
February 4, 2021 10:52 112-IJFCS 2150012

International Journal of Foundations of Computer Science

Vol. 32, No. 2 (2021) 209–233
c© World Scientific Publishing Company

DOI: 10.1142/S012905412150012X

Graph Orientation with Edge Modifications∗

Yuichi Asahiro†

Department of Information Science, Kyushu Sangyo University

Fukuoka 813-8503, Japan
asahiro@is.kyusan-u.ac.jp

Jesper Jansson

The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

jesper.jansson@polyu.edu.hk

Eiji Miyano

Department of Artificial Intelligence
Kyushu Institute of Technology, Iizuka

Fukuoka 820-8502, Japan
miyano@ces.kyutech.ac.jp

Hirotaka Ono

Graduate School of Informatics

Nagoya University, Nagoya 464-8601, Japan
ono@i.nagoya-u.ac.jp

Sandhya T. P.

The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

csstp@comp.polyu.edu.hk

Received 19 February 2020
Accepted 7 October 2020

Published 30 January 2021

Communicated by Francis Chin

The goal of an outdegree-constrained edge-modification problem is to find a spanning

subgraph or supergraph H of an input undirected graph G such that either: (Type I)
the number of edges in H is minimized or maximized and H can be oriented to satisfy

some specified constraints on the vertices’ resulting outdegrees; or: (Type II) among

∗A preliminary version of this paper appeared in Proceedings of Frontiers in Algorithmics
(FAW2019), Vol. 11458 of Lecture Notes in Computer Science, Springer, Cham, 2019, pp. 38–50.
†Corresponding author.

209

http://dx.doi.org/10.1142/S012905412150012X

February 4, 2021 10:52 112-IJFCS 2150012

210 Y. Asahiro et al.

all subgraphs or supergraphs of G that can be constructed by deleting or inserting a
fixed number of edges, H admits an orientation optimizing some objective involving

the vertices’ outdegrees. This paper introduces eight new outdegree-constrained edge-

modification problems related to load balancing called (Type I) MIN-DEL-MAX, MIN-
INS-MIN, MAX-INS-MAX, and MAX-DEL-MIN and (Type II) p-DEL-MAX, p-INS-

MIN, p-INS-MAX, and p-DEL-MIN. In each of the eight problems, the input is a graph

and the goal is to delete or insert edges so that the resulting graph has an orientation
in which the maximum outdegree (taken over all vertices) is small or the minimum

outdegree is large. We first present a framework that provides algorithms for solving

all eight problems in polynomial time on unweighted graphs. Next we investigate the
inapproximability of the edge-weighted versions of the problems, and design polynomial-

time algorithms for six of the problems on edge-weighted trees.

Keywords: Graph orientation; maximum flow; computational complexity; inapproxima-
bility; load balancing.

1. Introduction

Graph modification problems are fundamental in graph theory and arise in many

theoretical and practical settings, including computational biology [16] and machine

learning [6]. Given a weighted or unweighted graph G = (V,E) and a graph prop-

erty Π, the general objective is to transform the graph G into a graph G′ satisfying

property Π by applying a shortest sequence of graph modification operations. There

are two main types of graph modification problems: vertex-modification problems

and edge-modification problems. In the former, one is allowed to add or remove ver-

tices to or from the graph, while in the latter, the goal is typically to find a spanning

subgraph or supergraph of G satisfying property Π.

A special case of edge-modification problems is when the property Π depends on

the vertices’ degrees. Such degree-constrained edge-modification problems are very

general and include many natural problems such as the Maximum Weight Per-

fect Matching, Maximum r-Factor, Longest Cycle, and General Factor

problems. Indeed, one can regard Maximum Weight Perfect Matching (or

Maximum r-Factor) as the problem of finding a subgraph G′ of G such that:

(i) the degree of every vertex in G′ is one (or exactly r); and (ii) the total weight

of the deleted edges is minimized. Similarly, Longest Cycle is equivalent to the

problem of finding a subgraph G′ such that: (i) the degree of every vertex in G′

is two; (ii) G′ is connected; and (iii) the total weight of the deleted edges is min-

imized. General Factor [13, 14] asks if it is possible to delete edges from G

so that the resulting graph G′ is connected and every vertex v in G′ has degree

equal to a number belonging to a specified set K(v). Many of these problems are

NP-hard; e.g., Longest Cycle as well as General Factor are NP-hard even

for unweighted graphs. Therefore, it is important to identify special cases of them

that can be solved efficiently. One such special case of General Factor is the

new problem MIN-DEL-MAX, introduced below.

An orientation of an undirected graph is an assignment of a direction to each

of its edges. By an outdegree-constrained edge-modification problem, we mean an

February 4, 2021 10:52 112-IJFCS 2150012

Graph Orientation with Edge Modifications 211

edge-modification problem where the solution is required to admit an orientation

in which the vertices’ outdegrees satisfy some specified constraints.

This paper introduces eight new outdegree-constrained edge-modification prob-

lems that are related to load balancing. To illustrate the connection, consider the

following example. Suppose there is a set of jobs to be completed and a set of

available machines such that:

• each job can be processed by exactly one of two specified machines;

• for any pair of machines, at most one job is imposed; and

• the goal is to assign each job to a machine while minimizing the maximum load

on the machines.

This situation can be represented as an undirected graph whose edges correspond

to jobs and whose vertices correspond to machines; any orientation of such a graph

then gives an assignment where the tail vertex (machine) of each directed edge

has to process that edge (job). Next, suppose that unfortunately, after finding an

optimal solution, it turns out that the maximum load is too high, and so we have

to give up trying to complete all of the jobs. Instead, we compute the fewest jobs to

abandon in order to decrease the resulting maximum load to within some reasonable

amount. In other words, the new goal becomes to find a smallest possible set of

edges to delete from the graph so that the remaining graph can be oriented without

the outdegree of any vertex having to go over some specified limit. This problem is

what we call MIN-DEL-MAX.

The other seven problems introduced below have similar interpretations. As

another example, in the p-INS-MAX problem, the goal is to assign jobs to machines

while maximizing the minimum load (rather than minimizing the maximum) and

in addition to the jobs that can only be processed by one of their two specified

machines, we are allowed to introduce p new jobs to help increase the minimum

load.

We first provide algorithms for solving all of the eight new problems in polyno-

mial time on unweighted graphs. We then prove that each of their generalizations

to edge-weighted graphs cannot be approximated within a ratio of either ρ(n),

1.5 or 2.0 in polynomial time unless P = NP, where n is the number of vertices

in the input graph and ρ(n) ≥ 1 is any polynomial-time computable function.

These inapproximability results hold even for planar bipartite graphs. Finally, as

a tractable subclass of the planar bipartite graphs, we consider the problems on

edge-weighted trees.

1.1. Problem definitions

Let G = (V,E,w) be a simple, undirected, edge-weighted graph, where V and E are

the set of vertices and the set of edges, respectively, and w is a function assigning

a positive integer (weight) to each edge. If w(e) = c for every edge e ∈ E and

c is a positive integer, then G can be considered to be an unweighted graph. For

February 4, 2021 10:52 112-IJFCS 2150012

212 Y. Asahiro et al.

simplicity, any unweighted graph G is assumed to satisfy w(e) = 1 for every e ∈ E,

and is defined by V and E only (that is, G = (V,E)).

The vertex set and the edge set ofG are denoted by V (G) and E(G), respectively.

For any u, v ∈ V , the undirected edge with endpoints in u and v is denoted by

{u, v}, and the directed edge from u to v is denoted by (u, v). For G and V ′ ⊆ V ,

the subgraph of G induced by V ′ is denoted by G[V ′]. An orientation Λ of G is

an assignment of a direction to each edge in E, i.e., every {u, v} ∈ E is set to

either (u, v) or (v, u). (Equivalently, Λ is a set of directed edges that consists of

exactly one of the two directed edges (u, v) and (v, u) for every {u, v} ∈ E.) Let

Λ(G) denote the directed graph (V,Λ, w), where w((u, v)) = w({u, v}) for (u, v) ∈ Λ

and {u, v} ∈ E. For any v ∈ V and a fixed orientation Λ of G, define d+(v) as

the weighted outdegree of v under Λ, i.e., d+(v) represents the total weight of v’s

outgoing edges. In an unweighted graph, d+(v) equals the number of edges directed

outwards from v. Also, let Γ(G) be the set of all orientations of G. Finally, for

any unweighted graph G = (V,E), its complement (V,E) is denoted by Gc, where

E = {{u, v} | u, v ∈ V, u 6= v, {u, v} 6∈ E}.
We now define the first four new graph orientation problems. Each of them takes

as input a simple, undirected graph G = (V,E,w) and a positive integer k.

• MIN-DEL-MAX: (Assumes w.l.o.g. that k ≤ minΛ∈Γ(G) maxu∈V d
+(u).)

Find the minimum number of edges whose deletion results in a graph G′

with minΛ∈Γ(G′) maxu∈V d
+(u) ≤ k.

• MIN-INS-MIN: (Assumes w.l.o.g. that k ≥ maxΛ∈Γ(G) minu∈V d
+(u).)

Find the minimum number of edges whose addition results in a simple

graph G′ with maxΛ∈Γ(G′) minu∈V d
+(u) ≥ k.

• MAX-INS-MAX: (Assumes w.l.o.g. that k ≥ minΛ∈Γ(G) maxu∈V d
+(u).)

Find the maximum number of edges whose addition results in a simple

graph G′ with minΛ∈Γ(G′) maxu∈V d
+(u) ≤ k.

• MAX-DEL-MIN: (Assumes w.l.o.g. that k ≤ maxΛ∈Γ(G) minu∈V d
+(u).)

Find the maximum number of edges whose deletion results in a graph G′

with maxΛ∈Γ(G′) minu∈V d
+(u) ≥ k.

The above four problems optimize the number of edges to delete or insert while

ensuring that the graph can be oriented to respect a given bound k on the vertices’

outdegrees. Observe that in the problems MIN-INS-MIN and MAX-INS-MAX,

the resulting graph must be simple. Furthermore, for the edge-weighted problem

variants, the objective is still to optimize the number of deleted/inserted edges

(rather than their total weight). Also, the weights of the inserted edges can be any

positive integers.

Next, we define four additional problems. Each of them takes as input a simple,

undirected graph G = (V,E,w), but now the number of edges to be deleted/inserted

February 4, 2021 10:52 112-IJFCS 2150012

Graph Orientation with Edge Modifications 213

is a fixed integer p, and the objective is to compute the minimum/maximum value

of the bound k that is achieved after deleting/inserting exactly p edges. For p-INS-

MIN and p-INS-MAX, the weight of an inserted edge can be arbitrary as long as

it is a positive integer.

• p-DEL-MAX: Find the smallest possible value of minΛ∈Γ((V,E\E′)) maxu∈V
d+(u) taken over all E′ ⊆ E with |E′| = p.

• p-INS-MAX: Find the smallest possible value of minΛ∈Γ((V,E∪E′)) maxu∈V
d+(u) taken over all E′ ⊆ E(Gc) with |E′| = p.

• p-INS-MIN: Find the largest possible value of maxΛ∈Γ((V,E∪E′)) minu∈V
d+(u) taken over all E′ ⊆ E(Gc) with |E′| = p.

• p-DEL-MIN: Find the largest possible value of maxΛ∈Γ((V,E\E′)) minu∈V
d+(u) taken over all E′ ⊆ E with |E′| = p.

We have just defined eight related problems. Their names follow the pattern

A-B-C, where:

• A is MIN, MAX, or p, depending on whether the number of modified edges in

the input graph is to be minimized, to be maximized, or equal to p.

• B is either DEL or INS, specifying whether edges are to be deleted or inserted.

• C is MIN or MAX, depending on whether the minimum outdegree (taken over

all vertices) should be large or the maximum outdegree should be small.

Throughout the paper, let n = |V | and m = |E| for any given instance of the

above eight problems. ∆ is the (unweighted) maximum degree taken over all vertices

in the input G. Any algorithm ALG is called a σ-approximation algorithm if the

following inequality holds for every input graph G: max
{

#ALG(G)
#OPT (G) ,

#OPT (G)
#ALG(G)

}
≤ σ,

where #ALG(G) and #OPT (G) are the number of deleted or inserted edges by

ALG and an optimal algorithm, respectively. Note that the output of each of the

eight problems defined above is a number. Consequently, the algorithms designed

in this article output numbers. In case an actual set of edges to delete or insert

(along with a corresponding orientation) is required, it is straightforward to modify

the algorithms accordingly.

1.2. Related work

Given an undirected unweighted/edge-weighted graph G, the objective of Mini-

mum Maximum Outdegree Problem (MinMaxO) is to find an orientation of

G such that the maximum outdegree of a vertex is minimized. In other words,

MinMaxO computes minΛ∈Γ(G) maxu∈V d
+(u) for the input undirected graph.

The problem MinMaxO was previously studied in, e.g., [4, 7, 8, 10, 17]. If the

February 4, 2021 10:52 112-IJFCS 2150012

214 Y. Asahiro et al.

input is restricted to unweighted graphs, then MinMaxO can be solved in lin-

ear time for planar graphs [10] and in polynomial time for general graphs [17].

The problem of computing maxΛ∈Γ(G) minu∈V d
+(u) for an undirected graph G is

called Maximum Minimum Outdegree Problem (MaxMinO) in [2]: Given an

undirected unweighted/edge-weighted graph G, the objective of MaxMinO is to

find an orientation of G such that the minimum outdegree of a vertex is maxi-

mized. MaxMinO can also be solved in polynomial time for unweighted graphs

(Theorem 8 in [2]). (This is why the input k to MIN-DEL-MAX, MIN-INS-

MIN, MAX-INS-MAX, and MAX-DEL-MIN can be assumed w.l.o.g. to sat-

isfy k ≤ minΛ∈Γ(G) maxu∈V d
+(u) or k ≥ maxΛ∈Γ(G) minu∈V d

+(u).) On the other

hand, when the input is generalized to edge-weighted graphs, both MinMaxO and

MaxMinO become NP-hard [2, 4].

A variant of MinMaxO in which one may perform p split operations on the

vertices (corresponding to adding p extra machines in the load balancing setting

described above) before orienting the edges was studied in [1]. That problem seems

harder than the eight problems studied here, as it is NP-hard even for unweighted

graphs when p is unbounded [1].

1.3. Our contributions and organization of the paper

Section 2 presents polynomial-time algorithms for the new problems on unweighted

graphs. See Table 1 for a summary of their computational complexity. In Sec. 3 we

develop polynomial-time algorithms for six of the eight problems on edge-weighted

Table 1. The computational complexity of the algorithms in

Sec. 2 for unweighted graphs.

Problem Time complexity Reference

MIN-DEL-MAX O(m2 logn) Theorem 3
MIN-INS-MIN O(n4 logn) Theorem 5
MAX-INS-MAX O(n4 logn) Theorem 5

MAX-DEL-MIN O(m3/2 logm log2 ∆) Theorem 4

p-DEL-MAX O(m2 logn) Theorem 3
p-INS-MIN O(n4 logn) Theorem 5
p-INS-MAX O(n4 logn) Theorem 5

p-DEL-MIN O(m2 logn) Theorem 3

Table 2. The computational complexity of the algorithms in Sec. 3.1

for edge-weighted trees, where wmax is the maximum weight of edges.

Problem Time complexity Reference

MIN-DEL-MAX O(n) Theorem 8

MIN-INS-MIN O(n) Theorem 10

MAX-INS-MAX unknown
MAX-DEL-MIN O(n) Theorem 7

p-DEL-MAX O(n) Theorem 8
p-INS-MIN O(n logwmax∆) Theorem 11
p-INS-MAX unknown

p-DEL-MIN O(1) Theorem 7

February 4, 2021 10:52 112-IJFCS 2150012

Graph Orientation with Edge Modifications 215

Table 3. The inapproximability in Sec. 3.2 for edge-weighted
planar bipartite graphs, where ρ(n) ≥ 1 is any polynomial-time

computable function.

Problem Inapproximability Reference

MIN-DEL-MAX ρ(n) Theorem 12
MIN-INS-MIN ρ(n) Theorem 14

MAX-INS-MAX ρ(n) Theorem 15
MAX-DEL-MIN ρ(n) Theorem 16
p-DEL-MAX 1.5 Theorem 13

p-INS-MIN 2 Theorem 14
p-INS-MAX 1.5 Theorem 17
p-DEL-MIN 2 Theorem 17

trees that are summarized in Table 2. Then we show the polynomial-time inap-

proximability for planar bipartite edge-weighted graphs for all eight problems, as

summarized in Table 3. Finally, we conclude the paper in Sec. 4.

2. Unweighted Graphs

In this section, all graphs are assumed to be unweighted. We present polynomial-

time algorithms for the new problems on unweighted graphs. Rather than developing

a separate algorithm for each problem, our strategy is to give a unified framework

from which each of the eight algorithms follows as a special case.

2.1. The directed graphs NG and NH

We take advantage of the problems’ structural similarities by encoding the input

graph G in all eight cases as a directed graph NG, augmenting NG with edge

capacities as defined below to obtain a flow network, and then using binary search

together with a fast algorithm for computing maximum flows. NG is the same for

all problems; only the edge capacities in the flow network depend on which of the

problems is being solved. The encoding used here is an extension of the one in [4]; to

be precise, the definition of NG follows the basic construction in [4] and then adds

auxiliary vertices and directed edges that can capture the deletion and insertion of

edges in the input graph.

The formal definition of NG is as follows. For any graph G = (V,E), construct

the directed graph NG = (VG, EG) with vertex set VG and edge set EG by defining:

E = {{u, v} | u, v ∈ V, u 6= v, {u, v} 6∈ E}

VG = V ∪ E ∪ E ∪ {x, y, r, s, t}

EG = {(s, v) | v ∈ V } ∪ {(u, e), (v, e) | e = {u, v} ∈ E ∪ E} ∪ {(r, e) | e ∈ E}

∪ {(e, x) | e ∈ E} ∪ {(e, y) | e ∈ E} ∪ {(s, r), (x, t), (y, t)}.

Note that if e = {u, v} ∈ E (or E), then NG contains two directed edges (u, e) and

(v, e) for e in the vertex subset E (or E) of NG. Note that the vertex r and the set

February 4, 2021 10:52 112-IJFCS 2150012

216 Y. Asahiro et al.

s

V E

E

x

yr

t

NH
a

b c

d a

b
c

d

{a,b}

{a,c}

{b,c}

{c,d}

{a,d}

{b,d}

G

Fig. 1. An example of an unweighted graph G and the directed graph NG constructed from G. All

edges are directed from left to right in NG. The part surrounded by the dashed lines represents NH .

of vertices in E capture deletion and insertion of edges respectively, mentioned in

the previous paragraph. See Fig. 1 for an illustration.

For the capacities of edges in NG, we use three parameters α, β, and γ whose

values are positive integers that will be specified by the algorithms. Intuitively,

α, β, and γ respectively correspond to the number of edges deleted from G, the

number of edges inserted into G, and maximum/minimum outdegree of a vertex

in Λ(G), where an orientation Λ of G is obtained from a maximum flow in NG.

For notational convenience, let NG(α;β; γ) = (VG, EG, cap) be the flow network

obtained by augmenting NG with edge capacities cap:

cap(a) =



γ, if a = (s, v) for v ∈ V
α, if a = (s, r)

|E|, if a = (x, t)

β, if a = (y, t)

1, otherwise.

For each of the problems, we will fix two of the three parameters α, β, and γ, and

then find minimum/maximum value of the remaining one parameter such that the

size of a maximum flow in NG(α;β; γ) satisfies a condition which will be given later.

We remark that maximum flows in suitably defined flow networks were previously

used to solve some other graph orientation problems in [1–4]. The definition of NG

that we present here is more general.

Section 2.2 shows two properties of NG which will be used to develop the

algorithms. In Sec. 2.3, we design the algorithms with NG and analyze the time

complexity of the obtained algorithms. To solve MIN-INS-MIN, p-INS-MIN,

MAX-INS-MAX, and p-INS-MAX, we need to explicitly construct the entire

directed graph NG. However, for MIN-DEL-MAX, p-DEL-MAX, MAX-DEL-

MIN, and p-DEL-MIN, the algorithms will only need the induced subgraph

February 4, 2021 10:52 112-IJFCS 2150012

Graph Orientation with Edge Modifications 217

Table 4. Summary of how to assign the edge capacities in the flow network to solve
the different problems. A “−” indicates that the edge (y, t) is not included in the

network.

Problem Graph cap(x, v) cap(s, r) cap(y, t) cap(x, t) others

MIN-DEL-MAX NH k α – |E| 1

MIN-INS-MIN NG k 0 β |E| 1
MAX-INS-MAX NG k 0 β |E| 1

MAX-DEL-MIN NH k α – |E| 1

p-DEL-MAX NH γ p – |E| 1
p-INS-MIN NG γ 0 p |E| 1

p-INS-MAX NG γ 0 p |E| 1

p-DEL-MIN NH γ p – |E| 1

NH = NG[V ∪E ∪{s, r, x, t}] of NG, and so these algorithms’ running times will be

lower when G is sparse. Table 4 summarizes how to set the edge capacities in NG

to solve the eight problems; please refer to the subsections below for details.

2.2. Properties of NG

The following lemma relates the size of the maximum flow in NG(α;β; γ) to the

number of edges that need to be deleted or inserted to obtain an orientation with

bounded outdegree. This lemma plays an important role in designing algorithms

for the four problems MIN-DEL-MAX, MAX-INS-MAX, p-DEL-MAX, and p-

INS-MAX.

Lemma 1. There exists a flow in NG(α;β; γ) with value |E|+β if and only if there

are two sets SD ⊆ E and SI ⊆ E with |SD| = α and |SI | = β such that modifying G

by deleting SD and inserting SI yields a graph that can be oriented so that every

vertex has outdegree at most γ.

Proof. (⇒) Suppose there exists a flow in NG(α;β; γ) with the value |E|+β. Since

the edge capacities are integers, we can assume that every edge has a nonnegative

integral flow by the integrality theorem (see, e.g., [11]). To obtain a total flow of

|E|+β, both edges incident to t must be utilized to their maximum capacity, which

means that: (i) exactly |E| units of flow enter x; and (ii) exactly β units of flow

enter y.

Define the set SD as follows. Let j be the amount of flow through the vertex r.

Then there are j directed edges in NG(α;β; γ) of the form (r, e), where e ∈ E,

through which a unit of flow passes. For each such (r, e), include the corresponding

edge e from G in SD. Since the capacity of the edge (s, r) was set to α, it holds

that j ≤ α. Also insert α − j additional arbitrarily chosen edges from G into SD.

This gives |SD| = α. Similarly, let SI be the subset of E such that for every e ∈ SI ,

a unit of flow passes through (e, y) in NG(α;β; γ). By property (ii), |SI | = β.

Now let G′ be the graph obtained from G by deleting SD and inserting SI .

Construct an orientation of G′ as follows: For every edge of the form (v, e) in

NG(α;β; γ) that receives a unit of flow, where v ∈ V and e ∈ E, orient the edge e

in G′ away from v. This gives an orientation of G′ because by property (i), every

February 4, 2021 10:52 112-IJFCS 2150012

218 Y. Asahiro et al.

original edge e in E receives a unit of flow from either r, in which case e does not

exist in G′, or from a vertex in V , in which case e is assigned a direction in G′.

Finally, for each u ∈ V , at most γ units of flow can exit u, so d+(u) ≤ γ and hence

minΛ∈Γ(G′) maxu∈V d
+(u) ≤ γ.

(⇐) Conversely, suppose there is a set SD of α edges in E and a set SI of

β edges in E such that deletion of SD from G with insertion of SI to G yields a

graph G′ with minΛ∈Γ(G′) maxu∈V d
+(u) ≤ γ. Let Λ be a fixed orientation of G′

with maxu∈V d
+(u) ≤ γ. For each e = {u, v} ∈ (E\SD)∪SI , if e is oriented as (u, v)

in Λ then define e0 = u; otherwise, define e0 = v. Construct a flow in NG(α;β; γ)

as follows:

• For each e ∈ E \SD, send one unit of flow from s to e0, from e0 to e, from e to x,

and from x to t. The contribution to the total flow is |E| − α.

• For each e ∈ SD, send one unit of flow from s to r, from r to e, from e to x, and

from x to t. The contribution to the total flow is α.

• For each e ∈ SI , send one unit of flow from s to e0, from e0 to e, from e to y, and

from y to t. The contribution to the total flow is β.

No edge capacity constraints are violated and the total flow is thus |E|−α+α+β =

|E|+ β.

The following lemma for the problems MIN-INS-MIN, MAX-DEL-MIN, p-

INS-MIN, and p-DEL-MIN is very similar to Lemma 1, which again relates the

size of the maximum flow in NG(α;β; γ) to the number of edges that need to be

deleted or inserted.

Lemma 2. There exists a flow in NG(α;β; γ) with value nγ + α if and only if

there are two sets SD ⊆ E and SI ⊆ E with |SD| = α and |SI | = β such that

modifying G = (V,E) by deleting SD and inserting SI yields a graph that can be

oriented so that every vertex has outdegree at least γ.

Proof. (⇒) The proof is analogous to the proof of Lemma 1. The main difference

is that all the edges incident to s (instead of t) must be utilized to their maximum

capacity. The set SD includes α edges from G corresponding to the α directed edges

of the form (r, e) through which a unit of flow passes. Then, SI similarly includes the

set S of edges from G corresponding to the directed edges of the form (e, y) through

which a unit of flow passes, and also includes an arbitrary set of β−|S| edges in E\S
if |S| < β. Using a similar argument as in the proof of Lemma 1, we can define G′ as

the graph obtained from G by deleting SD and inserting SI , and find an orientation

of G′ with d+(u) ≥ γ for all u ∈ V and hence maxΛ∈Γ(G′) minu∈V d
+(u) ≥ γ. (Note

that the maximum flow may not determine the directions of all edges in G′. Such

edges can be oriented arbitrarily because they will never decrease the outdegree of

a vertex.)

(⇐) As in the second part of the proof of Lemma 1, let G′ be the modified graph and

let Λ be its orientation. Construct another graph G′′ as follows: First, for any vertex

February 4, 2021 10:52 112-IJFCS 2150012

Graph Orientation with Edge Modifications 219

u with d+(u) > k in Λ(G′), remove d+(u)−k arbitrary outgoing edges from u; then,

replace every directed edge (u, v) by an undirected edge {u, v}. The maximum flow

of NG(α;β; γ) is constructed based on Λ(G′′) as in the proof of Lemma 1. Finally,

its size is (nγ − β) + α+ β = nγ + α, where nγ − β, α, and β are respectively the

(total) sizes of the flows in the edges of the form (v, e), the edge (s, r), and the edge

(y, t).

2.3. Algorithms

2.3.1. Algorithm descriptions

We first present an algorithm for solving MIN-DEL-MAX based on Lemma 1 and a

binary search. Then, we explain how to modify the algorithm to MAX-INS-MAX,

p-DEL-MAX, and p-INS-MAX, and how to use Lemma 2 to solve MIN-INS-

MIN, MAX-DEL-MIN, p-INS-MIN, and p-DEL-MIN in the same way. All of

the resulting algorithms run in polynomial time. Recall that some of the problems

only need the subgraph NH of NG. This will lead to more efficient algorithms for

them than those that use the whole NG.

To solve MIN-DEL-MAX, we set β = 0, and γ = k. Setting β = 0 means that

we do not insert any edge into G, and hence we only need the part NH of NG here.

Let NH(α; k) denote the subgraph of NG(α; 0; k) induced by {s, r, x, y, t} ∪ V ∪ E.

Recall that the value of k is already fixed in MIN-DEL-MAX. By Lemma 1,

the minimum number of edges that need to be deleted to obtain a graph G′ with

minΛ∈Γ(G′) maxu∈V d
+(u) ≤ k (= γ) is the same as the smallest value of α such that

there exists a flow in NH(α; k) (or NG(α; 0; k)) of size |E|. A binary search on α

will give this minimum value. The algorithm’s pseudocode is listed in Fig. 2. The

binary search on α is conducted by the lines 1–3 and 6–11 of the algorithm. Then

the construction of NH(α; k) and solving the maximum flow problem on NH(α; k)

are done in lines 4 and 5.

The algorithms for the other seven problems are analogous to the above. For

this reason, we omit the pseudocodes and only give a brief explanation of how to

adapt the algorithm to each of the problems.

For p-DEL-MAX, we set α = p and β = 0, and solve the maximum flow prob-

lem for NH(p; γ) (or NG(p; 0; γ)). Since the capacity γ of edges of the form (s, v)

corresponds to the outdegree of v, we do a binary search on γ to find the smallest

value of γ for which there is a flow of size |E| in NH(p; γ). Similarly, to solve MAX-

INS-MAX, we set α = 0 and γ = k. By Lemma 1, the maximum number of edges

that may be inserted to obtain a graph G′ with minΛ∈Γ(G′) maxu∈V d
+(u) ≤ k is

the same as the largest value of β such that there exists a flow in NG(0;β; k) of

size |E|+β. We use a binary search on β to find the maximum value of β for which

the condition holds. For p-INS-MAX, set α = 0 and β = p. We use a binary search

on γ to find the smallest γ such that there is a flow in NG(0; p; γ) of size |E|+ p.

For the remaining four problems MIN-INS-MIN, MAX-DEL-MIN, p-INS-

MIN, and p-DEL-MIN, we use the same strategy but apply Lemma 2 instead of

Lemma 1: For MIN-INS-MIN, we set α = 0 and γ = k. Then a binary search

February 4, 2021 10:52 112-IJFCS 2150012

220 Y. Asahiro et al.

1: αmin ← 0, αmax ← |E|;
2: repeat

3: α← b(αmin + αmax)/2c;
4: Construct NH(α; k);

5: Solve the maximum flow problem on NH(α; k). Let f be the

value of the maximum flow of NH(α; k);
6: if f = |E| then

7: αmax ← α;

8: else

9: αmin ← α;

10: end if

11: until αmin ≥ αmax

12: Output α and halt;

Fig. 2. The algorithm for MIN-DEL-MAX on unweighted graphs.

on β is conducted to find the minimum value of β such that there exists a flow in

NG(0;β; k) of size nk. For p-INS-MIN, we set α = 0 and β = p. Then we use a

binary search on γ to find the maximum value of γ such that there exists a flow in

NG(0; p; γ) of size nγ. For MAX-DEL-MIN, we set β = 0 and γ = k. Again we use

a binary search on α to find the maximum value of α such that there exists a flow

in NH(α; k) of size nk+α. For p-DEL-MIN, we set α = p and β = 0, and then use

a binary search on γ to find the maximum value of γ such that there exists a flow

in NH(p; γ) of size nγ + p.

2.3.2. Time complexity of the algorithms

First we analyze the time complexity of the algorithms utilizingNH . Let n = |V | and

m = |E| for a given graph G = (V,E), and let N = |V (NH)| and M = |E(NH)|. We

note that for the directed graph NH , N = n+m+4 and M = n+4m+2. For MIN-

DEL-MAX, the search for α = O(m) can be carried out using the binary search

technique, which takes O(logm) = O(log n) time since m = O(n2). The maximum

flow problem on NH(α; k) can be solved in O(MN) time [15], so MIN-DEL-MAX

can also be solved in O(m2 log n) time. Since γ = O(n), in a similar way, we can

analyze the time complexity of our algorithms for p-DEL-MAX, MAX-DEL-MIN,

and p-DEL-MIN. Thus we have:

Theorem 3. For unweighted graphs, MIN-DEL-MAX, p-DEL-MAX, MAX-

DEL-MIN, and p-DEL-MIN can be solved in O(m2 log n) time.

For MAX-DEL-MIN, the time complexity can in fact be further improved

by using Theorem 8 in [2] instead, which states that MaxMinO is solvable in

O(m3/2 logm log2 ∆) time for unweighted graphs. More precisely, we have:

Theorem 4. MAX-DEL-MIN can be solved in O(m3/2 logm log2 ∆) time for

unweighted graphs.

February 4, 2021 10:52 112-IJFCS 2150012

Graph Orientation with Edge Modifications 221

Proof. First compute an orientation by which the minimum outdegree has value

maxΛ∈Γ(G) minu∈V d
+(u) (≥ k) using the algorithm for MaxMinO for unweighted

graphs from [2], and obtain a directed graph. Then delete d+(v) − k arbitrary

outgoing edges from each vertex v in the directed graph to get a directed graph

G′ with d+(v) = k for every v ∈ V . This deletion of edges only needs linear time

since we can delete an arbitrary set of outgoing edges for each vertex. The number

of deleted edges is the maximum possible: Since every vertex has outdegree k,

the number of directed edges in the graph is nk, and so deleting any more edges

would result in some vertex having outdegree strictly less than k by the pigeonhole

principle. Thus MAX-DEL-MIN can be solved in O(m3/2 logm log2 ∆) time.

As for the other four algorithms utilizing NG, let N = |VG| = n(n+1)
2 + 5 and

M = |EG| = n(3n−1)
2 + m + 3 in the directed graph NG. For MIN-INS-MIN,

the search for β = O(m) can be carried out using the binary search technique

and therefore takes O(logm) = O(log n) time. The maximum flow problem on

NG(0;β; k) can be solved in O(MN) time [15], so MIN-INS-MIN can also be solved

in O(n4 log n) time. Using γ = O(m), we can bound the time complexity of our

algorithms for p-INS-MIN, MAX-INS-MAX, and p-INS-MAX in the same way.

We obtain:

Theorem 5. For unweighted graphs, MIN-INS-MIN, p-INS-MIN, MAX-INS-

MAX, and p-INS-MAX can be solved in O(n4 log n) time.

We remark that at the end of each of the eight algorithms, one may also output

the edges to be deleted/inserted and an orientation of the resulting graph that

corresponds to the computed optimal value without increasing the time complexity

simply by taking the solution to the maximum flow problem that was obtained in

the final iteration and applying the constructions in the proofs of Lemmas 1 and 2.

3. Edge-Weighted Graphs

In this section, we consider edge-weighted graphs. First, in Sec. 3.1, we restrict our

attention to edge-weighted trees, and develop polynomial-time algorithms for six

of the eight problems. Then, Sec. 3.2 shows the inapproximability for all of the

eight problems on edge-weighted planar bipartite graphs. Unless stated otherwise,

all graphs considered in this section are edge-weighted. Throughout this section,

although the input graphs belong to some restricted graph class, the edge-modified

graphs have no such restrictions.

3.1. Polynomial-time algorithms for edge-weighted trees

Assuming P6= NP, inapproximability of the problems on planar bipartite graphs will

be shown in Sec. 3.2. In this section, we design exact polynomial-time algorithms for

some of the problems on trees which is a representative subclass of planar bipartite

graphs.

February 4, 2021 10:52 112-IJFCS 2150012

222 Y. Asahiro et al.

The important thing here is that we know the optimal costs, i.e., the maximum

outdegree of a vertex for MinMaxO and the minimum outdegree of a vertex for

MaxMinO on a tree: For MinMaxO, the maximum outdegree of a vertex under

any orientation is at least the maximum weight of the edges. Indeed, choosing an

arbitrary root and directing all the edges towards the root gives this optimal cost.

Then, for MaxMinO, the minimum outdegree of a vertex under any orientation is

0, since there exist only n − 1 edges so that at least one of n vertices cannot have

outgoing edges under any orientation.

Observation 6. For edge-weighted trees, the optimal costs for MinMaxO and

MaxMinO are wmax and 0, respectively, where wmax is the maximum weight of

edges.

3.1.1. MAX-DEL-MIN and p-DEL-MIN

Based on Observation 6, we immediately have the following theorem:

Theorem 7. For edge-weighted trees, MAX-DEL-MIN and p-DEL-MIN can be

solved in O(n) time and O(1) time, respectively.

Proof. Since the optimal cost k′ for MaxMinO on edge-weighted trees is 0, the

input k of MAX-DEL-MIN must be zero since k ≤ k′. Hence an algorithm deleting

all the edges solves MAX-DEL-MIN, i.e., the maximum number of deleted edges

equals the number of edges in the input which can be obtained in O(n) time.

Similarly, for p-DEL-MIN, deleting p arbitrary edges obtains the optimal (the

largest minimum) outdegree zero. Indeed, we do not delete any edge and can just

answer the optimal solution zero, which can be done in O(1) time.

3.1.2. MIN-DEL-MAX and p-DEL-MAX

The solutions to MIN-DEL-MAX and p-DEL-MAX are relatively straightfor-

ward, as shown in the next theorem.

Theorem 8. For edge-weighted trees, MIN-DEL-MAX and p-DEL-MAX can be

solved in O(n) time.

Proof. Let wmax be the maximum weight of edges in the input tree. For MIN-

DEL-MAX, the algorithm just outputs the number of edges having weight larger

than k, whose running time is O(n). First for the case k ≥ wmax, we do not need to

delete any edge from the input tree, since the optimal orientation of MinMaxO for

the input tree gives the maximum outdegree wmax from Observation 6. Hence the

number of deleted edges is zero which is clearly optimal. For the case k < wmax, if

there remains an edge of weight larger than k, the maximum outdegree under any

orientation is also larger than k from Observation 6. Therefore the algorithm needs

to delete all such edges.

February 4, 2021 10:52 112-IJFCS 2150012

Graph Orientation with Edge Modifications 223

As for p-DEL-MAX, the algorithm first finds an edge having the p-th largest

weight (denoted by wp) breaking ties arbitrarily, and then removes the edges of the

largest weight through the p-th largest weight, so that the answer to the problem

is the (p + 1)-st largest weight of the edges. The running time of this algorithm is

O(n) by solving the selection problem [11]. If there remains an edge whose weight

is larger than wp in the resulting graph, the maximum outdegree of a vertex must

be greater than wp from Observation 6. Thus, the removed set of the edges is

optimal.

3.1.3. MIN-INS-MIN and p-INS-MIN

To develop fast algorithms for MIN-INS-MIN and p-INS-MIN, a more detailed

investigation is needed.

MIN-INS-MIN on stars. Let us consider the case that the input tree is a star,

with root r and leaves v0, v1, . . . , vn−2. The algorithm for MIN-INS-MIN is listed

in Fig. 3. Note that we maintain Λ in the algorithm just to clarify the orientation

of edges; to answer the problem we only need to obtain S.

Lemma 9. For edge-weighted stars, MIN-INS-MIN can be solved in O(n) time.

Proof. If
∑

v∈V w(r, v) < k, there is no feasible solution, since we cannot insert

any edge for the root r, so that the outdegree of r is less than k in any orientation.

Lines 1–3 in the algorithm does this evaluation.

Suppose that
∑

v∈V w(r, v) ≥ k. Line 4 of the algorithm partitions the vertex set

into two subsets Vs and Vb, depending on whether the weight of the edge incident

to a vertex is less than k or not. Consider a vertex vi ∈ Vs. Even if we orient the

1: if
∑

v∈V w(r, v) < k then

2: Output “No” and halt;

3: end if

4: Divide the vertex set V into two sets Vs = {vi | w({r, vi}) < k} and Vb = {vi |
w({r, vi}) ≥ k};

5: Λ ←
⋃

vi∈Vs
{(r, vi)} and S ←

⋃
vi∈Vs

{{vi, v(i+1) mod (n−1)}}, where

w({vi, v(i+1) mod (n−1)}) = k;

6: if
∑

vi∈Vs
w({r, vi}) ≥ k then

7: Λ← Λ ∪
⋃

vi∈Vb
{(vi, r)};

8: else

9: Pick one arbitrary vertex vj from Vb;

10: Λ← Λ ∪ {(r, vj)} ∪
⋃

vi∈Vb\{vj}{(vi, r)};
11: S ← S ∪ {{vj , v(j+1) mod (n−1)}}, where w({vj , v(j+1) mod (n−1)}) = k;

12: end if

13: Output |S| and halt;

Fig. 3. The algorithm for MIN-INS-MIN for edge-weighted stars.

February 4, 2021 10:52 112-IJFCS 2150012

224 Y. Asahiro et al.

edge {r, vi} as (vi, r), we need to add at least one edge for vi in order to increase its

outdegree to k. Hence edges of weight k in Vs are inserted in line 5 of the algorithm.

Here, the weight of the inserted edge {r, vi} may be decreased to k − w(r, vi) by

carefully selecting from either of (r, vi) and (vi, r) as orientation of the edge {r, vi}.
However this does not contribute to reduce the number of inserted edges, and so

we just orient the edge as (r, vi) and then set the weight of the inserted edge

{vi, v(i+1) mod (n−1)} as k for every vi ∈ Vs.
If

∑
vi∈Vs

w({r, vi}) ≥ k, the outdegree of r under Λ is at least k after line 5 is

done, by which we can orient {r, vi} as (vi, r) for vi ∈ Vb (this is done in line 7)

and no more edges need to be inserted. Otherwise, i.e. if
∑

vi∈Vs
w({r, vi}) < k, we

must choose one vertex vj ∈ Vb and orient {r, vj} as (r, vj) to make the outdegree

of r at least k, since we cannot insert any edge for the root r (this is done in lines

9 and 10). Here vj can be arbitrarily selected from Vb, since the weight of the edge

incident to such a vertex is at least k. Then we need to insert one more edge of

weight k for vj , which is done in line 11.

As for the running time, every line of the algorithm can be done in O(n) time.

Hence the total running time is also O(n).

MIN-INS-MIN on non-stars. We observe that there is at most one vertex of

degree at least n − 2 in a tree if n ≥ 5: If there is one vertex of degree n − 1, the

tree forms a star, and there is no other vertex of degree at least n− 2. Suppose for

contradiction that there are two vertices r1 and r2 of degree n − 2. In this case,

there exists only one vertex v which is not adjacent to r1. If r2 = v, then the set

of the neighbor vertices of r1 is the same as the one of r2, so that there is a cycle

which contradicts the fact that the considered graph is a tree. Otherwise, i.e., if

r2 6= v which means that r2 is adjacent to r1, n−3 vertices chosen from the neighbor

vertices of r1 and v are adjacent to r2 that also derives existence of a cycle since

n ≥ 5. This again contradicts the fact that the considered graph is a tree.

Since a brute force algorithm can be used for trees having at most 4 vertices, we

assume that the input tree has at least 5 vertices and there is at most one vertex

of degree n− 2 (the input is not a star).

Before describing the algorithm, we introduce notation only used for the algo-

rithm. For a vertex v, its target t(v) is a vertex satisfying that t(v) is not adjacent

to v in the input graph and if t(v) = u for a vertex u, then t(u) 6= v. For a vertex

u and a fixed (partial) orientation Λ, d+(Λ, u) = |{(u, v) ∈ Λ}|, where “partial”

means that Λ may determine directions of proper subset of edges in the input graph.

For a vertex v, E(v) denotes the set of edges connected to v. Note here that any

unoriented degree is not counted in d+(Λ, u). A vertex v is a boundary vertex (under

Λ) if only one edge in E(v) is not unoriented and the other |E(v)| − 1 edges are

oriented in Λ. Then, the unoriented edge is named boundary edge. Figure 4 is a

description of a simple algorithm in a bottom-up greedy manner.

We begin our discussion of the running time by showing that we can find a

target for every vertex in linear time: In line 1 of the algorithm, we need to find a

February 4, 2021 10:52 112-IJFCS 2150012

Graph Orientation with Edge Modifications 225

1: For every v ∈ V , find a target t(v);

2: S ← ∅ and Λ← ∅;
3: repeat

4: Pick a boundary vertex u and let its connecting boundary edge be e={u, v};
5: if d+(Λ, u) ≥ k then

6: Λ← Λ ∪ {(v, u)};
7: else

8: if d+(Λ, u) + w(e) ≥ k then

9: Λ← Λ ∪ {(u, v)};
10: else

11: S ← S ∪ {{u, t(u)}} with w({u, t(u)}) = k

12: Λ← Λ ∪ {(v, u), (u, t(u))};
13: end if

14: end if

15: until there is no boundary vertex

16: Output |S| and halt;

Fig. 4. The algorithm for MIN-INS-MIN for edge-weighted trees, except for stars.

target t(v) for every v. Let v1 be the vertex of degree n− 2 if such a vertex exists,

otherwise v1 is chosen arbitrarily. There is a vertex v2 which is not adjacent to v1,

and so we set t(v1) = v2. Since the degree of v2 is less than n− 2, there must be a

vertex v3 6= v1, which is not adjacent to v2. So, we set t(v2) = v3. We can repeat

this procedure because the vertices except for v1 have at least two non-adjacent

vertices. Repeating this, if a vertex whose target is already chosen is again selected

as a target of some vertex (it is OK itself), we pick a vertex from vertices whose

targets have not been determined as the start point of this procedure, and then

continue. The target t(v) can be chosen arbitrarily from the vertices not adjacent

to v except for a vertex whose target is v, which can be done by scanning edges

connected to v and maintaining t(u) and t−1(u) for every vertex u. Hence, the line

1 of the algorithm can be done in O(n) time. Since each edge is picked only once in

line 4, the total running time of the algorithm is O(n) with maintenance of the set

of boundary vertices, Λ, and d+(Λ, u) for every vertex u.

We observe that the output S of the algorithm is optimal. Consider a tree G, a

partial orientation Λ of G, and a boundary edge e = {u, v} in G.

• The case d+(Λ, u) ≥ k (line 5): In this case, orienting {u, v} as (v, u) is clearly

better than orienting it in the reverse direction (u, v).

• The case d+(Λ, u) < k and d+(Λ, u) + w(e) ≥ k (line 8): If we orient the edge

e as (v, u), this increases the outdegree of v, however, we need to insert an edge

of weight at least k − d+(Λ, u) for u. Moreover we may need one more edge for

v to increase its outdegree. Namely, we need to insert one or two edges for this

case. On the other hand, orienting the edge e as (u, v) increases the outdegree of

February 4, 2021 10:52 112-IJFCS 2150012

226 Y. Asahiro et al.

u to at least k, i.e., insertion of an edge is not required for u. By this saving of an

insertion, we can insert an edge for v of weight k without increasing the number

of inserted edges compared to the case e is oriented as (v, u).

• The case d+(Λ, u) + w(e) < k (line 10): Even if we orient e as (u, v), we need

to insert one edge of weight at least k − (d+(Λ, u) + w(e)) for u. So an optimal

orientation includes (v, u) as the direction of {u, v} with an inserted edge of weight

at least k − d+(Λ, u), which is better since the number of the inserted edges is

the same and v’s (temporal) outdegree is larger.

In summary, we have the following theorem by Lemma 9 and the above

discussion:

Theorem 10. For edge-weighted trees,MIN-INS-MIN can be solved in O(n) time.

p-INS-MIN. As seen in the algorithm for MIN-INS-MIN in Fig. 4, if p ≥ n and

the input is not a star, the minimum outdegree can be enlarged as much as we

want, since for every vertex, we can prepare a target and insert an edge of arbitrary

weight, which can be oriented towards the target. Hence assume p ≤ n − 1 or the

input is a star in the following.

Let us first consider the case that the input is a star and p ≥ n−1. Let r denote

the root of the input. We cannot insert any edge for r. Hence the possible maximum

outdegree of r is
∑

v∈V \{r} w({r, v}), where V is the set of vertices in the input. Let

this value be B. For leaves v0, v1, . . . , vn−2, we insert an edge {vi, v(i+1) mod (n−1)}
of weight B for 1 ≤ i ≤ n−1. As a result, every vertex has outdegree B by orienting

{r, vi} as (r, vi) and {vi, v(i+1) mod (n−1)} as (vi, v(i+1) mod (n−1)), i.e., the optimal

solution (the largest minimum outdegree) is B, which can be obtained in O(n) time.

There are two cases to consider: The input is a star and p ≤ n − 2, and the

input is not a star and p ≤ n − 1. Both of these cases imply that there is at least

one vertex that is not adjacent to an inserted edge. Thus, the largest minimum

outdegree of the vertices is at most wmax∆, where wmax is the maximum weight

of edges and ∆ is the maximum (unweighted) degree of vertices. Utilizing the

algorithm for MIN-INS-MIN, for a fixed `, 1 ≤ ` ≤ wmax∆, we check whether

there is a set of p edges such that the minimum outdegree is at least `. The search

for the largest ` (the optimal solution) can be carried out using a binary search

and hence takes O(log(wmax∆)) time. Therefore the total running time of this

algorithm is O(n log(wmax∆)), since the algorithm for MIN-INS-MIN spends O(n)

time. Then we have the following theorem:

Theorem 11. For edge-weighted trees, p-INS-MIN can be solved in

O(n logwmax∆) time.

3.2. Inapproximability for edge-weighted planar bipartite graphs

MinMaxO is known to be NP-hard for edge-weighted planar bipartite graphs [5].

This implies the following inapproximability:

February 4, 2021 10:52 112-IJFCS 2150012

Graph Orientation with Edge Modifications 227

Theorem 12. There is no polynomial-time ρ(n)-approximation algorithm for

MIN-DEL-MAX on edge-weighted planar bipartite graphs unless P = NP, where

ρ(n) ≥ 1 is any polynomial-time computable function.

Proof. Suppose for the sake of obtaining a contradiction that there exists a

polynomial-time ρ(n)-approximation algorithm ALG for some polynomial-time com-

putable function ρ(n) ≥ 1 for MIN-DEL-MAX on edge-weighted planar bipartite

graphs. Then, ALG can find an orientation in a given graphG in polynomial time such

that the objective value ALG(G) satisfies OPT (G) ≤ ALG(G) ≤ ρ(n) · OPT (G),

where ALG(G) and OPT (G) are the number of deleted edges from G by ALG and an

optimal algorithm, respectively. Therefore, one can distinguish either OPT (G) > 0

or OPT (G) = 0 in polynomial time using ALG based on the observation that

ALG(G) > 0 if and only if OPT (G) > 0. Checking whether OPT (G) = 0 is equiv-

alent to checking whether there is an orientation of G such that the maximum

outdegree is at most k, i.e., solving the decision version of MinMaxO with target

value k. This contradicts the NP-hardness of MinMaxO.

As shown in [4], MinMaxO for edge-weighted bipartite graphs has an inapprox-

imability ratio of 1.5, which implies the next theorem.

Theorem 13. There is no polynomial-time 1.5-approximation algorithm for p-

DEL-MAX on edge-weighted planar bipartite graphs unless P = NP.

Proof. Consider an input planar bipartite graph G of MinMaxO. Add one new

vertex u and one edge {u, v} of weight n ·wmax to G for arbitrary v ∈ V (G), where

wmax is the maximum weight of edges in G. Let this new graph be G′, where G′ is

also a planar bipartite graph. Observe that for 1-DEL-MAX, this new edge should

be deleted since otherwise the maximum outdegree is at least n · wmax, which is

larger than the total weight of edges incident to a vertex in G, and then we need

to orient the edges in G optimally. Namely, if there exists a 1.5-approximation

algorithm for 1-DEL-MAX, it also approximates MinMaxO within ratio 1.5. This

contradicts the inapproximability of MinMaxO. This discussion can be extended

to the case p ≥ 2 by adding p new vertices and p new edges of weight n · wmax to

G. The theorem follows.

The NP-hardness and known inapproximability bound of 2 for MaxMinO on

edge-weighted planar bipartite graphs from [4] can be applied in the same way as

for Theorem 12 and Theorem 13 to obtain the following theorem.

Theorem 14. There is no polynomial-time ρ(n) (or 2)-approximation algorithm

for MIN-INS-MIN (or p-INS-MIN) on edge-weighted planar bipartite graphs unless

P = NP, where ρ(n) ≥ 1 is any polynomial-time computable function.

Proof. The proof for MIN-INS-MIN is almost the same as the proof of The-

orem 12 for MIN-DEL-MAX, but using MaxMinO instead of MinMaxO. As

February 4, 2021 10:52 112-IJFCS 2150012

228 Y. Asahiro et al.

for p-INS-MIN, we add independent p vertices to the input graph of MaxMinO,

where this modified graph is also planar bipartite. This modification requires us to

add p edges adjacent to those added p vertices, whose weights can be any value at

least the optimal minimum outdegree of MaxMinO, e.g., n ·wmax. By this modifi-

cation to the input graph, solving p-INS-MIN is equivalent to solving MaxMinO

for the original input graph, and so the inapproximability bound of MaxMinO is

transferred to p-INS-MIN.

For the other two problems (MAX-INS-MAX and MAX-DEL-MIN), we need

to look a little deeper into the details of the NP-hardness proofs in [2, 4]. The next

theorem shows the inapproximability of MAX-INS-MAX.

Theorem 15. There is no polynomial-time ρ(n)-approximation algorithm for

MAX-INS-MAX on edge-weighted planar bipartite graphs unless P = NP, where

ρ(n) ≥ 1 is any polynomial-time computable function.

Proof. The NP-hardness of MinMaxO is proved in [4] for planar bipartite graphs

having edge-weights 1 and w ≥ 2 based on the intractability of distinguishing

between the optimal value being w and the optimal value being w+ 1, where “+1”

comes from the weight 1 of edges. We can double the edge-weights 1 and w to 2 and

2w in the reduced graphs, respectively, and observe that distinguishing between an

optimal value of 2w and 2w + 2 is still intractable for them.

Consider a planar bipartite graph G having edge-weights 2 and 2w constructed

according to the above, and let k = 2w + 1. Let OPT1(G) and OPT2(G) denote

the optimal costs of MinMaxO and the maximum number of inserted edges of

MAX-INS-MAX for G, respectively. If OPT1(G) = 2w for MinMaxO, then we

can add one edge of weight one to G between an arbitrary pair of vertices of G,

increasing the maximum outdegree of vertices to at most 2w+1, i.e., OPT2(G) > 0

for MAX-INS-MAX. On the other hand, if OPT1(G) = 2w + 2 for MinMaxO,

no edge can be added under the condition that the maximum outdegree is at most

k, i.e., OPT2(G) = 0 for MAX-INS-MAX. Thus, OPT1(G) = 2w for MinMaxO

if and only if OPT2(G) > 0 for MAX-INS-MAX. Then, as in the proof of The-

orem 12, the assumption that there exists a polynomial-time ρ(n)-approximation

algorithm for some polynomial-time computable function ρ(n) ≥ 1 for MAX-INS-

MAX on edge-weighted graphs leads to a contradiction to the NP-hardness of

MinMaxO.

The inapproximability of MAX-DEL-MIN is established in the next theorem.

Theorem 16. There is no polynomial-time ρ(n)-approximation algorithm for

MAX-DEL-MIN on edge-weighted planar bipartite graphs unless P = NP, where

ρ(n) ≥ 1 is any polynomial-time computable function.

February 4, 2021 10:52 112-IJFCS 2150012

Graph Orientation with Edge Modifications 229

Proof. The NP-hardness of MaxMinO for edge-weighted planar bipartite graphs

is proved in [2] with edge-weights wmin and wmax such that wmin < wmax, consider-

ing to distinguish between wmin and min{2wmin, wmax} of optimal values. Here we

choose wmin = 2 and wmax = 4. Assume that the set of vertices in an input graph

G of MaxMinO is partitioned into two partite sets U1 and U2. We add an extra

vertex u and two extra edges e1 = {u, v1} of weight 1 and e4 = {u, v4} of weight 4

between u and two vertices v1 and v4 in U1. Let this new planar bipartite graph (an

instance of MAX-DEL-MIN) be G′. Then we set k = 4 for MAX-DEL-MIN. We

observe that the outdegree of u is at least 4 under an orientation of G′ if and only

if e4 is not deleted and oriented outward from u. Then, e1 increases any outdegree

of vertices by at most 1 and so this edge is a candidate for deletion.

Let OPT1(G) denote the optimal cost of MaxMinO for G. Also let OPT2(G′)

denote the maximum number of deleted edges of MAX-DEL-MIN for G′. If

OPT1(G) ≥ 4 for MaxMinO, then we can delete e1 from G′ for MAX-DEL-MIN,

by which the resulted graph has an orientation in which the minimum outdegree of

vertices is at least 4 by orienting e4 as (u, v4) with the optimal orientation of G for

MaxMinO. Thus OPT2(G′) ≥ 1. As another case, assume that OPT1(G) ≤ 3 for

MaxMinO. This assumption implies that there exists a vertex of outdegree at most

3 in the optimal orientation of G for MaxMinO. If we delete e1 from G′ for MAX-

DEL-MIN, then the minimum outdegree of the vertices is the same as OPT3(G),

i.e., at most 3 which does not satisfy the value of k, since e4 must be oriented as

(u, v4) to increase u’s outdegree to 4 (otherwise its outdegree becomes 0). Hence

we consider to keep e1 and delete one edge between U1 and U2. However, since

OPT1(G) ≤ 3, there exists a vertex of outdegree at most 3 under any orientation.

This implies that the outdegree of such a vertex is 0 or 2, since the weight of an edge

of G is either 2 or 4. Even if v1 is only such a vertex and e1 is oriented as (v1, u)

(increasing v1’s outdegree by one), there still remains a vertex with outdegree at

most 3. Namely, we cannot delete any edge from G′ which means OPT2(G′) = 0.

In summary, OPT1(G) = 4 for MaxMinO if and only if OPT2(G′) > 0 for

MAX-DEL-MIN with setting k = 4. Then, as in the proof of the previous theo-

rems, the assumption that there exists a polynomial-time ρ(n)-approximation algo-

rithm for some polynomial-time computable function ρ(n) ≥ 1 for MAX-DEL-

MIN on edge-weighted graphs leads to a contradiction to the NP-hardness of

MaxMinO.

Also for p-INS-MAX and p-DEL-MIN, we can show the same inapproximabil-

ity as p-DEL-MAX and p-INS-MIN, respectively.

Theorem 17. There is no polynomial-time 1.5 (or 2)-approximation algorithm for

p-INS-MAX (or p-DEL-MIN) on edge-weighted planar bipartite graphs unless P

= NP.

Proof. Figure 5 illustrates examples of the two reductions in this proof for the case

p = 2.

February 4, 2021 10:52 112-IJFCS 2150012

230 Y. Asahiro et al.

u

G

0

u1

u2 u3
u4

u5

4

G

u0
u1

u2u6

u7

4

4

44

4

4

4

11

Fig. 5. Example graphs constructed by the reductions in the proof of Theorem 17. The left graph

is for 2-INS-MAX and the right one is for 2-DEL-MIN.

The reduction for p-INS-MAX is done from MinMaxO. We add p+1 indepen-

dent vertices u0, . . . , up to the input planar bipartite graph G of MinMaxO. An

optimal set of inserted edges for p-INS-MAX includes edges {ui, ui+1} of weight

1 for 0 ≤ i ≤ p − 1, which constitutes a path of those p + 1 vertices u0, . . . , up.

Let the optimal orientation of G for MinMaxO be Λ. The above modification to

G does not increase the maximum outdegree of the vertices of G under Λ. Hence,

solving p-INS-MAX for this new graph is equivalent to solving MinMaxO for G,

which gives the inapproximability of p-INS-MAX based on the inapproximability

of MinMaxO.

For p-DEL-MIN, the reduction is from MaxMinO. Let us consider an input

planar bipartite graph G to MaxMinO with edge-weights 2 and 4, considering to

distinguish between 2 and 4 of optimal values, as in the proof of Theorem 16. We

construct an instance of p-DEL-MIN by adding new 2p+4 vertices u0, u1, . . . , u2p+3

to G. Among those vertices, we add edges such that

• for each i, 0 ≤ i ≤ 2p + 3, {ui, u(i+1) mod (2p+4)} of weight 4, i.e., the 2p + 4

vertices and these edges form a cycle of length 2p+ 4, and

• for each j, 2 ≤ j ≤ p+ 1, {u0, u2j−1} of weight 1, where these edges form a star

with p leaves rooted at u0.

Clearly the constructed graph is still planar bipartite. An optimal set of deleted

edges for p-DEL-MIN includes the set of added edges of weight 1, since the added

cycle constituted by the edges of weight 4, can have minimum outdegree 4 by

orienting the edges in, say, clockwise direction. Then, again, solving p-DEL-MIN

for this modified graph is equivalent to solving MaxMinO for G, considering to

distinguish between 2 and 4 of optimal values, which gives the inapproximability of

p-DEL-MIN based on the inapproximability of MaxMinO.

4. Concluding Remarks

We have introduced eight new graph orientation problems whose objective is to

minimize/maximize the outdegree of the vertices after inserting/deleting edges, and

presented polynomial-time algorithms for these problems on unweighted graphs.

February 4, 2021 10:52 112-IJFCS 2150012

Graph Orientation with Edge Modifications 231

Also we showed the polynomial-time inapproximability for those problems on edge-

weighted graphs, and polynomial-time algorithms for six of the problems were

designed on edge-weighted trees. One of the further research topics is to study the

complexity of MAX-INS-MAX and p-INS-MAX on edge-weighted trees.

Very recently, Frank and Murota [12] proposed a strongly polynomial-time algo-

rithm to find a maximum flow which is decreasingly minimal on a specified subset

F of directed edges in a given network. Here, a flow is decreasing minimal on F

if the largest flow on an edge in F is as small as possible, within this, the second

largest flow on an edge in F is as small as possible, and so on. Also, in the given

network, upper and lower bounds on the size of a flow passing through each edge

are prescribed. By appropriately setting the upper and lower bounds for the edges,

and choosing F = {(s, v) | v ∈ V } from NG, we can utilize their algorithm to obtain

a decreasingly minimal maximum flow on F in the algorithms of Theorems 3 and

5. After modifying Lemmas 1 and 2 accordingly, a decreasingly minimal orientation

(also called a lexicographic orientation in [7]) for our problems can thus be con-

structed, meaning that the maximum outdegree of a vertex is as small as possible,

and among all such orientations, the second largest outdegree of a vertex is as small

as possible, etc.

One generalization of the problems is to extend the input to hypergraphs. In

Sec. 2, we constructed a network NG(α;β; γ) from an input graph G and solved the

maximum flow problem on it by using a polynomial-time algorithm. In NG(α;β; γ),

we prepare an edge (v, e) if a vertex v is incident to an edge e in G so that the vertex

e in NG(α;β; γ) has two incoming edges. If the input G is a hypergraph, a vertex in

NG(α;β; γ) corresponding to an hyperedge in G may have at most n incoming edges.

Thus, NG(α;β; γ) has at most nm edges between V and E, where n and m are the

number of vertices and edges in G, respectively. The running times of the algorithms

using NH(α; γ) (a part of NG(α;β; γ)) in Theorem 3 for MIN-DEL-MAX, p-DEL-

MAX, MAX-DEL-MIN, and p-DEL-MIN increase to O(nm2 logm), which is

still polynomial. On the other hand, the algorithms in Theorem 5 do not run in

polynomial time in the worst case since they use the whole NG(α;β; γ) and the size

of E in NG(α;β; γ) might not be polynomial in n and m.

Another natural generalization of MIN-DEL-MAX can be defined as follows:

Input: An unweighted graph G = (V,E) and a mapping µ that assigns to each

vertex v ∈ V an integer from {0, 1, . . . ,deg(v)}, where deg(v) is the degree of v.

Goal: To find the minimum number of edges to delete to get a spanning subgraph

H of G such that d+(v) ≤ µ(v) for every v ∈ V .

To solve this problem, we can first construct a directed graph NH in the same

way as in Sec. 2. Next, we augment the edge capacities in NH to get a flow network

as before, except for the capacities of the directed edges of the form {(s, v) | v ∈ V }.
The capacity of the directed edge (s, v) is defined to be µ(v) instead of k, for every

v ∈ V . Then we see that there exists a flow in NH with value |E| if and only if

there are p edges in G whose deletion leaves a graph satisfying d+(v) ≤ µ(v), for

February 4, 2021 10:52 112-IJFCS 2150012

232 Y. Asahiro et al.

every vertex v ∈ V (G). In other words, the modified problem can be solved in

polynomial time. In fact, both the modified problem and the original MIN-DEL-

MAX have the same time complexity since the directed graphs that we construct

in both cases are the same. We can generalize MIN-INS-MIN, MAX-INS-MAX,

MAX-DEL-MIN in the same way and solve them in polynomial time as well.

The above problem is a special case of General Factor introduced by

Lovász [13, 14], which is defined as

Input: An unweighted graph G = (V,E) and a mapping K that assigns to each

vertex v ∈ V a set K(v) ⊆ {0, 1, . . . ,deg(v)} of integers.

Goal: To check if there is a subgraph H of G s.t. dH(v) ∈ K(v) for every v ∈ V ,

where dH(v) is the degree of v in H.

General Factor is a generalization of the factor problem, and NP-hard even for

unweighted graphs [14], and also for unweighted planar bipartite graphs [9]. Here

the extension to the mapping from an integer to a set of integers makes the problem

harder. We conjecture that the analogous generalizations to the problems in this

paper are NP-hard.

Acknowledgments

This work was partially supported by JSPS KAKENHI Grant Numbers

JP17K00016 and JP17K00024, JST CREST JPMJR1402, and PolyU Fund 1-ZE8L.

References

[1] Y. Asahiro, J. Jansson, E. Miyano, H. Nikpey and H. Ono, Graph orientation with
splits, In Proceedings of ISCO 2018, Volume 10856 of Lecture Notes in Computer
Science (Springer, 2018), pp. 52–63.

[2] Y. Asahiro, J. Jansson, E. Miyano and H. Ono, Graph orientation to maximize the
minimum weighted outdegree, International Journal of Foundations of Computer Sci-
ence 22(3) (2011) 583–601.

[3] Y. Asahiro, J. Jansson, E. Miyano and H. Ono, Graph orientations optimizing the
number of light or heavy vertices, Journal of Graph Algorithms and Applications
19(1) (2015) 441–465.

[4] Y. Asahiro, J. Jansson, E. Miyano, H. Ono and K. Zenmyo, Approximation algo-
rithms for the graph orientation minimizing the maximum weighted outdegree, J.
Combinatorial Optimization 22(1) (2011) 78–96.

[5] Y. Asahiro, E. Miyano and H. Ono, Graph classes and the complexity of the graph
orientation minimizing the maximum weighted outdegree, Discrete Applied Mathe-
matics 159 (2011) 498–508.

[6] N. Bansal, A. Blum and S. Chawla, Correlation clustering, Machine Learning 56
(2004) 89–113.

[7] G. Borradaile, J. Iglesias, T. Migler, A. Ochoa, G. Wilfong and L. Zhang, Egalitarian
graph orientations, Journal of Graph Algorithms and Applications 21(4) (2017) 687–
708.

February 4, 2021 10:52 112-IJFCS 2150012

Graph Orientation with Edge Modifications 233

[8] G. S. Brodal and R. Fagerberg, Dynamic representations of sparse graphs, In Proceed-
ings of WADS 1999, Volume 1663 of Lecture Notes in Computer Science (Springer,
1999), pp. 342–351.

[9] G. Cornuéjols, General factors of graphs, Journal of Combinatorial Theory, Series B
45 (1988) 185–198.

[10] M. Chrobak and D. Eppstein, Planar orientations with low out-degree and compaction
of adjacency matrices, Theoretical Computer Science 86(2) (1991) 243–266.

[11] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, 3rd
edition (The MIT Press, 2009).

[12] A. Frank and K. Murota, Fair integral flows, 2020, arXiv:1907.02673,
https://arxiv.org/abs/1907.02673.

[13] L. Lovász, The factorization of graphs, In Combinatorial Structures and Their Appli-
cations (1970) 243–246.

[14] L. Lovász, The factorization of graphs. II, Acta Mathematica Academiae Scientiarum
Hungaricae 23 (1972) 223–246.

[15] J. B. Orlin, Max flows in O(nm) time, or better, Proceedings of the 45th Annual
ACM Symposium on Theory of Computing (STOC’13), Association for Computing
Machinery (ACM) (Palo Alto, CA, USA, 2013), 765–774.

[16] R. Sharan, Graph modification problems and their applications to genomic research,
PhD Thesis. School of Computer Science, Tel-Aviv University, 2002.

[17] V. Venkateswaran, Minimizing maximum indegree, Discrete Applied Mathematics
143 (2004) 374–378.

