 0}
µ(u, −) + max

v′′∈l(v)..v′{E[uL..uR; v..v′′] + max{C[r(u); r(v′′)], 0}}

µ(−, v) + max
u′′∈l(u)..u′{E[u..u′′; vL..vR] + max{C[r(u′′); r(v)], 0}}

To solve lcsf (F, G), first construct C using Lemma 15 and then apply Lemma 14. To obtain the entries
of C, we just need all entries of E of the form E[u..u′; v..v′] where u′ = e(u) or v′ = e(v). All of these
entries can be precomputed by the algorithm of Jiang et al. (1995) in O(|F | · |G| · (deg(F ) + deg(G))2)

time. Thus, we obtain the following theorem.

Theorem 4. The lcsf can be solved in O(|F |·|G|·(deg(F )+deg(G))2) time and O(|F |·|G|·(deg(F )+
deg(G))) space.

Proof. We compute O(|F | · |G|) entries of the form C[u; v] and O(|F | · |S(G)| + |G| · |S(F )|) =
O(|F | · |G| · (deg(F ) + deg(G))) entries of the form E[u..u′; v..v′], so the total space required is O(|F | ·
|G| · (deg(F ) + deg(G))). As for the time complexity, it takes a total of O(|F | · |G| · (deg(F ) + deg(G))2)

time to first run the algorithm of Jiang et al. (1995) and then to fill in C since each element in C can be
computed in O(deg(F ) + deg(G)) time using Lemma 15.

6. EXPERIMENTS

6.1. Implementation

In the experiments, our main purpose is to apply the improved algorithms for local subforest align-
ment problems to compare RNA secondary structures. We implemented the algorithm for lgsfβ presented
in Section 4 and Section 5.1 and tested the program on real RNA secondary structures. The source
code is available from http://www.comp.nus.edu.sg/∼bioinfo/LGSFAligner/. As discussed in Section 3,
our LGSFAligner program has the same function as the lssa program implemented by Backofen and Will
(to appear).

LGSFAligner takes as input two RNA secondary structures in FASTA format, represents them as labeled
ordered forests, and computes their optimal β-gapped subforest alignment. In the program, we follow the
scoring function suggested by lssa. Besides, we apply the space-saving tabulation technique proposed by
Höchsmann et al. (2003) as follows. To store the entries of the matrices Da−b[u; v..v′] and Da−b[u..u′; v],
where a, b ∈ {∗, α, β}; u, u′ ∈ F ; v, v′ ∈ G, a straightforward tabulation would use three-dimensional ar-
rays, and it requires O(|F |·|G|·max(deg(F ), deg(G))) space. It wastes space because max(deg(F ), deg(G))

may be much bigger than the degree of most of the nodes in F and G. A solution is to pack the entries
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Table 3. A Comparison of the Running Time (in Seconds) of LGSFAligner and lssa,
Where the Inputs are RNase P Alignments of RNA Secondary Structures

Taken from Brown (1999)

Genera/group Organisms LGSFAligner lssa

Bacteria/Purple bacteria Agrobacterium & Caulobacter 14 253
Bacteria/Gram-positive Luteococcus & Terrabacter 11 19
Bacteria/Cyanobacteria Nostoc & Tolythrix 18 240
Bacteria/Chlamydia Chlamydia & Chlamydiophila 14 114
Bacteria/Planctomycetes Pirellula & Planctomyces 16 66
Bacteria/Deinococci Deinococcus & Thermus 14 270
Archaea/Euryarchaea Haloferax & Thermococcus 12 298
Archaea/Crenarchaea Acidianus & Sulfolobus 12 52
Eukaryotes/Mitochondrion Reclinomonas & Porphyra 14 147
Eukaryotes/Plastid Cyanophora & Nephroselmis 11 189

in Da−b by defining an array offset as follows: offset(root) = 1, offset(u) = offset(u0) + nRSiblings(u0),
and refer to each sibling interval u..u′ by the index offset(u) + i − 1, where

• root is an imaginary root whose children are roots of the maximal trees in the forest,
• u0 is the immediately previous node of u in the preorder traversal of the forest,
• nRSiblings(u) is the number of right siblings of u, including itself, and
• u′ is the i-th right sibling of u.

In other words, offset acts as a bijective function between the set of sibling intervals in S(F ) and the set
of integers in {1, . . . , |S(F )|}; i.e., each sibling interval u..u′ is indexed by a unique integer. This tabulation
technique does not reduce the worst case space complexity, but in practice it considerably reduces the space
required by the program. This is especially important because it enables the algorithms to be run with long
RNA molecules, in which case the amount of memory usage increases rapidly.

6.2. Results

LGSFAligner was written in Java and was run with real RNA secondary structures, mainly taken from
Brown (1999) and from Wilting et al. (1997). The running time and the space usage of LGSFAligner were
compared with those of lssa program (Backofen and Will, to appear) written in C++. The experiments
were conducted in a Windows XP environment; the system was an Intel Pentium 4 running at 1.8 GHz
with 768 MB of RAM.

The first experiment performed on secondary structure elements with putative selenocysteine insertion
function (Wilting et al., 1997) showed that LGSFAligner correctly aligns their putative SECIS-motifs (see
Fig. 3 of Wilting et al. [1997]). These RNAs are short and thus both programs compute their alignments in
less than one second. The second experiment computed a number of RNase P alignments of RNA secondary
structures taken from Brown (1999). The running time of LGSFAligner is significantly faster than lssa;
however, LGSFAligner consumes a considerable amount of memory: about 250 MB are required to align
two RNA secondary structures, each of which has about 400 bases, whereas lssa used only about 3 MB of
memory. The memory bottleneck is due to two reasons: additional parameters in the forest representation
of RNAs and many matrices required to store alignment scores and traceback information. Table 3 shows
the comparison of the running time (in seconds) of LGSFAligner and lssa.

7. CONCLUDING REMARKS

In this paper, we have introduced a new problem called the local gapped subforest alignment problem
(lgsf ) and provided an efficient algorithm to solve it. Moreover, we have applied our techniques to the
local closed subforest alignment problem (lcsf ) defined by Höchsmann et al. (2003) as well as the problem
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of finding local RNA sequence-structure motifs (lgsfβ) considered by Backofen and Will (to appear),
improving on both the time and space complexity needed by the algorithm of Höchsmann et al. (2003)
and greatly improving on the running time of the algorithm of Backofen and Will (to appear) by taking
advantage of the forest representation of RNA secondary structures. Lastly, we have implemented the
LGSFAligner program which is based on our improved algorithms for lgsfβ to find RNA structral motifs.
We have performed experiments on real RNA secondary structures and investigated the practical issues of
our algorithms thoroughly.

Our proposed problem and solution motivate future developments in local alignments of labeled ordered
forests. One of the challenges is to find even more efficient algorithms for these types of problems. Any
improvement can have a vital impact on RNA comparison and structure prediction applications. Another
interesting task is to further generalize our local gapped subforest alignment problem by allowing exclusions
of more than one closed subforest sharing the same parent node. Lastly, new alignment models could be
proposed to improve the accuracy for RNA comparison and structure prediction.
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