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Abstract Given an undirected graph G = (V, E), a graph orientation problem is to decide a direction of each edge
so that the resulting directed graph G = (V, A(E)) satisfies a certain condition, where A(E) is a set of an assignment
of a direction to each edge {u,v} € E. We consider a degree constrained orientation: Given positive integers a,
and b, for each v (a, < b,), decide an orientation of G so that a, < |{(v,u) € A(E)}| £ b, holds for as many
vertices v’s as possible. In this paper, we consider the problem of finding an orientation that minimizes ) _ ¢,
where ¢, is a penalty incurred for v’s violating the degree constraint. We show that: (i) The degree-constrained
orientation with any convex (including linear) penalty function can be solved in O(m!-5 min{log(nC), A%*}), where
n = |V|,m = |E|, A and C are the maximum degree and the largest magnitude of a penalty, respectively. (ii) In
contrast, it is APX-hard for step (i.e., concave) penalty functions. (iii) For trees, the problem with any penalty

functions can be solved in O(nlog A) time, and if the penalty function is convex, it is solvable in linear time.



1. Introduction

1.1 Problem and summary of results

We assume a basic knowledge of graph theory. Let G =
(V, E) be an undirected graph, where V and F denote the
We allow G to
have parallel edges; G is possibly a multi-graph. Through-

sets of vertices and edges, respectively.

out the paper, let |V| = n and |E| = m for the graph.
Two vertices u and v are called adjacent to each other if
{u,v} € E. Let N(u) be the set of adjacent vertices of u,
ie, N(u) = {v | {u,v} € E}, and d(u) = |N(u)| is called
degree of u. We denote max{d(v) | v € V} by A. An orien-
tation A of graph G is a set of an assignment of a direction
to each edge {u,v} € E, i.e., A({u,v}) = (u,v) or (v,u). We
simply use A to represent A(E) = (J,.z{A(e)} if no confu-
sion arises. The outdegree of w on A is |[{v | (u,v) € A}|,
which is denoted by df (u).

Suppose that a sequence of 2n positive integers a., by (a, <
by) for v € V is given as a degree constraint. For a, and b,’s,
a degree constrained orientation is an orientation of G such
that a, < dX (v) £ by holds for every v € V. Obviously, G
does not always have a degree constrained orientation. In
such a case, we would like to find an orientation that “best”
fits the degree constraint. A wviolation vector c¢(A) of an orien-
tation A of G is (c1(A),c2(A), ..., cn(A)), where for v € V,
co(A) = df(v) — by if df(v) > by, co(A) = ay — df(v) if
df(v) < @y, co(A) = 0 otherwise. A penalty function p is a
finite, non-negative and non-decreasing function with n vari-
ables. By using these, we define the best-fit orientation to
the degree constraint by an orientation A of G that minimizes
p(c(A)). We call this Minimum Penalty Degree Constrained
Orientation, MPDCO for short.

For an example, see the undirected graph G = (V, E) in
Figure 1-(a). Figures 1-(b) and (c) are two directed graphs
obtained by orientations A and A’, respectively. For ex-
ample, let a, = 1 and b, = 2 for any v € V. We first
observe the case when p is a summation of a convex func-
tion g(x) = 22 for each vertex, i.e., p(c(A)) = 3 g(co(A)).
(b) If the outdegree sequence is (1,1,5,0,2,2,0,2) in the
column major order from the left to the right, then its vi-
olation vector ¢(A) is (0,0,3,1,0,0,1,0). Thus, the total
penalty function p(c(A)) is 3 g(co(A)) =32 +12 + 12 = 11.
On the other hand, (c¢) c¢(A’) = (0,0,1,1,1,1,1,0) and
pleo(A)) = 2 g(eu(A) =17 x 5 = 5.

As another example, consider the following concave func-
tion ¢'(x) instead of g(x):

z fzx<L1

g'(x) =
1 ifz>1.

Then, (b) the penalty of Ais > ¢'(cy(A)) =1+1+1=3,
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Fig. 1 Example of MPDCO: (a) An undirected graph G =
(V,E); (b) an orientation A of G with outdegree se-
quence (1,1,5,0,2,2,0,2) from the left top to the right
bottom; (c) an orientation A’ of G with outdegree se-
quence (1,1,3,0,3,3,0,2).

and (c) the penalty of A" is > ¢'(cu(A’)) =1 x5 = 5. The
“balanced” orientation A’ is worse than the “unbalanced”
orientation A for g’. Also, note that the penalty highly de-

pends on the values of a, and b,.

Degree constrained orientations have been intensively
studied for long time, because many graph problems includ-
ing graph routing, matching, and covering can be formal-
ized as graph orientations. The earliest result about the
orientability for given degree constraints is by Landau [19],
who proved the necessary and sufficient conditions complete
graphs must satisfy. Subsequently, Hakimi generalized Lan-
dau’s result to general graphs. However, as mentioned above,
such an orientation does not always exist. Our problem
MPDCO resolves the problem for such a case, by consider-
ing degree constraints as soft constraints; it finds an optimal
orientation that minimizes penalties charged for violation.

It should be noted that MPDCO is a natural generalization
of several optimization problems to control outdegrees of an
undirected graph. For example, Minimum Maximum Out-
degree Orientation Problem (MinMaxO), i.e., the problem of
finding an orientation of minimizing max{d} (u) | v € V},
is formalized as MPDCO with a; = b; = 0,7 = 1,2,...,n
and n-dimensional oo norm « (i.e., p(z1,T2,...,%T,) =
(7 |x]*)*, @ — oo). Maximum Minimum Outdegree
Orientation Problem (MaxMinO), the problem of finding
an orientation of maximizing min{d{(v) | v € V}, is
also [5, 3, 4].



Clearly, the nature of MPDCO depends on the penalty
function. In this paper, we study the relationship be-
tween the computational complexity of MPDCO and penalty
functions. We assume here that penalty functions are
linearly separable, i.e., it can be written as p(c(A)) =
> wev 9(cu(A)), where g is a non-negative one variable func-
tion with g(0) = 0. In this setting, we focus on the following
types of functions as typical examples of g: convex (including
linear) and concave (including step) functions. Throughout
the paper, we assume that g is a fixed function, and evalu-
ated in constant time; for a positive integer x, the value of
g(x) is obtained in O(1) time.

The results in this paper are summarized as follows:

(1) If g is a convex function, MPDCO can be solved in
O(m"® min{log(nC), A°®}) time, where C is the largest
magnitude of a penalty. That is, if we adopt a natural poly-
nomial penalty function, such as n* with a positive integer k,
it is O(m*®logn). Note that this time complexity is similar
to that of MinMaxO for unweighted graphs, a restricted case
of MPDCO, in terms of order [5, 18, 25].

(2) MPDCO has no polynomial approximation algorithm
whose approximation factor is better than 1.3606 for con-
cave penalty functions, unless P=NP; it is APX-hard. This
holds even for step penalty functions. Furthermore, MPDCO
is still APX-hard for a strictly increasing concave function,
a more restricted class of concave functions.

(3) For trees, the problem with general penalty functions
can be solved in O(nlog A) time. This running time is avail-
able for any rational valued penalty function if basic arith-
metic operations can be done in O(1) time; g is not necessary
to be convex or concave. If g is convex, the running time is
improved to O(n).

The remainder of the paper is organized as follows. In the
next subsection, we introduce related work about graph ori-
entation to control (weighted) outdegrees. In Section 2,we
present polynomial time algorithms for MPDCO with con-
vex functions. Section 3 shows the hardness of MPDCO with
concave functions, and Section 4 presents O(nlogA) and
O(n) time algorithms for trees. Section 5 discusses further
research on the problems and concludes the paper.

1.2 Related work

Graph orientation itself is a fundamental problem in the
area of graph theory and combinatorial optimization. In gen-
eral, graph orientation is a problem of giving an orientation
to a given undirected graph to meet some given requirement.
There are many types of requirements considered, such as
connectivity, reachability and so on [23, 22, 16]. Among sev-
eral variations of graph orientation, many researchers have
been devoted to graph orientation with degree constraints

and there are a large literature; e.g., see Sections 61.1 in [24]

7.4.3 in [20] and 2.3 in [11].

For example, Hakimi [15], Frank and Gyarfis [12],
Chrobak and Eppstein [9], and Gabow [13] studied the
degree-constrained orientation problem, where its goal is to
orient as many edges as possible in an undirected graph,
subject to the upper and lower bounds on the outdegree of
each vertex (or equivalently, the upper bounds on the in-
degree and outdegree of each vertex). In [15] Hakimi gave
the necessary and sufficient conditions of graphs that can be
oriented so that every outdegree is at most a given upper
bound. These were generalized by Frank and Gyérfas in [12]
to a characterization of graphs that can be oriented so that
every outdegree is between given upper and lower bounds.

In [9], Chrobak and Eppstein studied the orientation of a
planar graph and showed that a 3-bounded outdegree orien-
tation and a 5-bounded acyclic orientation can be obtained
in linear time for any planar graph. Furthermore, recently,
in [13], Gabow considered the partial orientation problem,
which formulates the degree-constrained orientation problem
as the optimization problem. A partial orientation assigns
a unique direction to a subset of the edges, leaving the re-
maining edges unoriented. Then, the goal is to orient as
many edges as possible in the input undirected graph without
breaking the degree constraints. He proved that the partial
orientation problem is MAXSNP-hard and provided an LP-
rounding algorithm which achieves approximation ratio 3/4.
Remark that our formulation of the degree-constrained ori-
entation can be regarded as the dual problem of the previous
one; the whole set of edges has to be assigned a unique direc-
tion, but the degree constraints can be broken with penalty.

As mentioned above, MPDCO is a generalization of Min-
MaxO (resp., MaxMinO), which is an orientation that min-
imizes (resp., maximizes) the minimum (resp., maximum)
MinMaxO and MaxMinO also have been stud-

ied well by the relation with other combinatorial problems.

outdegree.

For example, MinMaxO can be used in efficient dynamic
data structures for graphs that support fast vertex adjacency
queries under a series of edge operations [7]. Furthermore,
edge weighted version of MinMaxO is a special case of the

minimum makespan problem (e.g., [21]).

2. Polynomial time algorithms for convex
penalty

In this section, we present a simple approach to solve
MPDCO with convex functions.
O(m"® min{log(nC), A°*}), where C is the largest magni-
tude of a penalty. The approach is based on the reduction to

The time complexity is

the convex cost flow problem, which can be solved in strongly

polynomial time.



In general, a network flow problem is the problem of
finding some optimal flow on a given network that satis-
fies capacity constraints on arcs (directed edges) and sup-
ply/demand conditions on vertices, and many types of net-
work flow problems are intensively and extensively stud-
ied. See [2]. Among them, the convex cost flow problem
is an optimization problem on a network in which each arc
is associated with a convex function whose variable is flow
through the arc. The cost of flow is the total sum of flow
costs on the arcs, and the convex cost flow problem is the
If the

convex functions are just linear functions, the problem is

problem of finding a flow whose cost is minimum.

simply called the minimum cost flow problem, which is a
well studied problem. It is known that the convex cost flow
problem can be solved in O(NM log(N?/M)log(nU)) time,
where N, M and U are the number of vertices, the number
of edges and the largest magnitude of the lower and upper
bounds on capacities in the network, respectively [1]. Fortu-
nately, our problem belongs to a relatively smaller class of
the flow problems; the capacity of every arc is integral. For
this class, a faster algorithm by [14] can be applied. The
running time is O((min{ MU log(MU), N*v/M})log(NC) +
min{vMU, N2/3 )3, N}M), where M, N,U are defined as
above and C' is the largest magnitude of a cost (the cost is
assumed to be integral), or O(\/ﬁM log(NC)), where M is
the total capacity of edges.

O Theorem 10 MPDCO with convex penalty can be solved
in O(m"® min{log(nC), A°*}) time, where C' is the largest

magnitude of a cost.

Proof. From graph G = (V,E), sequence of 2n integers
,an), (bl, bz, .
g(x), we construct the following network N = (Vir, Ex):

(a1,az2,... ,br) and convex penalty function

Vv = VUEU/{s,t},
En = U {(s;e), (e;u), (e,v)} U Ey,

e={u}ecE
where Ey = J, oy 1(v,t)}. The capacity of arc (v,t) in E; is
defined by cap((v,t)) = d(v), and those of the other arcs are
1. The supply of source s and the demand of sink ¢ are set to
be m. See Figure 2 as an example of this construction. The
dotted edges are in E;. For this network, a flow of A is a
function f : Exr — R™T, where RT is the set of non-negative
real number, which satisfies that f((¢,7)) < cap((¢,7)) for
all (7)€ Bxy Suneny F(01) = Leny [(0Gr0)
for all w € Vi \ {s,t}, X iem, [((s,0) =
Z(i,t)eEN f((@,2) =m.

We define the cost function of arc (v,t) € E; as

m and

Fig. 2 Network construction in Section 2.: (a) An undirected

graph, (b) the network constructed from (a).
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Fig. 3 Example of cost(, 4)(z): av = 3,by =5 and g(z) = 2.

glay —x) ifz < ay,
cost(y,4)(2) =<0 if ay < x < by,
gz —by) if x> by,

where z is the amount of flow on this arc. For any other
arc (4,7), cost(; ;)(x) = 0. Note that the cost functions are
all convex under the assumption g is a convex function with
g(0) = 0. See Figure 3 for an example of g(z) and cost(, ¢)(x).

Here, we can see that if f is an integral flow, it can be
regarded as an orientation of G. In fact, in any feasible in-
tegral flow of N, for any e = {u,v} € E, exactly one of
the following cases holds: f((e,u)) =1 and f((e,v)) =0, or
f((e;u)) =0 and f((e,v)) = 1, which can be interpreted to
an orientation of e. Then, f((v,t)) corresponds to the outde-
gree of v, which implies to cost(, 1) (f((v,t))) is the penalty
on v in the orientation, and hence ), cost(,,,) (f((v,1))) =
2 o(iyery €08t (f((4,5))) is the penalty of the orientation.
Therefore, our problem is to find an integral flow that mini-
mizes Y ; yep, €0ty (f((4,5))), which is a minimum con-
vex cost flow problem with integral constraints.

Since it is known that the convex cost flow problem
with integral capacities has an integral optimal flow [14],
the integral constraints can be removed. Furthermore,
the algorithm presented in the same paper finds such
a solution in O((min{MU log(MU), N*v/M})log(NC) +
min{v/MU, N*3M*'? NYM) time, where N, M, U and C

are the number of vertices, the number of edges and the



largest magnitude of the lower and upper bounds on ca-
pacities, the largest magnitude of a cost in the network,
respectively, or in O(\/ﬁM log(NC)) time, where M is
the total capacity of edges. In our reduction, N = O(m),
M = O(m), U = A, C is the largest cost and M = O(m).
Consequently, we can solve MPDCO with convex penalty in
O(m"® min{log(nC), A°®}) time. O

By this theorem, for natural polynomial penalty functions,
such as n® with a constant k, the problem can be solved in
O(m*®logn) time. This time complexity is almost same as
that of MinMaxO and MaxMinO, O(m'®log A).

O Remark 20 This reduction is also available for hypergraph
orientation. A hypergraph H = (V,H) is an extension of
ordinary graphs, in which each hyperedge e € E can have
more than two vertices. An orientation A of a hypergraph
is an assignment of a hyperedge e to a vertex in e, which
is a generalization of graph orientation [11]. The above
reduction works for hypergraphs, and achieves essentially
the same time complexity, i.e., O(m'® min{Ao's, log(nC)}),

where A = max,cv{|{e | v € e}|}.

3. APX-hardness for step and strictly
concave functions

In this section, we show the APX-hardness of MPDCO with
concave penalty functions. In Section 3. 1, we show the hard-
ness of MPDCO with step functions, which are also consid-
ered concave. In Section 3.2, we consider strictly concave
functions, as another typical classes of concave functions.

In both cases, MPDCO is APX-hard. Especially, MPDCO
with step penalty functions is not approximable within
1.3606 unless P = NP, so is MPDCO with convex penalty
functions.

3.1 APX-hardness for step functions

In this section, let a,, = b, = 0 for every u € V', and hence
cu(A) = df (u). Suppose that the penalty function is a step

function, defined as

c ifx>0
g9(z) =

0 ifx=0,
where c is a positive constant. For simplicity, we call MPDCO
in this setting MPDCOg¢ep. What we do in the following is
to show that MPDCOg;ep is essentially equivalent to Mini-
mum Vertex Cover (MinVC for short). A vertex set V'CV
of graph G = (V, E) is called a vertez cover if for every edge
e € E, eNV’ & @ holds. MinVC is the problem of finding the
minimum size of a vertex cover of a given graph G = (V, E).

We show the following theorem:
0 Theorem 30 A graph G = (V, E) has a vertex cover with
size k if and only if MPDCOy¢ep for G has cost ck.

Proof. Suppose that the graph G has a vertex cover V' of
size k. That is, for every edge {u,v}, u € V' orv € V'. If
u € V' and v € V', then the edge {u,v} is oriented from
u to v. If both vertices u and v in V', we orient {u,v} to
the arbitrary direction. One can see that the degree of every
vertex in V'\ V' is 0. Thus, the total cost of the orientation
is ck.

If the minimum size of the vertex cover of G is at least
k+1, then there are at least k+ 1 vertices whose degrees are
at least 1 for any orientation. Therefore, the cost is at least
c(k+1). 0

By the inapproximability of vertex cover problem in [10]
and [17], we obtain the following corollaries.

O Corollary 10 There is no polynomial time algorithm for
MPDCOg:ep whose approximation factor is better than
1.3606, unless P=NP.

O Corollary 20 There is no polynomial time algorithm for
MPDCOg¢ep whose approximation factor is better than 2, if
the unique game conjecture holds.

3.2 APX-hardness for strictly concave functions

The goal of this section is to show that the hardness of ap-
proximation for MPDCO with a strictly concave function via
a gap-preserving reduction from a variant of the Mazimum
4-Dimensional Matching problem. Here, let a,, = b, = 0 for

every u € V again.

0 Definition 4[1] Max-4DMO Given the disjoint sets R, S, T

and U having the same number n of elements, and a set
QCRxSXTxU, a 4D-matching for Q is a subset Q' CQ such
that no elements in Q' agree in any coordinate. The goal of
the Maximum 4-Dimensional Matching (Max-4DM for short)

is to find the cardinality of a maximum 4D-matching.

0 Definition 5010 Max-4DM-20 If the number of occurrence of

any element in R, S, T or U is exactly twice, this restricted
version of the Maximum 4-Dimensional Matching is called
Max-4DM-2. Note that the instance @@ of Max-4DM-2 in-
cludes exactly 2n quadruplets.
It is known [8] that it is NP-hard to approximate Max-
4DM-2 to within £5.
Let OPT44m (Q) denote the cardinality of a 4D-matching
output by an optimal algorithm for the instance @ of Max-
4DM-2.
O Lemma 10 Suppose that |R| = |S| = |T| = |[U| = n and
thus |@Q| = 2n. Then, the following inequality holds:
2?” < OPTum(Q) < n.

Proof. If we select one quadruplet, say, (r, s,t,u), and put it
into a 4D-matching @Q’, then there are at most four quadru-
plets which contains r, s, ¢, or u in the worse case. In other
words, we can always obtain at least 2n/5 disjoint quadru-

plets. By the assumption |R| = |S| = |T| = |U| = n,



OPT14m(Q) < n holds. m|
O Theorem 600 There is no polynomial time algorithm for
MPDCO ¢ oncave Whose approximation factor is better than
%g, unless P=NP.

Proof.
Max-4DM-2 to MPDCO¢oncave that transforms an instance
Q of Max-4DM-2 to an undirected graph G = (V,E)
and its concave functions on vertices such that (1) if
OPT1im(Q) = max, then OPTy,pdco(G) = 4n— max, and (2)

if OPTugm (Q) £ % -max, then OP Ty, pdco(G) 2 4n— %~max.

We can give a gap-preserving reduction from

We can set max = c¢-n for ¢ = % by Lemma 1. Then, the

gap between (1) and (2) is calculated as follows:

47
_Ec:1+¥
4—c 192 — 48¢
1
=14+ —.
- Jr432

This means that the inapproximability bound is 433/432.

Details are omitted. O
4. Faster time algorithm for trees

In this section, we propose an O(nlogA) time algorithm
that solves MPDCO with any penalty functions for trees. In
contrast, MPDCO with concave penalty is APX-hard in gen-
eral. We also show that the algorithm can be modified to
run in linear time for convex penalty.

4.1 O(nlog A) time algorithm for general case

Our algorithm is based on dynamic programming. To ex-
plain the idea, we first introduce some new notation.

We denote the optimal value of MPDCO of a graph G by
Opt(@) in the following. For a tree T rooted at some r, we
consider a tree T'+ s in which a vertex s is attached with r,
that is, T+ s = (V(T) U {s}, E(T) U {{r,s}}) rooted at s.
In the context of MPDCO, s is a virtual vertex for which no
penalty is charged in any orientation (or, we assume as = 0
and bs = 00). For vertex v with degree k, we denote its viola-
tion by 0, (k), that is, 6, (k) = k—b, if k > by, 0, (k) = ay—k
if k < av, 0,(k) = 0 otherwise. Thus, for an orientation A,
co(A) = 0,(df (v)).

In this setting, we consider two “optimal” orientations of
T+ s; one is an optimal orientation under the constraint that
{r, s} is oriented as (s,7), and the other is one under {r, s}
is oriented as (r,s). We denote the values of such orienta-
tions by ¢~ (T) and ¢" (T), respectively. That is, these can
be represented by

Z g(co(A))

veV(T)

¢ (T) = min
and

¢"(T) =min { g(B-(dX (1) + 1))+ D gles(A))
veV(T)\{r}

Note that ¢~ (T) =
min{q ™ (T),q"(T)}.

Now we show a “principle of optimality” equation. Let

Opt(T). Clearly, Opt(T + s) =

L(v,k) = {A | d}(v) = k},

and T, be the subtree of T rooted at w. Then, we have

— (T — . . ) TR,
q (T) k:(g{yd(T)Aeng}gk){g(O (k) +q(T,k)}
and
+ _ . .
¢ (T)=, _win = min {9(0-(k+1))+a(T k)},
where

q(T,k) = min

N'CN(r)

Z q (Tw) + Z q+(Tw) .

weN' weN(r)\N’
|IN'|=k

Here, (T, k) is the minimum orientation value without the
cost on r under the constraint that df (r) = k. Since g(6,(k))
and ¢g(6-(k 4+ 1)) do not depend on orientations and ¢(7, k)

is transformed to,

Q(Ta k) = Z

weN (r)

q"(Tw)+ min {Zh(Tw)},

’
N gN(T) weN’
IN|=k

where h(Tw) = ¢~ (Tw) — ¢ (Tw), ¢ (T) and ¢*(T) can be

essentially computed by k-times evaluation of

IN"|=k

Here let N(r, k) be a set of vertices in N(r) that have the k
smallest h(T,,). Then equation (1) is simply represented by

7 def
WT k)= > h(Tw). (2)
weN (r,k)
To obtain N(r,k) quickly, it is sufficient to sort

h(Tw) of w € N(r);
hi(T), ha(T), ..., ha@y(T), where hi(T) < ho(T) < ... £
haey(T). Then, h(T,k) = 3% | hi(T).

Based on these ideas, we can compute ¢~ (T) and ¢ (T)
of T rooted at r from the values of ¢~ (Ty) and ¢* (Tw)

by sorting h(Tw)’s, we obtain

of w € N(r), children of r as follows: compute h(Ty,) for
w € N(r) in O(d(r)) time, >, cn(n g (Tw) in O(d(r))
time, and sort h(Tw)’s in (d(r)logd(r)) time.
can compute g(6r(k)) + >, cn ) ¢ (Tw) + (T, k) (resp.,
9(O0r(k+1)+3 e N ¢ (To)+h(T, k)) incrementally, where

each increment takes O(1) time, and the minimum of them

Then we

is also found. That is, ¢~ (T') and ¢*(T) are computed in
O(d(r)logd(r)) time. Thus, ¢*(T) and ¢~ (T)(= Opt(T))
are obtained by the bottom up manner, and the total run-

ning time is



> 0(d(v)logd(v))

veV(T)

> O(d(v)log A)

veV(T)

O(nlog A).

0 Theorem 70 For any penalty function, MPDCO can be
solved in O(nlog A) time, when G is a tree.

O Remark 80 This O(nlogA) algorithm works for any ra-
tional valued penalty function if basic arithmetic operations
can be done in O(1) time; it is not necessary to be monotone
or g(0) =0.

4.2 O(n) time algorithm for convex penalty

In the above algorithm, the O(log A)-factor of the running
time is due to sorting. If the penalty function is convex, we
can avoid the sorting by utilizing the monotonicity, by which
the optimal solution is found by checking g(6,(k)) and equa-
tion (2) only for restricted numbers of k.

As seen in above, to obtain ¢~ (T) and ¢™ (T) it is enough

to compute

and

pdmin, {9(6:(k + 1)) + h(T, k),

respectively. Thus we focus on the behavior of
~— def 7

and
qT(T, k) < (6o (k + 1)) + A(T, k).

In the following, we only argue about ¢~ (T, k) for simplicity,
because almost the same argument holds for G+ (T, k).

A function on the integer domain is convex if and only
if the differences are monotonically non-decreasing. In this
section, we assume that g is convex, so g; Lef g(i)—g(i—1)is
monotonically non-decreasing. Since h(T, k) — h(T,k — 1) =
hi(T), which is monotonically non-decreasing, (T, k) is also
convex. Therefore, G~ (T, k) — ¢~ (T, k — 1) = gg,. k) + he(T),
is also monotonically non-decreasing, and thus ¢ (T, k) is
convex.

Hence, ¢~ (T, k) takes its minimum at k = 0, k = d(r), or
k* such that

90,-(k*) + hix (T) £ 0 and go,. (k*41) + hax41(T) 2 0.

Since for k = 0 and d(r), ¢~ (T, k) can be easily computed,
the crucial point is how we know k*. This is not trivial, be-
cause h(T,k) and hi(T)’s are not explicitly given, and we
just have raw values of h(T,) (and we do not want to sort
them, because it takes O(d(r)logd(r)) time).

Here, we use a SELECTION algorithm by the binary
search manner to obtain k*. SELECTION(S, k) is the prob-

lem of finding the k-th smallest number in a given list .S, and

it can be solved in O(]S|) time [6].

A description of the whole algorithm to obtain ¢~ (T') is
given below (Algorithm 1). Since the g(6,(7)) part can be
obtained in O(1) time by the assumption, the running time of
the algorithm is dominated by the running time of SELEC-
TION’s and updating S, which takes O(]S|) time. Since the
size of S becomes half in every execution of Step 2, the to-
tal running time is O(|N(r)| + [N(r)|/2+ |N(r)|/4+---) =
O(|N(r)|) = O(d(r)). Therefore, we can compute ¢~ (T") and
¢t (T) in Y, oy O(d(v)) = O(n) time.

0 Theorem 90 For convex penalty functions, MPDCO can be

solved in O(n) time, when G is a tree.

Algorithm 1 Algorithm Compute ¢~ (7))

1: Let I := 0 and u :=d(r), and S := {h(Tw) | w € N(r)}.

2: Let ¢ = [(I + u)/2].
SELECTION(S, 4).

3: If gg, (5 +hi(T) > 0 holds, then update S := S\ {h(Tw) € S |
h(Tw) 2 hi(T)}, u =1, and goto Step 2.

4: If gg,. (5 + hi(T) < 0 holds, then update S := S\ {h(Tw) € S|
h(Tw) £ hi(T)} and I := i, and goto Step 2.

5: If gg,.(;) + hi(T) = 0 or u — 1 < 1 holds, then let k* =i +1
and compute ¢~ (T) = min{g (7,0),¢ (T, k*),qg (T,d(r))}.
Then output it. halt.

Compute gg, (;y and h;(T) by

5. Concluding remarks

In this paper, we studied a type of degree constrained ori-
entation of undirected graphs. The problem is formulated as
an optimization problem that minimizes penalties for viola-
tion. There are many possible extensions. One such exten-
sion is to further consider the hypergraph setting more, as
seen in Section 2.

Another extension is to consider the weighted case. Min-
MaxO and MaxMinO, variants of MPDCO, have also been
studied in the weighted setting. This setting is considered
interesting, because MinMaxO is regarded as a special case of
minimum makespan or scheduling on unrelated parallel ma-
chines (R||Cmaqe in the now-standard notation). In passing,
a polynomial time 2-approximation algorithm for the general
R||Crnaz and its 3/2 inapproximability are shown in [21], and
the inapproximability bound holds even for the restricted
case, MinMaxO [4].
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