
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

次数上下界制約付きグラフ向き付けにおけるペナルティ最小化

朝廣 雄一† Jesper JANSSON†† 宮野 英次††† 小野 廣隆††††

† 九州産業大学情報科学部
†† お茶の水女子大学

††† 九州工業大学大学院情報工学研究院
†††† 九州大学大学院経済学研究院

E-mail: †asahiro@is.kyusan-u.ac.jp, ††Jesper.Jansson@ocha.ac.jp, †††miyano@ces.kyutech.ac.jp,

††††hirotaka@en.kyushu-u.ac.jp

あらまし 無向グラフ G = (V,E)が与えられたとき, ある制約を満たすように各辺に向き付けを与えた有向グラフ

G⃗ = (V,Λ(E))を求める問題をグラフ向き付け問題という. Λ(E)は辺 {u, v} ∈ E の向き付け割当集合を表す．本稿で

は次数制約の下でのグラフ向き付け問題を扱う: 各頂点 vについて正整数 av と bv (av <= bv) が指定されたとき，でき

るだけ多くの頂点 vについて av <= |{(v, u) ∈ Λ(E)}| <= bv となるGの向き付けを求める．本稿では，
∑

v∈V cv を最小

化するグラフ向き付けを求める問題を考える．ここで，cv は次数制約を満たさない頂点 vに対するペナルティを表し

ている．本稿では以下を示す．(i) 任意の凸なペナルティ関数 (線形関数を含む) を考えたときの次数制約の下でのグ

ラフ向き付け問題は O(m1.5 min{log(nC),∆0.5})時間で解くことができる．ここで，n = |V |およびm = |E|であり，
∆と C はそれぞれ最大次数とペナルティ関数の最大値である．(ii) 一方，ステップ関数 (すなわち凹関数)の場合には

APX困難である．(iii) 木の場合には，任意のペナルティ関数について O(n log∆)時間で解を求めることができ，ペ

ナルティ関数が凸の場合には線形時間で解を求めることができる．

Minimizing Penalty on Upper and Lower Degree Constrained Graph

Orientation

Yuichi ASAHIRO†, Jesper JANSSON††, Eiji MIYANO†††, and Hirotaka ONO††††

† Department of Information Science, Kyushu Sangyo University

†† Ochanomizu University

††† Department of Systems Design and Informatics, Kyushu Institute of Technology

†††† Department of Economic Engineering, Kyushu University

E-mail: †asahiro@is.kyusan-u.ac.jp, ††Jesper.Jansson@ocha.ac.jp, †††miyano@ces.kyutech.ac.jp,

††††hirotaka@en.kyushu-u.ac.jp

Abstract Given an undirected graph G = (V,E), a graph orientation problem is to decide a direction of each edge

so that the resulting directed graph G⃗ = (V,Λ(E)) satisfies a certain condition, where Λ(E) is a set of an assignment

of a direction to each edge {u, v} ∈ E. We consider a degree constrained orientation: Given positive integers av

and bv for each v (av <= bv), decide an orientation of G so that av <= |{(v, u) ∈ Λ(E)}| <= bv holds for as many

vertices v’s as possible. In this paper, we consider the problem of finding an orientation that minimizes
∑

v∈V cv,

where cv is a penalty incurred for v’s violating the degree constraint. We show that: (i) The degree-constrained

orientation with any convex (including linear) penalty function can be solved in O(m1.5 min{log(nC),∆0.5}), where
n = |V |,m = |E|, ∆ and C are the maximum degree and the largest magnitude of a penalty, respectively. (ii) In

contrast, it is APX-hard for step (i.e., concave) penalty functions. (iii) For trees, the problem with any penalty

functions can be solved in O(n log∆) time, and if the penalty function is convex, it is solvable in linear time.

1. Introduction

1. 1 Problem and summary of results

We assume a basic knowledge of graph theory. Let G =

(V,E) be an undirected graph, where V and E denote the

sets of vertices and edges, respectively. We allow G to

have parallel edges; G is possibly a multi-graph. Through-

out the paper, let |V | = n and |E| = m for the graph.

Two vertices u and v are called adjacent to each other if

{u, v} ∈ E. Let N(u) be the set of adjacent vertices of u,

i.e., N(u) = {v | {u, v} ∈ E}, and d(u) = |N(u)| is called

degree of u. We denote max{d(v) | v ∈ V } by ∆. An orien-

tation Λ of graph G is a set of an assignment of a direction

to each edge {u, v} ∈ E, i.e., Λ({u, v}) = (u, v) or (v, u). We

simply use Λ to represent Λ(E) =
∪

e∈E{Λ(e)} if no confu-

sion arises. The outdegree of u on Λ is |{v | (u, v) ∈ Λ}|,
which is denoted by d+Λ (u).

Suppose that a sequence of 2n positive integers av, bv(av <=

bv) for v ∈ V is given as a degree constraint. For av and bv’s,

a degree constrained orientation is an orientation of G such

that av <= d+Λ (v) <= bv holds for every v ∈ V . Obviously, G

does not always have a degree constrained orientation. In

such a case, we would like to find an orientation that “best”

fits the degree constraint. A violation vector c(Λ) of an orien-

tation Λ of G is (c1(Λ), c2(Λ), . . . , cn(Λ)), where for v ∈ V ,

cv(Λ) = d+Λ (v) − bv if d+Λ (v) > bv, cv(Λ) = av − d+Λ (v) if

d+Λ (v) < av, cv(Λ) = 0 otherwise. A penalty function p is a

finite, non-negative and non-decreasing function with n vari-

ables. By using these, we define the best-fit orientation to

the degree constraint by an orientation Λ ofG that minimizes

p(c(Λ)). We call this Minimum Penalty Degree Constrained

Orientation, MPDCO for short.

For an example, see the undirected graph G = (V,E) in

Figure 1-(a). Figures 1-(b) and (c) are two directed graphs

obtained by orientations Λ and Λ′, respectively. For ex-

ample, let av = 1 and bv = 2 for any v ∈ V . We first

observe the case when p is a summation of a convex func-

tion g(x) = x2 for each vertex, i.e., p(c(Λ)) =
∑

g(cv(Λ)).

(b) If the outdegree sequence is (1, 1, 5, 0, 2, 2, 0, 2) in the

column major order from the left to the right, then its vi-

olation vector c(Λ) is (0, 0, 3, 1, 0, 0, 1, 0). Thus, the total

penalty function p(c(Λ)) is
∑

g(cv(Λ)) = 32 + 12 + 12 = 11.

On the other hand, (c) c(Λ′) = (0, 0, 1, 1, 1, 1, 1, 0) and

p(cv(Λ
′)) =

∑
g(cv(Λ

′)) = 12 × 5 = 5.

As another example, consider the following concave func-

tion g′(x) instead of g(x):

g′(x) =

x if x <= 1

1 if x > 1.

Then, (b) the penalty of Λ is
∑

g′(cv(Λ)) = 1 + 1 + 1 = 3,

(a)

(b)

1 2

1

5 0

220

(c)

1 3

1

3 0

230

Fig. 1 Example of MPDCO: (a) An undirected graph G =

(V,E); (b) an orientation Λ of G with outdegree se-

quence (1, 1, 5, 0, 2, 2, 0, 2) from the left top to the right

bottom; (c) an orientation Λ′ of G with outdegree se-

quence (1, 1, 3, 0, 3, 3, 0, 2).

and (c) the penalty of Λ′ is
∑

g′(cv(Λ
′)) = 1 × 5 = 5. The

“balanced” orientation Λ′ is worse than the “unbalanced”

orientation Λ for g′. Also, note that the penalty highly de-

pends on the values of av and bv.

Degree constrained orientations have been intensively

studied for long time, because many graph problems includ-

ing graph routing, matching, and covering can be formal-

ized as graph orientations. The earliest result about the

orientability for given degree constraints is by Landau [19],

who proved the necessary and sufficient conditions complete

graphs must satisfy. Subsequently, Hakimi generalized Lan-

dau’s result to general graphs. However, as mentioned above,

such an orientation does not always exist. Our problem

MPDCO resolves the problem for such a case, by consider-

ing degree constraints as soft constraints; it finds an optimal

orientation that minimizes penalties charged for violation.

It should be noted that MPDCO is a natural generalization

of several optimization problems to control outdegrees of an

undirected graph. For example, Minimum Maximum Out-

degree Orientation Problem (MinMaxO), i.e., the problem of

finding an orientation of minimizing max{d+Λ (u) | u ∈ V },
is formalized as MPDCO with ai = bi = 0, i = 1, 2, . . . , n

and n-dimensional ∞ norm α (i.e., p(x1, x2, . . . , xn) =

(
∑n

i |xi|α)1/α, α → ∞). Maximum Minimum Outdegree

Orientation Problem (MaxMinO), the problem of finding

an orientation of maximizing min{d+Λ (u) | u ∈ V }, is

also [5, 3, 4].

Clearly, the nature of MPDCO depends on the penalty

function. In this paper, we study the relationship be-

tween the computational complexity of MPDCO and penalty

functions. We assume here that penalty functions are

linearly separable, i.e., it can be written as p(c(Λ)) =∑
u∈V g(cu(Λ)), where g is a non-negative one variable func-

tion with g(0) = 0. In this setting, we focus on the following

types of functions as typical examples of g: convex (including

linear) and concave (including step) functions. Throughout

the paper, we assume that g is a fixed function, and evalu-

ated in constant time; for a positive integer x, the value of

g(x) is obtained in O(1) time.

The results in this paper are summarized as follows:

(1) If g is a convex function, MPDCO can be solved in

O(m1.5 min{log(nC),∆0.5}) time, where C is the largest

magnitude of a penalty. That is, if we adopt a natural poly-

nomial penalty function, such as nk with a positive integer k,

it is O(m1.5 logn). Note that this time complexity is similar

to that of MinMaxO for unweighted graphs, a restricted case

of MPDCO, in terms of order [5, 18, 25].

(2) MPDCO has no polynomial approximation algorithm

whose approximation factor is better than 1.3606 for con-

cave penalty functions, unless P=NP; it is APX-hard. This

holds even for step penalty functions. Furthermore, MPDCO

is still APX-hard for a strictly increasing concave function,

a more restricted class of concave functions.

(3) For trees, the problem with general penalty functions

can be solved in O(n log∆) time. This running time is avail-

able for any rational valued penalty function if basic arith-

metic operations can be done in O(1) time; g is not necessary

to be convex or concave. If g is convex, the running time is

improved to O(n).

The remainder of the paper is organized as follows. In the

next subsection, we introduce related work about graph ori-

entation to control (weighted) outdegrees. In Section 2,we

present polynomial time algorithms for MPDCO with con-

vex functions. Section 3 shows the hardness of MPDCO with

concave functions, and Section 4 presents O(n log∆) and

O(n) time algorithms for trees. Section 5 discusses further

research on the problems and concludes the paper.

1. 2 Related work

Graph orientation itself is a fundamental problem in the

area of graph theory and combinatorial optimization. In gen-

eral, graph orientation is a problem of giving an orientation

to a given undirected graph to meet some given requirement.

There are many types of requirements considered, such as

connectivity, reachability and so on [23, 22, 16]. Among sev-

eral variations of graph orientation, many researchers have

been devoted to graph orientation with degree constraints

and there are a large literature; e.g., see Sections 61.1 in [24]

7.4.3 in [20] and 2.3 in [11].

For example, Hakimi [15], Frank and Gyárfás [12],

Chrobak and Eppstein [9], and Gabow [13] studied the

degree-constrained orientation problem, where its goal is to

orient as many edges as possible in an undirected graph,

subject to the upper and lower bounds on the outdegree of

each vertex (or equivalently, the upper bounds on the in-

degree and outdegree of each vertex). In [15] Hakimi gave

the necessary and sufficient conditions of graphs that can be

oriented so that every outdegree is at most a given upper

bound. These were generalized by Frank and Gyárfás in [12]

to a characterization of graphs that can be oriented so that

every outdegree is between given upper and lower bounds.

In [9], Chrobak and Eppstein studied the orientation of a

planar graph and showed that a 3-bounded outdegree orien-

tation and a 5-bounded acyclic orientation can be obtained

in linear time for any planar graph. Furthermore, recently,

in [13], Gabow considered the partial orientation problem,

which formulates the degree-constrained orientation problem

as the optimization problem. A partial orientation assigns

a unique direction to a subset of the edges, leaving the re-

maining edges unoriented. Then, the goal is to orient as

many edges as possible in the input undirected graph without

breaking the degree constraints. He proved that the partial

orientation problem is MAXSNP-hard and provided an LP-

rounding algorithm which achieves approximation ratio 3/4.

Remark that our formulation of the degree-constrained ori-

entation can be regarded as the dual problem of the previous

one; the whole set of edges has to be assigned a unique direc-

tion, but the degree constraints can be broken with penalty.

As mentioned above, MPDCO is a generalization of Min-

MaxO (resp., MaxMinO), which is an orientation that min-

imizes (resp., maximizes) the minimum (resp., maximum)

outdegree. MinMaxO and MaxMinO also have been stud-

ied well by the relation with other combinatorial problems.

For example, MinMaxO can be used in efficient dynamic

data structures for graphs that support fast vertex adjacency

queries under a series of edge operations [7]. Furthermore,

edge weighted version of MinMaxO is a special case of the

minimum makespan problem (e.g., [21]).

2. Polynomial time algorithms for convex

penalty

In this section, we present a simple approach to solve

MPDCO with convex functions. The time complexity is

O(m1.5 min{log(nC),∆0.5}), where C is the largest magni-

tude of a penalty. The approach is based on the reduction to

the convex cost flow problem, which can be solved in strongly

polynomial time.

In general, a network flow problem is the problem of

finding some optimal flow on a given network that satis-

fies capacity constraints on arcs (directed edges) and sup-

ply/demand conditions on vertices, and many types of net-

work flow problems are intensively and extensively stud-

ied. See [2]. Among them, the convex cost flow problem

is an optimization problem on a network in which each arc

is associated with a convex function whose variable is flow

through the arc. The cost of flow is the total sum of flow

costs on the arcs, and the convex cost flow problem is the

problem of finding a flow whose cost is minimum. If the

convex functions are just linear functions, the problem is

simply called the minimum cost flow problem, which is a

well studied problem. It is known that the convex cost flow

problem can be solved in O(NM log(N2/M) log(nU)) time,

where N , M and U are the number of vertices, the number

of edges and the largest magnitude of the lower and upper

bounds on capacities in the network, respectively [1]. Fortu-

nately, our problem belongs to a relatively smaller class of

the flow problems; the capacity of every arc is integral. For

this class, a faster algorithm by [14] can be applied. The

running time is O((min{MU log(MU), N2
√
M}) log(NC) +

min{
√
MU,N2/3M1/3, N}M), where M,N,U are defined as

above and C is the largest magnitude of a cost (the cost is

assumed to be integral), or O(
√

M̃M̃ log(NC)), where M̃ is

the total capacity of edges.

［Theorem 1］ MPDCO with convex penalty can be solved

in O(m1.5 min{log(nC),∆0.5}) time, where C is the largest

magnitude of a cost.

Proof. From graph G = (V,E), sequence of 2n integers

(a1, a2, . . . , an), (b1, b2, . . . , bn) and convex penalty function

g(x), we construct the following network N = (VN , EN):

VN = V ∪ E ∪ {s, t},

EN =
∪

e={u,v}∈E

{(s, e), (e, u), (e, v)} ∪ Et,

where Et =
∪

v∈V {(v, t)}. The capacity of arc (v, t) in Et is

defined by cap((v, t)) = d(v), and those of the other arcs are

1. The supply of source s and the demand of sink t are set to

be m. See Figure 2 as an example of this construction. The

dotted edges are in Et. For this network, a flow of N is a

function f : EN → R+, where R+ is the set of non-negative

real number, which satisfies that f((i, j)) <= cap((i, j)) for

all (i, j) ∈ EN ,
∑

(u,i)∈EN
f((u, i)) =

∑
(j,u)∈EN

f((j, u))

for all u ∈ VN \ {s, t},
∑

(s,i)∈EN
f((s, i)) = m and∑

(i,t)∈EN
f((i, t)) = m.

We define the cost function of arc (v, t) ∈ Et as

(a)
v1e1 e2e3e4 e6e5e7v2 v3v4 v5

(b)
v1v2v3v4v5

e1
e7
e2

s t
Fig. 2 Network construction in Section 2.: (a) An undirected

graph, (b) the network constructed from (a).

O degree

cost

1

9

41 8

4

Fig. 3 Example of cost(v,t)(x): av = 3, bv = 5 and g(x) = x2.

cost(v,t)(x) =


g(av − x) if x < av,

0 if av <= x <= bv,

g(x− bv) if x > bv,

where x is the amount of flow on this arc. For any other

arc (i, j), cost(i,j)(x) = 0. Note that the cost functions are

all convex under the assumption g is a convex function with

g(0) = 0. See Figure 3 for an example of g(x) and cost(v,t)(x).

Here, we can see that if f is an integral flow, it can be

regarded as an orientation of G. In fact, in any feasible in-

tegral flow of N , for any e = {u, v} ∈ E, exactly one of

the following cases holds: f((e, u)) = 1 and f((e, v)) = 0, or

f((e, u)) = 0 and f((e, v)) = 1, which can be interpreted to

an orientation of e. Then, f((v, t)) corresponds to the outde-

gree of v, which implies to cost(v,t)(f((v, t))) is the penalty

on v in the orientation, and hence
∑

v∈V cost(v,t)(f((v, t))) =∑
(i,j)∈EN

cost(i,j)(f((i, j))) is the penalty of the orientation.

Therefore, our problem is to find an integral flow that mini-

mizes
∑

(i,j)∈EN
cost(i,j)(f((i, j))), which is a minimum con-

vex cost flow problem with integral constraints.

Since it is known that the convex cost flow problem

with integral capacities has an integral optimal flow [14],

the integral constraints can be removed. Furthermore,

the algorithm presented in the same paper finds such

a solution in O((min{MU log(MU), N2
√
M}) log(NC) +

min{
√
MU,N2/3M1/3, N}M) time, where N , M , U and C

are the number of vertices, the number of edges and the

largest magnitude of the lower and upper bounds on ca-

pacities, the largest magnitude of a cost in the network,

respectively, or in O(
√

M̃M̃ log(NC)) time, where M̃ is

the total capacity of edges. In our reduction, N = O(m),

M = O(m), U = ∆, C is the largest cost and M̃ = O(m).

Consequently, we can solve MPDCO with convex penalty in

O(m1.5 min{log(nC),∆0.5}) time. 2

By this theorem, for natural polynomial penalty functions,

such as nk with a constant k, the problem can be solved in

O(m1.5 logn) time. This time complexity is almost same as

that of MinMaxO and MaxMinO, O(m1.5 log∆).

［Remark 2］ This reduction is also available for hypergraph

orientation. A hypergraph H = (V,H) is an extension of

ordinary graphs, in which each hyperedge e ∈ E can have

more than two vertices. An orientation Λ of a hypergraph

is an assignment of a hyperedge e to a vertex in e, which

is a generalization of graph orientation [11]. The above

reduction works for hypergraphs, and achieves essentially

the same time complexity, i.e., O(m1.5 min{∆̃0.5, log(nC)}),
where ∆̃ = maxv∈V {|{e | v ∈ e}|}.

3. APX-hardness for step and strictly

concave functions

In this section, we show the APX-hardness ofMPDCO with

concave penalty functions. In Section 3. 1, we show the hard-

ness of MPDCO with step functions, which are also consid-

ered concave. In Section 3. 2, we consider strictly concave

functions, as another typical classes of concave functions.

In both cases, MPDCO is APX-hard. Especially, MPDCO

with step penalty functions is not approximable within

1.3606 unless P = NP, so is MPDCO with convex penalty

functions.

3. 1 APX-hardness for step functions

In this section, let au = bu = 0 for every u ∈ V , and hence

cu(Λ) = d+Λ (u). Suppose that the penalty function is a step

function, defined as

g(x) =

c if x > 0

0 if x = 0,

where c is a positive constant. For simplicity, we callMPDCO

in this setting MPDCOstep. What we do in the following is

to show that MPDCOstep is essentially equivalent to Mini-

mum Vertex Cover (MinVC for short). A vertex set V ′⊂
=V

of graph G = (V,E) is called a vertex cover if for every edge

e ∈ E, e∩V ′ |= ∅ holds. MinVC is the problem of finding the

minimum size of a vertex cover of a given graph G = (V,E).

We show the following theorem:

［Theorem 3］ A graph G = (V,E) has a vertex cover with

size k if and only if MPDCOstep for G has cost ck.

Proof. Suppose that the graph G has a vertex cover V ′ of

size k. That is, for every edge {u, v}, u ∈ V ′ or v ∈ V ′. If

u ∈ V ′ and v ̸∈ V ′, then the edge {u, v} is oriented from

u to v. If both vertices u and v in V ′, we orient {u, v} to

the arbitrary direction. One can see that the degree of every

vertex in V \ V ′ is 0. Thus, the total cost of the orientation

is ck.

If the minimum size of the vertex cover of G is at least

k+1, then there are at least k+1 vertices whose degrees are

at least 1 for any orientation. Therefore, the cost is at least

c(k + 1). 2

By the inapproximability of vertex cover problem in [10]

and [17], we obtain the following corollaries.

［Corollary 1］ There is no polynomial time algorithm for

MPDCOstep whose approximation factor is better than

1.3606, unless P=NP.

［Corollary 2］ There is no polynomial time algorithm for

MPDCOstep whose approximation factor is better than 2, if

the unique game conjecture holds.

3. 2 APX-hardness for strictly concave functions

The goal of this section is to show that the hardness of ap-

proximation for MPDCO with a strictly concave function via

a gap-preserving reduction from a variant of the Maximum

4-Dimensional Matching problem. Here, let au = bu = 0 for

every u ∈ V again.

［Definition 4］（Max-4DM） Given the disjoint sets R, S, T

and U having the same number n of elements, and a set

Q⊂
=R×S×T×U , a 4D-matching for Q is a subset Q′⊂

=Q such

that no elements in Q′ agree in any coordinate. The goal of

the Maximum 4-Dimensional Matching (Max-4DM for short)

is to find the cardinality of a maximum 4D-matching.

［Definition 5］（Max-4DM-2） If the number of occurrence of

any element in R, S, T or U is exactly twice, this restricted

version of the Maximum 4-Dimensional Matching is called

Max-4DM-2. Note that the instance Q of Max-4DM-2 in-

cludes exactly 2n quadruplets.

It is known [8] that it is NP-hard to approximate Max-

4DM-2 to within 48
47
.

Let OPT4dm(Q) denote the cardinality of a 4D-matching

output by an optimal algorithm for the instance Q of Max-

4DM-2.

［Lemma 1］ Suppose that |R| = |S| = |T | = |U | = n and

thus |Q| = 2n. Then, the following inequality holds:

2n

5
<= OPT4dm(Q) <= n.

Proof. If we select one quadruplet, say, (r, s, t, u), and put it

into a 4D-matching Q′, then there are at most four quadru-

plets which contains r, s, t, or u in the worse case. In other

words, we can always obtain at least 2n/5 disjoint quadru-

plets. By the assumption |R| = |S| = |T | = |U | = n,

OPT4dm(Q) <= n holds. 2

［Theorem 6］ There is no polynomial time algorithm for

MPDCOconcave whose approximation factor is better than
433
432

, unless P=NP.

Proof. We can give a gap-preserving reduction from

Max-4DM-2 to MPDCOconcave that transforms an instance

Q of Max-4DM-2 to an undirected graph G = (V,E)

and its concave functions on vertices such that (1) if

OPT4dm(Q) = max, then OPTmpdco(G) = 4n−max, and (2)

if OPT4dm(Q) <=
47
48

·max, then OPTmpdco(G) >= 4n− 47
48

·max.

We can set max = c · n for c >=
2
5
by Lemma 1. Then, the

gap between (1) and (2) is calculated as follows:

4− 47
48
c

4− c
= 1 +

c

192− 48c

>= 1 +
1

432
.

This means that the inapproximability bound is 433/432.

Details are omitted. 2

4. Faster time algorithm for trees

In this section, we propose an O(n log∆) time algorithm

that solves MPDCO with any penalty functions for trees. In

contrast, MPDCO with concave penalty is APX-hard in gen-

eral. We also show that the algorithm can be modified to

run in linear time for convex penalty.

4. 1 O(n log∆) time algorithm for general case

Our algorithm is based on dynamic programming. To ex-

plain the idea, we first introduce some new notation.

We denote the optimal value of MPDCO of a graph G by

Opt(G) in the following. For a tree T rooted at some r, we

consider a tree T + s in which a vertex s is attached with r,

that is, T + s = (V (T) ∪ {s}, E(T) ∪ {{r, s}}) rooted at s.

In the context of MPDCO, s is a virtual vertex for which no

penalty is charged in any orientation (or, we assume as = 0

and bs = ∞). For vertex v with degree k, we denote its viola-

tion by θv(k), that is, θv(k) = k−bv if k > bv, θv(k) = av−k

if k < av, θv(k) = 0 otherwise. Thus, for an orientation Λ,

cv(Λ) = θv(d
+
Λ (v)).

In this setting, we consider two “optimal” orientations of

T+s; one is an optimal orientation under the constraint that

{r, s} is oriented as (s, r), and the other is one under {r, s}
is oriented as (r, s). We denote the values of such orienta-

tions by q−(T) and q+(T), respectively. That is, these can

be represented by

q−(T) = min
Λ

 ∑
v∈V (T)

g(cv(Λ))


and

q+(T) = min
Λ

g(θr(d
+
Λ (r) + 1)) +

∑
v∈V (T)\{r}

g(cv(Λ))

 .

Note that q−(T) = Opt(T). Clearly, Opt(T + s) =

min{q−(T), q+(T)}.
Now we show a “principle of optimality” equation. Let

L(v, k) = {Λ | d+Λ (v) = k},

and Tw be the subtree of T rooted at w. Then, we have

q−(T) = min
k=0,...,d(r)

min
Λ∈L(r,k)

{g(θr(k)) + q(T, k)} ,

and

q+(T) = min
k=0,...,d(r)

min
Λ∈L(r,k)

{g(θr(k + 1)) + q(T, k)} ,

where

q(T, k) = min
N′⊂
=N(r)

|N′|=k

 ∑
w∈N′

q−(Tw) +
∑

w∈N(r)\N′

q+(Tw)

 .

Here, q(T, k) is the minimum orientation value without the

cost on r under the constraint that d+Λ (r) = k. Since g(θr(k))

and g(θr(k + 1)) do not depend on orientations and q(T, k)

is transformed to,

q(T, k) =
∑

w∈N(r)

q+(Tw) + min
N′⊂
=N(r)

|N′|=k

{ ∑
w∈N′

h(Tw)

}
,

where h(Tw) = q−(Tw) − q+(Tw), q
−(T) and q+(T) can be

essentially computed by k-times evaluation of

min
N′⊂
=N(r)

|N′|=k

{ ∑
w∈N′

h(Tw)

}
. (1)

Here let N(r, k) be a set of vertices in N(r) that have the k

smallest h(Tw). Then equation (1) is simply represented by

h̃(T, k)
def
=

∑
w∈N(r,k)

h(Tw). (2)

To obtain N(r, k) quickly, it is sufficient to sort

h(Tw) of w ∈ N(r); by sorting h(Tw)’s, we obtain

h1(T), h2(T), . . . , hd(r)(T), where h1(T) <= h2(T) <= . . . <=

hd(r)(T). Then, h̃(T, k) =
∑k

i=1 hi(T).

Based on these ideas, we can compute q−(T) and q+(T)

of T rooted at r from the values of q−(Tw) and q+(Tw)

of w ∈ N(r), children of r as follows: compute h(Tw) for

w ∈ N(r) in O(d(r)) time,
∑

w∈N(r) q
+(Tw) in O(d(r))

time, and sort h(Tw)’s in (d(r) log d(r)) time. Then we

can compute g(θr(k)) +
∑

w∈N(r) q
+(Tw) + h̃(T, k) (resp.,

g(θr(k+1))+
∑

w∈N(r) q
+(Tw)+h̃(T, k)) incrementally, where

each increment takes O(1) time, and the minimum of them

is also found. That is, q−(T) and q+(T) are computed in

O(d(r) log d(r)) time. Thus, q+(T) and q−(T)(= Opt(T))

are obtained by the bottom up manner, and the total run-

ning time is

∑
v∈V (T)

O(d(v) log d(v)) =
∑

v∈V (T)

O(d(v) log∆)

= O(n log∆).

［Theorem 7］ For any penalty function, MPDCO can be

solved in O(n log∆) time, when G is a tree.

［Remark 8］ This O(n log∆) algorithm works for any ra-

tional valued penalty function if basic arithmetic operations

can be done in O(1) time; it is not necessary to be monotone

or g(0) = 0.

4. 2 O(n) time algorithm for convex penalty

In the above algorithm, the O(log∆)-factor of the running

time is due to sorting. If the penalty function is convex, we

can avoid the sorting by utilizing the monotonicity, by which

the optimal solution is found by checking g(θr(k)) and equa-

tion (2) only for restricted numbers of k.

As seen in above, to obtain q−(T) and q+(T) it is enough

to compute

min
k=0,...,d(r)

{g(θr(k)) + h̃(T, k)}

and

min
k=0,...,d(r)

{g(θr(k + 1)) + h̃(T, k)},

respectively. Thus we focus on the behavior of

q̃−(T, k)
def
= g(θr(k)) + h̃(T, k)

and

q̃+(T, k)
def
= g(θr(k + 1)) + h̃(T, k).

In the following, we only argue about q̃−(T, k) for simplicity,

because almost the same argument holds for q̃+(T, k).

A function on the integer domain is convex if and only

if the differences are monotonically non-decreasing. In this

section, we assume that g is convex, so gi
def
= g(i)−g(i−1) is

monotonically non-decreasing. Since h̃(T, k)− h̃(T, k − 1) =

hk(T), which is monotonically non-decreasing, h̃(T, k) is also

convex. Therefore, q̃−(T, k)− q̃−(T, k− 1) = gθr(k) + hk(T),

is also monotonically non-decreasing, and thus q̃−(T, k) is

convex.

Hence, q̃−(T, k) takes its minimum at k = 0, k = d(r), or

k∗ such that

gθr(k∗) + hk∗(T) <= 0 and gθr(k∗+1) + hk∗+1(T) >= 0.

Since for k = 0 and d(r), q̃−(T, k) can be easily computed,

the crucial point is how we know k∗. This is not trivial, be-

cause h̃(T, k) and hk(T)’s are not explicitly given, and we

just have raw values of h(Tw) (and we do not want to sort

them, because it takes O(d(r) log d(r)) time).

Here, we use a SELECTION algorithm by the binary

search manner to obtain k∗. SELECTION(S, k) is the prob-

lem of finding the k-th smallest number in a given list S, and

it can be solved in O(|S|) time [6].

A description of the whole algorithm to obtain q−(T) is

given below (Algorithm 1). Since the g(θr(i)) part can be

obtained in O(1) time by the assumption, the running time of

the algorithm is dominated by the running time of SELEC-

TION’s and updating S, which takes O(|S|) time. Since the

size of S becomes half in every execution of Step 2, the to-

tal running time is O(|N(r)|+ |N(r)|/2 + |N(r)|/4 + · · ·) =
O(|N(r)|) = O(d(r)). Therefore, we can compute q−(T) and

q+(T) in
∑

v∈V O(d(v)) = O(n) time.

［Theorem 9］ For convex penalty functions, MPDCO can be

solved in O(n) time, when G is a tree.

Algorithm 1 Algorithm Compute q−(T)

1: Let l := 0 and u := d(r), and S := {h(Tw) | w ∈ N(r)}.
2: Let i := ⌊(l + u)/2⌋. Compute gθr(i) and hi(T) by

SELECTION(S, i).

3: If gθr(i) +hi(T) > 0 holds, then update S := S \ {h(Tw) ∈ S |
h(Tw) >= hi(T)}, u = i, and goto Step 2.

4: If gθr(i) +hi(T) < 0 holds, then update S := S \ {h(Tw) ∈ S |
h(Tw) <= hi(T)} and l := i, and goto Step 2.

5: If gθr(i) + hi(T) = 0 or u − l <= 1 holds, then let k∗ = i + l

and compute q−(T) = min{q̃−(T, 0), q̃−(T, k∗), q̃−(T, d(r))}.
Then output it. halt.

5. Concluding remarks

In this paper, we studied a type of degree constrained ori-

entation of undirected graphs. The problem is formulated as

an optimization problem that minimizes penalties for viola-

tion. There are many possible extensions. One such exten-

sion is to further consider the hypergraph setting more, as

seen in Section 2.

Another extension is to consider the weighted case. Min-

MaxO and MaxMinO, variants of MPDCO, have also been

studied in the weighted setting. This setting is considered

interesting, because MinMaxO is regarded as a special case of

minimum makespan or scheduling on unrelated parallel ma-

chines (R||Cmax in the now-standard notation). In passing,

a polynomial time 2-approximation algorithm for the general

R||Cmax and its 3/2 inapproximability are shown in [21], and

the inapproximability bound holds even for the restricted

case, MinMaxO [4].

Acknowledgement

This study is partially supported by KAKENHI grant

number 21680001, 22650004, 22700019, 23500020 and

23700011.

References

[1] R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin. Solv-

ing the convex cost integer dual network flow problem.

Management Science, 49(7):950–964, 2003.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network

flows - theory, algorithms and applications. Prentice

Hall, 1993.

[3] Y. Asahiro, J. Jansson, E. Miyano, and H. Ono. Graph

orientation to maximize the minimum weighted outde-

gree. Int. J. Found. Comput. Sci., 22(3):583–601, 2011.

[4] Y. Asahiro, J. Jansson, E. Miyano, H. Ono, and K. Zen-

myo. Approximation algorithms for the graph orienta-

tion minimizing the maximum weighted outdegree. J.

Comb. Optim., 22(1):78–96, 2011.

[5] Y. Asahiro, E. Miyano, H. Ono, and K. Zenmyo. Graph

orientation algorithms to minimize the maximum out-

degree. Int. J. Found. Comput. Sci., 18(2):197–215,

2007.

[6] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and

R. E. Tarjan. Time bounds for selection. J. Comput.

Syst. Sci., 7(4):448–461, 1973.

[7] G. S. Brodal and R. Fagerberg. Dynamic representa-

tion of sparse graphs. In WADS, pages 342–351, 1999.

[8] M. Chleb́ık and J. Chleb́ıková. Complexity of approx-

imating bounded variants of optimization problems.

Theor. Comput. Sci., 354(3):320–338, 2006.

[9] M. Chrobak and D. Eppstein. Planar orientations with

low out-degree and compaction of adjacency matrices.

Theor. Comput. Sci., 86(2):243–266, 1991.

[10] I. Dinur and S. Safra. On the hardness of approximat-

ing minimum vertex cover. Annals of Mathematics,

pages 439–485, 2005.

[11] A. Frank. Connections in Combinatorial Optimization.

Oxford University Press, USA, 2011.

[12] A. Frank and A. Gyárfás. How to orient the edges of

a graph? Combinatorics, I:353–364, 1978.

[13] H. N. Gabow. Upper degree-constrained partial orien-

tations. In SODA, pages 554–563, 2006.

[14] H. N. Gabow and R. E. Tarjan. Faster scaling al-

gorithms for network problems. SIAM J. Comput.,

18(5):1013–1036, 1989.

[15] S. L. Hakimi. On the degree of the vertices of a directed

graph. J. Franklin Institute, 279:290–308, 1965.

[16] T. Ito, Y. Miyamoto, H. Ono, H. Tamaki, and R. Ue-

hara. Route-enabling graph orientation problems. In

ISAAC, pages 403–412, 2009.

[17] S. Khot and O. Regev. Vertex cover might be hard to

approximate to within 2 − ε. J. Comput. Syst. Sci.,

74:335–349, 2008.

[18] L. Kowalik. Approximation scheme for lowest out-

degree orientation and graph density measures. In

ISAAC, pages 557–566, 2006.

[19] H. Landau. On dominance relations and the structure

of animal societies: Iii the condition for a score struc-

ture. Bulletin of Mathematical Biology, 15(2):143–148,

1953.

[20] L. Lau, R. Ravi, and M. Singh. Iterative Methods in

Combinatorial Optimization (Cambridge Texts in Ap-

plied Mathematics). Cambridge Univ. Press, 2011.

[21] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Ap-

proximation algorithms for scheduling unrelated par-

allel machines. Math. Program., 46:259–271, 1990.

[22] C. Nash-Williams. On orientations, connectivity and

odd vertex pairings in finite graphs. Canad. J. Math,

12:555–567, 1960.

[23] H. Robbins. A theorem on graphs, with an application

to a problem of traffic control. The American Mathe-

matical Monthly, 46(5):281–283, 1939.

[24] A. Schrijver. Combinatorial Optimization. Springer,

2003.

[25] V. Venkateswaran. Minimizing maximum indegree.

Discrete Applied Mathematics, 143(1-3):374–378, 2004.

