
Upper and Lower Degree Bounded Graph Orientation
with Minimum Penalty∗

Yuichi Asahiro1 Jesper Jansson2 Eiji Miyano3 Hirotaka Ono4

1 Department of Information Science,
Kyushu Sangyo University,

Higashi-ku, Fukuoka 813-8503, Japan.
Email: asahiro@is.kyusan-u.ac.jp

2 Ochanomizu University,
Bunkyo-ku, Tokyo 112-8610, Japan.
Email: Jesper.Jansson@ocha.ac.jp

3 Department of Systems Design and Informatics,
Kyushu Institute of Technology,
Iizuka, Fukuoka 820-8502, Japan.

Email: miyano@ces.kyutech.ac.jp

4 Department of Economic Engineering,
Kyushu University,

Higashi-ku, Fukuoka 812-8581, Japan.
Email: hirotaka@en.kyushu-u.ac.jp

Abstract

Given an undirected graph G = (V,E), a graph orien-
tation problem is to decide a direction for each edge

so that the resulting directed graph G⃗ = (V,Λ(E))
satisfies a certain condition, where Λ(E) is a set of
assignments of a direction to each edge {u, v} ∈ E.
Among many conceivable types of conditions, we con-
sider a degree constrained orientation: Given positive
integers av and bv for each v (av ≤ bv), decide an ori-
entation of G so that av ≤ |{(v, u) ∈ Λ(E)}| ≤ bv
holds for every v ∈ V . However, such an orientation
does not always exist. In this case, it is desirable
to find an orientation that best fits the condition in-
stead. In this paper, we consider the problem of find-
ing an orientation that minimizes

∑
v∈V cv, where cv

is a penalty incurred for v’s violating the degree con-
straint. As penalty functions, several classes of func-
tions can be considered, e.g., linear functions, con-
vex functions and concave functions. We show that
the degree-constrained orientation with any convex
(including linear) penalty function can be solved in
O(m1.5 min{∆0.5, log(nC)}), where n = |V |,m = |E|,
∆ and C are the maximum degree and the largest
magnitude of a penalty, respectively. In contrast,
it has no polynomial approximation algorithm whose
approximation factor is better than 1.3606, for con-
cave penalty functions, unless P=NP; it is APX-hard.
This holds even for step functions, which are consid-
ered concave. For trees, the problem with any penalty
functions can be solved exactly in O(n log∆) time,
and if the penalty function is convex, it is solvable in
linear time.

Keywords: Graph orientation, Degree constraint, In-

∗Funded by KAKENHI grant number 21680001, 22650004,
22700019, 23500020 and 23700011.
Copyright c⃝2012, Australian Computer Society, Inc. This
paper appeared at the 18th Computing: Australasian The-
ory Symposium (CATS 2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in In-
formation Technology (CRPIT), Vol. 128, Julian Mestre, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

approximability, Convex functions, Concave func-
tions.

1 Introduction

1.1 Problem and summary of results

We assume a basic knowledge of graph theory. Let
G = (V,E) be an undirected graph, where V and
E denote the sets of vertices and edges, respectively.
We allow G to have parallel edges; G is possibly a
multi-graph. Throughout the paper, let |V | = n and
|E| = m for the graph. Two vertices u and v are
called adjacent to each other if {u, v} ∈ E. Let N(u)
be the set of adjacent vertices of u, i.e., N(u) = {v |
{u, v} ∈ E}, and d(u) = |N(u)| is called degree of u.
We denote max{d(v) | v ∈ V } by ∆. An orientation
Λ of graph G is a set of an assignment of a direction to
each edge {u, v} ∈ E, i.e., Λ({u, v}) = (u, v) or (v, u).
We simply use Λ to represent Λ(E) =

∪
e∈E{Λ(e)}

if no confusion arises. The outdegree of u on Λ is
|{v | (u, v) ∈ Λ}|, which is denoted by d+Λ(u).

Suppose that a sequence of 2n positive integers
av, bv(av ≤ bv) for v ∈ V is given as a degree con-
straint. For av and bv’s, a degree constrained orienta-
tion is an orientation of G such that av ≤ d+Λ (v) ≤ bv
holds for every v ∈ V . Obviously, G does not al-
ways have a degree constrained orientation. In such a
case, we would like to find an orientation that “best”
fits the degree constraint. A violation vector c(Λ)
of an orientation Λ of G is (c1(Λ), c2(Λ), . . . , cn(Λ)),
where for v ∈ V , cv(Λ) = d+Λ(v) − bv if d+Λ(v) > bv,

cv(Λ) = av − d+Λ(v) if d+Λ(v) < av, cv(Λ) = 0 other-
wise. A penalty function p is a finite, non-negative
and non-decreasing function with n variables. By us-
ing these, we define the best-fit orientation to the de-
gree constraint by an orientation Λ of G that mini-
mizes p(c(Λ)). We call this Minimum Penalty Degree
Constrained Orientation, MPDCO for short.

For an example, see the undirected graph G =
(V,E) in Figure 1-(a). Figures 1-(b) and (c) are two
directed graphs obtained by orientations Λ and Λ′,

Proceedings of the Eighteenth Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia

139

(a)

(b)

1 2

1

5 0

220

(c)

1 3

1

3 0

230

Figure 1: Example of MPDCO: (a) An undirected
graph G = (V,E); (b) an orientation Λ of G with
outdegree sequence (1, 1, 5, 0, 2, 2, 0, 2) from the left
top to the right bottom; (c) an orientation Λ′ of G
with outdegree sequence (1, 1, 3, 0, 3, 3, 0, 2).

respectively. For example, let av = 1 and bv = 2 for
any v ∈ V . We first observe the case when p is a sum-
mation of a convex function g(x) = x2 for each ver-
tex, i.e., p(c(Λ)) =

∑
g(cv(Λ)). (b) If the outdegree

sequence is (1, 1, 5, 0, 2, 2, 0, 2) in the column major
order from the left to the right, then its violation vec-
tor c(Λ) is (0, 0, 3, 1, 0, 0, 1, 0). Thus, the total penalty
function p(c(Λ)) is

∑
g(cv(Λ)) = 32 + 12 + 12 = 11.

On the other hand, (c) c(Λ′) = (0, 0, 1, 1, 1, 1, 1, 0) and
p(cv(Λ

′)) =
∑

g(cv(Λ
′)) = 12 × 5 = 5.

As another example, consider the following con-
cave function g′(x) instead of g(x):

g′(x) =

{
x if x ≤ 1
1 if x > 1.

Then, (b) the penalty of Λ is
∑

g′(cv(Λ)) = 1+1+1 =
3, and (c) the penalty of Λ′ is

∑
g′(cv(Λ

′)) = 1× 5 =
5. The “balanced” orientation Λ′ is worse than the
“unbalanced” orientation Λ for g′. Also, note that
the penalty highly depends on the values of av and
bv.

Degree constrained orientations have been inten-
sively studied for long time, because many graph
problems including graph routing, matching, and cov-
ering can be formalized as graph orientations. The
earliest result about the orientability for given de-
gree constraints is by Landau (Landau 1953), who
proved the necessary and sufficient conditions com-
plete graphs must satisfy. Subsequently, Hakimi gen-
eralized Landau’s result to general graphs. However,
as mentioned above, such an orientation does not al-
ways exist. Our problem MPDCO resolves the prob-
lem for such a case, by considering degree constraints
as soft constraints; it finds an optimal orientation that
minimizes penalties charged for violation.

It should be noted that MPDCO is a natural gen-
eralization of several optimization problems to con-
trol outdegrees of an undirected graph. For example,

Minimum Maximum Outdegree Orientation Problem
(MinMaxO), i.e., the problem of finding an orienta-
tion of minimizing max{d+Λ(u) | u ∈ V }, is formalized
as MPDCO with ai = bi = 0, i = 1, 2, . . . , n and
n-dimensional ∞ norm α (i.e., p(x1, x2, . . . , xn) =
(
∑n

i |xi|α)1/α, α→∞). Maximum Minimum Outde-
gree Orientation Problem (MaxMinO), the problem
of finding an orientation of maximizing min{d+Λ(u) |
u ∈ V }, is also (Asahiro et al. 2007, 2011a,b).

Clearly, the nature of MPDCO depends on the
penalty function. In this paper, we study the re-
lationship between the computational complexity of
MPDCO and penalty functions. We assume here that
penalty functions are linearly separable, i.e., it can be
written as p(c(Λ)) =

∑
u∈V g(ci(Λ)), where g is a non-

negative one variable function with g(0) = 0. In this
setting, we focus on the following types of functions
as typical examples of g: convex (including linear)
and concave (including step) functions. Throughout
the paper, we assume that g is a fixed function, and
evaluated in constant time; for a positive integer x,
the value of g(x) is obtained in O(1) time.

The results in this paper are summarized as fol-
lows:

(1) If g is a convex function, MPDCO can be solved
in O(m1.5 min{log nC,∆0.5}) time, where C is
the largest magnitude of a penalty. That is,
if we adopt a natural polynomial penalty func-
tion, such as nk with a positive integer k, it is
O(m1.5 log n). Note that this time complexity
is similar to that of MinMaxO for unweighted
graphs, a restricted case of MPDCO, in terms
of order (Asahiro et al. 2007, Kowalik 2006,
Venkateswaran 2004).

(2) MPDCO has no polynomial approximation al-
gorithm whose approximation factor is better
than 1.3606 for concave penalty functions, un-
less P=NP; it is APX-hard. This holds even for
step penalty functions. Furthermore, MPDCO is
still APX-hard for a strictly increasing concave
function, a more restricted class of concave func-
tions.

(3) For trees, the problem with general penalty func-
tions can be solved in O(n log∆) time. This
running time is available for any rational valued
penalty function if basic arithmetic operations
can be done in O(1) time; g is not necessary to
be convex or concave. If g is convex, the running
time is improved to O(n).

The remainder of the paper is organized as fol-
lows. In the next subsection, we introduce related
work about graph orientation to control (weighted)
outdegrees. In Section 2, we present polynomial time
algorithms for MPDCO with convex functions. Sec-
tion 3 shows the hardness of MPDCO with concave
functions, and Section 4 presentsO(n log∆) andO(n)
time algorithms for trees. Section 5 discusses further
research on the problems and concludes the paper.

1.2 Related work

Graph orientation itself is a fundamental problem in
the area of graph theory and combinatorial optimiza-
tion. In general, graph orientation is a problem of giv-
ing an orientation to a given undirected graph to meet
some given requirement. There are many types of re-
quirements considered, such as connectivity, reacha-
bility and so on (Robbins 1939, Nash-Williams 1960,

CRPIT Volume 128 - Theory of Computing 2012

140

Ito et al. 2009). Among several variations of graph
orientation, many researchers have been devoted to
graph orientation with degree constraints and there
are a large literature; e.g., see Sections 61.1 in (Schri-
jver 2003) 7.4.3 in (Lau et al. 2011) and 2.3 in (Frank
2011).

For example, Hakimi (Hakimi 1965), Frank
and Gyárfás (Frank & Gyárfás 1978), Chrobak
and Eppstein (Chrobak & Eppstein 1991), and
Gabow (Gabow 2006) studied the degree-constrained
orientation problem, where its goal is to orient as
many edges as possible in an undirected graph, sub-
ject to the upper and lower bounds on the out-
degree of each vertex (or equivalently, the upper
bounds on the indegree and outdegree of each ver-
tex). In (Hakimi 1965) Hakimi gave the necessary
and sufficient conditions of graphs that can be ori-
ented so that every outdegree is at most a given upper
bound. These were generalized by Frank and Gyárfás
in (Frank & Gyárfás 1978) to a characterization of
graphs that can be oriented so that every outdegree
is between given upper and lower bounds.

In (Chrobak & Eppstein 1991), Chrobak and Epp-
stein studied the orientation of a planar graph and
showed that a 3-bounded outdegree orientation and
a 5-bounded acyclic orientation can be obtained in
linear time for any planar graph. Furthermore, re-
cently, in (Gabow 2006), Gabow considered the par-
tial orientation problem, which formulates the degree-
constrained orientation problem as the optimization
problem. A partial orientation assigns a unique di-
rection to a subset of the edges, leaving the remaining
edges unoriented. Then, the goal is to orient as many
edges as possible in the input undirected graph with-
out breaking the degree constraints. He proved that
the partial orientation problem is MAXSNP-hard and
provided an LP-rounding algorithm which achieves
approximation ratio 3/4. Remark that our formula-
tion of the degree-constrained orientation can be re-
garded as the dual problem of the previous one; the
whole set of edges has to be assigned a unique direc-
tion, but the degree constraints can be broken with
penalty.

As mentioned above, MPDCO is a generalization
of MinMaxO (resp., MaxMinO), which is an orien-
tation that minimizes (resp., maximizes) the mini-
mum (resp., maximum) outdegree. MinMaxO and
MaxMinO also have been studied well by the rela-
tion with other combinatorial problems. For exam-
ple, MinMaxO can be used in efficient dynamic data
structures for graphs that support fast vertex adja-
cency queries under a series of edge operations (Bro-
dal & Fagerberg 1999). Furthermore, edge weighted
version of MinMaxO is a special case of the minimum
makespan problem (e.g., (Lenstra et al. 1990)).

2 Polynomial time algorithms for convex
penalty

In this section, we present a simple approach to solve
MPDCO with convex functions. The time complexity
is O(m1.5 min{log nC,∆0.5}), where C is the largest
magnitude of a penalty. The approach is based on
the reduction to the convex cost flow problem, which
can be solved in strongly polynomial time.

In general, a network flow problem is the prob-
lem of finding some optimal flow on a given net-
work that satisfies capacity constraints on arcs (di-
rected edges) and supply/demand conditions on ver-
tices, and many types of network flow problems are
intensively and extensively studied. See (Ahuja et al.

(a)
v1e1 e2e3e4 e6e5e7v2 v3v4 v5

(b)
v1v2v3v4v5

e1
e7
e2

s t
Figure 2: Network construction in Section 2: (a) An
undirected graph, (b) the network constructed from
(a).

1993). Among them, the convex cost flow problem
is an optimization problem on a network in which
each arc is associated with a convex function whose
variable is flow through the arc. The cost of flow
is the total sum of flow costs on the arcs, and the
convex cost flow problem is the problem of finding a
flow whose cost is minimum. If the convex functions
are just linear functions, the problem is simply called
the minimum cost flow problem, which is a well stud-
ied problem. It is known that the convex cost flow
problem can be solved in O(NM log(N2/M) log(nU))
time, where N , M and U are the number of ver-
tices, the number of edges and the largest magni-
tude of the lower and upper bounds on capacities in
the network, respectively (Ahuja et al. 2003). For-
tunately, our problem belongs to a relatively smaller
class of the flow problems; the capacity of every arc
is integral. For this class, a faster algorithm by
(Gabow & Tarjan 1989) can be applied. The running

time is O((min{MU log(MU), N2
√
M}) log(NC) +

min{
√
MU,N2/3M1/3, N}M), where M,N,U are

defined as above and C is the largest magnitude
of a cost (the cost is assumed to be integral), or

O(
√
M̃M̃ log(NC)), where M̃ is the total capacity

of edges.

Theorem 1 MPDCO with convex penalty can be
solved in O(m1.5 min{log nC,∆0.5}) time, where C is
the largest magnitude of a cost.

Proof. From graph G = (V,E), sequence of 2n
integers (a1, a2, . . . , an), (b1, b2, . . . , bn) and convex
penalty function g(x), we construct the following net-
work N = (VN , EN):

VN = V ∪ E ∪ {s, t},
EN =

∪
e={u,v}∈E

{(s, e), (e, u), (e, v)} ∪ Et,

where Et =
∪

v∈V {(v, t)}. The capacity of arc (v, t)
in Et is defined by cap((v, t)) = d(v), and those
of the other arcs are 1. The supply of source s
and the demand of sink t are set to be m. See
Figure 2 as an example of this construction. The
dotted edges are in Et. For this network, a flow
of N is a function f : EN → R+, where R+

is the set of non-negative real number, which sat-
isfies that f((i, j)) ≤ cap((i, j)) for all (i, j) ∈
EN ,

∑
(u,i)∈EN

f((u, i)) =
∑

(j,u)∈EN
f((j, u)) for

all u ∈ VN \ {s, t},
∑

(s,i)∈EN
f((s, i)) = m and∑

(i,t)∈EN
f((i, t)) = m.

Proceedings of the Eighteenth Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia

141

O degree

cost

1

9

41 8

4

Figure 3: Example of cost(v,t)(x): av = 3, bv = 5 and

g(x) = x2.

We define the cost function of arc (v, t) ∈ Et as

cost(v,t)(x) =

g(av − x) if x < av,
0 if av ≤ x ≤ bv,
g(x− bv) if x > bv,

where x is the amount of flow on this arc. For any
other arc (i, j), cost(i,j)(x) = 0. Note that the cost
functions are all convex under the assumption g is a
convex function with g(0) = 0. See Figure 3 for an
example of g(x) and cost(v,t)(x).

Here, we can see that if f is an integral flow, it can
be regarded as an orientation of G. In fact, in any
feasible integral flow of N , for any e = {u, v} ∈ E,
exactly one of the following cases holds: f((e, u)) = 1
and f((e, v)) = 0, or f((e, u)) = 0 and f((e, v)) = 1,
which can be interpreted to an orientation of e. Then,
f((v, t)) corresponds to the outdegree of v, which
implies to cost(v,t)(f((v, t))) is the penalty on v in
the orientation, and hence

∑
v∈V cost(v,t)(f((v, t))) =∑

(i,j)∈EN
cost(i,j)(f((i, j))) is the penalty of the ori-

entation. Therefore, our problem is to find an inte-
gral flow that minimizes

∑
(i,j)∈EN

cost(i,j)(f((i, j))),

which is a minimum convex cost flow problem with
integral constraints.

Since it is known that the convex cost flow prob-
lem with integral capacities has an integral opti-
mal flow (Gabow & Tarjan 1989), the integral con-
straints can be removed. Furthermore, the algo-
rithm presented in the same paper finds such a so-
lution in O((min{MU log(MU), N2

√
M}) log(NC)+

min{
√
MU,N2/3M1/3, N}M) time, where N , M , U

and C are the number of vertices, the number of edges
and the largest magnitude of the lower and upper
bounds on capacities, the largest magnitude of a cost

in the network, respectively, or in O(
√

M̃M̃ log(NC))

time, where M̃ is the total capacity of edges. In
our reduction, N = O(m), M = O(m), U = ∆,

C is the largest cost and M̃ = O(m). Conse-
quently, we can solve MPDCO with convex penalty
in O(m1.5 min{log nC,∆0.5}) time. 2

By this theorem, for natural polynomial penalty
functions, such as nk with a constant k, the prob-
lem can be solved in O(m1.5 log n) time. This time
complexity is almost same as that of MinMaxO and
MaxMinO, O(m1.5 log∆).

Remark 2 This reduction is also available for hyper-
graph orientation. A hypergraph H = (V,H) is an

extension of ordinary graphs, in which each hyperedge
e ∈ E can have more than two vertices. An orienta-
tion Λ of a hypergraph is an assignment of a hyperedge
e to a vertex in e, which is a generalization of graph
orientation (Frank 2011). The above reduction works
for hypergraphs, and achieves essentially the same
time complexity, i.e., O(m1.5 min{∆̃0.5, log(nC)}),
where ∆̃ = max{|{e | v ∈ e}| | v ∈ V }.

3 APX-hardness for step and strictly concave
functions

In this section, we show the APX-hardness of
MPDCO with concave penalty functions. In Section
3.1, we show the hardness of MPDCO with step func-
tions, which are also considered concave. In Section
3.2, we consider strictly concave functions, as another
typical classes of concave functions.

In both cases, MPDCO is APX-hard. Especially,
MPDCO with step penalty functions is not approx-
imable within 1.3606 unless P = NP, so is MPDCO
with convex penalty functions.

3.1 APX-hardness for step functions

In this section, let au = bu = 0 for every u ∈ V ,
and hence cu(Λ) = d+Λ(u). Suppose that the penalty
function is a step function, defined as

g(x) =

{
c if x > 0
0 if x = 0,

where c is a positive constant. For simplicity, we call
MPDCO in this setting MPDCOstep. What we do
in the following is to show that MPDCOstep is essen-
tially equivalent to Minimum Vertex Cover (MinVC
for short). A vertex set V ′ ⊆ V of graph G = (V,E) is
called a vertex cover if for every edge e ∈ E, e∩V ′ ̸= ∅
holds. MinVC is the problem of finding the minimum
size of a vertex cover of a given graph G = (V,E).
We show the following theorem:

Theorem 3 A graph G = (V,E) has a vertex cover
with size k if and only if MPDCOstep for G has cost
ck.

Proof. Suppose that the graph G has a vertex cover
V ′ of size k. That is, for every edge {u, v}, u ∈ V ′ or
v ∈ V ′. If u ∈ V ′ and v ̸∈ V ′, then the edge {u, v}
is oriented from u to v. If both vertices u and v in
V ′, we orient {u, v} to the arbitrary direction. One
can see that the degree of every vertex in V \ V ′ is 0.
Thus, the total cost of the orientation is ck.

If the minimum size of the vertex cover of G is at
least k+1, then there are at least k+1 vertices whose
degrees are at least 1 for any orientation. Therefore,
the cost is at least c(k + 1). 2

By the inapproximability of vertex cover problem
in (Dinur & Safra 2005) and (Khot & Regev 2008),
we obtain the following corollaries.

Corollary 1 There is no polynomial time algorithm
for MPDCOstep whose approximation factor is better
than 1.3606, unless P = NP .

Corollary 2 There is no polynomial time algorithm
for MPDCOstep whose approximation factor is better
than 2, if the unique game conjecture holds.

CRPIT Volume 128 - Theory of Computing 2012

142

3.2 APX-hardness for strictly concave func-
tions

The goal of this section is to show that the hardness
of approximation for MPDCO with a strictly concave
function via a gap-preserving reduction from a variant
of the Maximum 4-Dimensional Matching problem.
Here, let au = bu = 0 for every u ∈ V again.

Definition 4 (Max-4DM) Given the disjoint sets
R, S, T and U having the same number n of elements,
and a set Q ⊆ R × S × T × U , a 4D-matching for
Q is a subset Q′ ⊆ Q such that no elements in Q′

agree in any coordinate. The goal of the Maximum
4-Dimensional Matching (Max-4DM for short) is to
find the cardinality of a maximum 4D-matching.

Definition 5 (Max-4DM-2) If the number of oc-
currence of any element in R, S, T or U is ex-
actly twice, this restricted version of the Maximum
4-Dimensional Matching is called Max-4DM-2. Note
that the instance Q of Max-4DM-2 includes exactly 2n
quadruplets.

It is known (Chleb́ık & Chleb́ıková 2006) that it is
NP-hard to approximate Max-4DM-2 to within 48

47 .
Let OPT4dm(Q) denote the cardinality of a 4D-

matching output by an optimal algorithm for the in-
stance Q of Max-4DM-2.

Lemma 1 Suppose that |R| = |S| = |T | = |U | = n
and thus |Q| = 2n. Then, the following inequality
holds:

2n

5
≤ OPT4dm(Q) ≤ n.

Proof. If we select one quadruplet, say, (r, s, t, u), and
put it into a 4D-matching Q′, then there are at most
four quadruplets which contains r, s, t, or u in the
worse case. In other words, we can always obtain at
least 2n/5 disjoint quadruplets. By the assumption
|R| = |S| = |T | = |U | = n, OPT4dm(Q) ≤ n holds. 2

Theorem 6 There is no polynomial time algorithm
for MPDCOconcave whose approximation factor is bet-
ter than 433

432 , unless P = NP .

Proof. We give a gap-preserving reduction from
Max-4DM-2 to MPDCOconcave that transforms an
instance Q of Max-4DM-2 to an undirected graph
G = (V,E) and its concave functions on vertices such
that (1) if OPT4dm(Q) = max, then OPTmpdco(G) =
4n − max, and (2) if OPT4dm(Q) ≤ 47

48 · max, then

OPTmpdco(G) ≥ 4n− 47
48 ·max. We can set max = c ·n

for c ≥ 2
5 by Lemma 1. Then, the gap between (1)

and (2) is calculated as follows:

4− 47
48c

4− c
= 1 +

c

192− 48c

≥ 1 +
1

432
.

This means that the inapproximability bound is
433/432.

Consider an instance of Max-4DM-2, M =
{(r1, s1, t1, u1), (r2, s2, t2, u2), · · · , (r2n, s2n, t2n, u2n)}
of 2n ordered quadruplets, where exactly two
of {r1, · · · , r2n} ({s1, · · · , s2n}, {t1, · · · , t2n} and
{u1, · · · , u2n}) are identical. Then, we construct
the following graph G = (V,E): (i) V consists of
2n vertices, v1 through v2n, which are associated
with 2n quadruplets of Q, (r1, s1, t1, u1) through

(r2n, s2n, t2n, u2n), respectively. (ii) We add an edge
(vi, vj) for i ̸= j if ri and rj (si and sj , ti and tj , or
ui and uj) are identical. One can see that there are
4n edges and the degree of every vertex is exactly
four. (iii) The penalty function is defined as the
following strictly concave function on every vertex
vi:

g(x) =

{
3 if 3 ≤ x
x if x < 3.

(1) Suppose that OPT4dm(Q) = max
and the optimal 4D-matching is OPT =
{(ri1 , si1 , ti1 , ui1), (ri2 , si2 , ti2 , ui2), . . . , (rimax , simax , timax ,
uimax)} where I = {i1, i2, · · · , imax} ⊆ {1, 2, · · · , 2n}.
Then, all the four edges incident to vij corresponding
to the ordered quadruplet (rij , sij , tij , uij) ∈ OPT
are oriented outwards from vij . Hence,∑

ij∈I

g(cij (Λ)) = 3 ·OPT4dm(Q) = 3max.

The remaining 4n − 4max edges can be arbitrarily
oriented. Then,∑

ij ̸∈I

g(cij (Λ)) = 4n− 4max.

As a result, the total cost of the above orientation is
4n−max.

(2) We show that if OPT4dm(Q) ≤ 47
48 ·max, then

OPTmpdco(G) ≥ 4n − 47
48 · max holds by contradic-

tion. Assume that OPT4dm(Q) ≤ 47
48 · max, but

OPTmpdco(G) < 4n− 47
48 ·max.

Here, we make two simple observations: (2-1) Sup-
pose that the outdegree of all 2n vertices is at most
3 for an orientation Λ. Then, the total penalty of Λ
is 4n since there are 4n edges, each cost of which
can be regarded as 1, g(1) = 1, g(2) = 2, and
g(3) = 3. (2-2) If there are k vertices whose out-
degrees are 4 for another orientation Λ′, then the to-
tal penalty of Λ′ is 4n − k since the cost is 3k for
those k vertices of outdegree 4 and 4n − 4k for the
other 2n − k vertices (the remaining 4n − 4k edges).
By the assumption OPTmpdco(G) < 4n − 47

48 · max,
there is an orientation such that there are more than
47
48 · max vertices whose outdegrees are 4. This im-

plies that there are more than 47
48 · max independent

vertices, and thus we can select a 4D-matching Q′

of more than 47
48 · max quadruplets corresponding to

those independent vertices such that no elements in
4D-matching Q′ agree in any coordinate, which con-
tradicts OPT4dm(Q) ≤ 47

48 ·max. 2

4 Faster time algorithm for trees

In this section, we propose an O(n log∆) time algo-
rithm that solves MPDCO with any penalty functions
for trees. In contrast, MPDCO with concave penalty
is APX-hard in general. We also show that the algo-
rithm can be modified to run in linear time for convex
penalty.

4.1 O(n log∆) time algorithm for general case

Our algorithm is based on dynamic programming. To
explain the idea, we first introduce some new nota-
tion.

Proceedings of the Eighteenth Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia

143

We denote the optimal value of MPDCO of a graph
G by Opt(G) in the following. For a tree T rooted at
some r, we consider a tree T +s in which a vertex s is
attached with r, that is, T + s = (V (T)∪{s}, E(T)∪
{{r, s}}) with rooted at s. In the context of MPDCO,
s is a virtual vertex for which no penalty is charged in
any orientation (or, we assume as = 0 and bs = ∞).
For vertex v with degree k, we denote its violation by
θv(k), that is, θv(k) = k−bv if k > bv, θv(k) = av−k if
k < av, θv(k) = 0 otherwise. Thus, for an orientation
Λ, cv(Λ) = θv(d

+
Λ (v)).

In this setting, we consider two “optimal” orien-
tations of T + s; one is an optimal orientation under
the constraint that {s, r} is oriented as (s, r), and
the other is one under {r, s} is oriented as (r, s). We
denote the values of such orientations by q−(T) and
q+(T), respectively. That is, these can be represented
by

q−(T) = min
Λ

 ∑
v∈V (T)

g(cv(Λ))


and

q+(T) = min
Λ

g(θr(d
+
Λ (r) + 1)) +

∑
v∈V (T)\{r}

g(cv(Λ))

 .

Note that q−(T) = Opt(T). Clearly, Opt(T + s) =
min{q−(T), q+(T)}.

Now we show a “principle of optimality” equation.
Let

L(v, k) = {Λ | d+Λ(v) = k},
and Tw be the subtree of T rooted at w. Then, we
have

q−(T) = min
k=0,...,d(r)

min
Λ∈L(r,k)

{g(θr(k)) + q(T, k)} ,

and

q+(T) = min
k=0,...,d(r)

min
Λ∈L(r,k)

{g(θr(k + 1)) + q(T, k)} ,

where

q(T, k) = min
N′⊆N(r)

|N′|=k

∑
w∈N ′

q−(Tw) +
∑

w∈N(r)\N ′

q+(Tw)

 .

Here, q(T, k) is the minimum orientation value
without the cost on r under the constraint that
d+Λ (r) = k. Since g(θr(k)) and g(θr(k + 1)) do not
depend on orientations and q(T, k) is transformed to,

q(T, k) =
∑

w∈N(r)

q+(Tw) + min
N′⊆N(r)

|N′|=k

{∑
w∈N ′

h(Tw)

}
,

where h(Tw) = q−(Tw) − q+(Tw), q
−(T) and q+(T)

can be essentially computed by k-times evaluation of

min
N′⊆N(r)

|N′|=k

{∑
w∈N ′

h(Tw)

}
. (1)

Here let N(r, k) be a set of vertices in N(r) that have
the k smallest h(Tw). Then equation (1) is simply
represented by

h̃(T, k)
def
=

∑
w∈N(r,k)

h(Tw). (2)

To obtain N(r, k) quickly, it is sufficient to sort
h(Tw) of w ∈ N(r); by sorting h(Tw)’s, we obtain
h1(T), h2(T), . . . , hd(r)(T), where h1(T) ≤ h2(T) ≤
. . . ≤ hd(r)(T). Then, h̃(T, k) =

∑k
i=1 hi(T).

Based on these ideas, we can compute q−(T)
and q+(T) of T rooted at r from the values of
q−(Tw) and q+(Tw) of w ∈ N(r), children of r as
follows: compute h(Tw) for w ∈ N(r) in O(d(r))
time,

∑
w∈N(r) q

+(Tw) in O(d(r)) time, and sort

h(Tw)’s in (d(r) log d(r)) time. Then we can com-

pute g(θr(k)) +
∑

w∈N(r) q
+(Tw) + h̃(T, k) (resp.,

g(θr(k + 1)) +
∑

w∈N(r) q
+(Tw) + h̃(T, k)) incremen-

tally, where each increment takes O(1) time, and the
minimum of them is also found. That is, q−(T) and
q+(T) are computed in O(d(r) log d(r)) time. Thus,
q+(T) and q−(T)(= Opt(T)) are obtained by the bot-
tom up manner, and the total running time is∑

v∈V (T)

O(d(v) log d(v)) =
∑

v∈V (T)

O(d(v) log∆)

= O(n log∆).

Theorem 7 For any penalty function, MPDCO can
be solved in O(n log∆) time, when G is a tree.

Remark 8 This O(n log∆) algorithm works for any
rational valued penalty function if basic arithmetic op-
erations can be done in O(1) time; it is not necessary
to be monotone or g(0) = 0.

4.2 O(n) time algorithm for convex penalty

In the above algorithm, the O(log∆)-factor of the
running time is due to sorting. If the penalty func-
tion is convex, we can avoid the sorting by utilizing
the monotonicity, by which the optimal solution is
found by checking g(θr(k)) and equation (2) only for
restricted numbers of k.

As seen in above, to obtain q−(T) and q+(T) it is
enough to compute

min
k=0,...,d(r)

{g(θr(k)) + h̃(T, k)}

and
min

k=0,...,d(r)
{g(θr(k + 1)) + h̃(T, k)},

respectively. Thus we focus on the behavior of

q̃−(T, k)
def
= g(θr(k)) + h̃(T, k)

and

q̃+(T, k)
def
= g(θr(k + 1)) + h̃(T, k).

In the following, we only argue about q̃−(T, k) for
simplicity, because almost the same argument holds
for q̃+(T, k).

A function on the integer domain is convex if
and only if the differences are monotonically non-
decreasing. In this section, we assume that g is con-

vex, so gi
def
= g(i) − g(i − 1) is monotonically non-

decreasing. Since h̃(T, k)−h̃(T, k−1) = hk(T), which

is monotonically non-decreasing, h̃(T, k) is also con-
vex. Therefore, q̃−(T, k) − q̃−(T, k − 1) = gθr(k) +
hk(T), is also monotonically non-decreasing, and thus
q̃−(T, k) is convex.

CRPIT Volume 128 - Theory of Computing 2012

144

Hence, q̃−(T, k) takes its minimum at k = 0, k =
d(r), or k∗ such that

gθr(k∗) + hk∗(T) ≤ 0 and gθr(k∗+1) + hk∗+1(T) ≥ 0.

Since for k = 0 and d(r), q̃−(T, k) can be easily com-
puted, the crucial point is how we know k∗. This is
not trivial, because h̃(T, k) and hk(T)’s are not ex-
plicitly given, and we just have raw values of h(Tw)
(and we do not want to sort them, because it takes
O(d(r) log d(r)) time).

Here, we use a SELECTION algorithm by the bi-
nary search manner to obtain k∗. SELECTION(S, k)
is the problem of finding the d(r)-th smallest num-
ber in a given list S, and it can be solved in O(|S|)
time (Blum et al. 1973).

Algorithm 1 Algorithm Compute q−(T)

1: Let l := 0 and u := d(r), and S := {h(Tw) | w ∈
N(r)}.

2: Let i := ⌊(l+u)/2⌋. Compute gθr(i) and hi(T) by
SELECTION(S, i).

3: If gθr(i) + hi(T) > 0 holds, then update S :=
S \ {h(Tw) ∈ S | h(Tw) ≥ hi(T)}, u = i, and goto
Step 2.

4: If gθr(i) + hi(T) < 0 holds, then update S :=
S \ {h(Tw) ∈ S | h(Tw) ≤ hi(T)} and l := i, and
goto Step 2.

5: If gθr(i) + hi(T) = 0 or u − l ≤ 1 holds,

then let k∗ = i + l and compute q−(T) =
min{q̃−(T, 0), q̃−(T, k∗), q̃−(T, d(r))}. Then out-
put it. halt.

Since the g(θr(i)) part can be obtained in O(1)
time by the assumption, the running time of the al-
gorithm is dominated by the running time of SELEC-
TION’s and updating S, which takes O(|S|) time.
Since the size of S becomes half in every execution of
Step 2, the total running time is O(|N(r)|+|N(r)|/2+
|N(r)|/4+· · ·) = O(|N(r)|) = O(d(r)). Therefore, we
can compute q−(T) and q+(T) in

∑
v∈V O(d(v)) =

O(n) time.

Theorem 9 For convex penalty functions, MPDCO
can be solved in O(n) time, when G is a tree.

5 Concluding remarks

In this paper, we studied a type of degree constrained
orientation of undirected graphs. The problem is for-
mulated as an optimization problem that minimizes
penalties for violation. There are many possible ex-
tensions. One such extension is to further consider
the hypergraph setting more, as seen in Section 2.

Another extension is to consider the weighted
case. MinMaxO and MaxMinO, variants of MPDCO,
have also been studied in the weighted setting.
This setting is considered interesting, because Min-
MaxO is regarded as a special case of minimum
makespan or scheduling on unrelated parallel ma-
chines (R||Cmax in the now-standard notation). In
passing, a polynomial time 2-approximation algo-
rithm for the general R||Cmax and its 3/2 inapprox-
imability are shown in (Lenstra et al. 1990), and the
inapproximability bound holds even for the restricted
case, MinMaxO (Asahiro et al. 2011b).

References

Ahuja, R. K., Hochbaum, D. S. & Orlin, J. B. (2003),
‘Solving the convex cost integer dual network flow
problem’, Management Science 49(7), 950–964.

Ahuja, R. K., Magnanti, T. L. & Orlin, J. B. (1993),
Network flows - theory, algorithms and applica-
tions, Prentice Hall.

Asahiro, Y., Jansson, J., Miyano, E. & Ono, H.
(2011a), ‘Graph orientation to maximize the mini-
mum weighted outdegree’, Int. J. Found. Comput.
Sci. 22(3), 583–601.

Asahiro, Y., Jansson, J., Miyano, E., Ono, H. &
Zenmyo, K. (2011b), ‘Approximation algorithms
for the graph orientation minimizing the maximum
weighted outdegree’, J. Comb. Optim. 22(1), 78–
96.

Asahiro, Y., Miyano, E., Ono, H. & Zenmyo, K.
(2007), ‘Graph orientation algorithms to minimize
the maximum outdegree’, Int. J. Found. Comput.
Sci. 18(2), 197–215.

Blum, M., Floyd, R. W., Pratt, V. R., Rivest, R. L. &
Tarjan, R. E. (1973), ‘Time bounds for selection’,
J. Comput. Syst. Sci. 7(4), 448–461.

Brodal, G. S. & Fagerberg, R. (1999), Dynamic repre-
sentation of sparse graphs, in ‘WADS’, pp. 342–351.

Chleb́ık, M. & Chleb́ıková, J. (2006), ‘Complexity
of approximating bounded variants of optimization
problems’, Theor. Comput. Sci. 354(3), 320–338.

Chrobak, M. & Eppstein, D. (1991), ‘Planar orienta-
tions with low out-degree and compaction of adja-
cency matrices’, Theor. Comput. Sci. 86(2), 243–
266.

Dinur, I. & Safra, S. (2005), ‘On the hardness of
approximating minimum vertex cover’, Annals of
Mathematics pp. 439–485.

Frank, A. (2011), Connections in Combinatorial Op-
timization, Oxford University Press, USA.

Frank, A. & Gyárfás, A. (1978), ‘How to orient the
edges of a graph?’, Combinatorics I, 353–364.

Gabow, H. N. (2006), Upper degree-constrained par-
tial orientations, in ‘SODA’, pp. 554–563.

Gabow, H. N. & Tarjan, R. E. (1989), ‘Faster scaling
algorithms for network problems’, SIAM J. Com-
put. 18(5), 1013–1036.

Hakimi, S. L. (1965), ‘On the degree of the vertices of
a directed graph’, J. Franklin Institute 279, 290–
308.

Ito, T., Miyamoto, Y., Ono, H., Tamaki, H. & Ue-
hara, R. (2009), Route-enabling graph orientation
problems, in ‘ISAAC’, pp. 403–412.

Khot, S. & Regev, O. (2008), ‘Vertex cover might be
hard to approximate to within 2 − ε’, J. Comput.
Syst. Sci. 74, 335–349.

Kowalik, L. (2006), Approximation scheme for lowest
outdegree orientation and graph density measures,
in ‘ISAAC’, pp. 557–566.

Landau, H. (1953), ‘On dominance relations and the
structure of animal societies: Iii the condition for a
score structure’, Bulletin of Mathematical Biology
15(2), 143–148.

Proceedings of the Eighteenth Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia

145

Lau, L., Ravi, R. & Singh, M. (2011), Iterative Meth-
ods in Combinatorial Optimization (Cambridge
Texts in Applied Mathematics, Cambridge Univ.
Press.

Lenstra, J. K., Shmoys, D. B. & Tardos, É. (1990),
‘Approximation algorithms for scheduling unre-
lated parallel machines’, Math. Program. 46, 259–
271.

Nash-Williams, C. (1960), ‘On orientations, connec-
tivity and odd vertex pairings in finite graphs’,
Canad. J. Math 12(555-567), 8.

Robbins, H. (1939), ‘A theorem on graphs, with an
application to a problem of traffic control’, The
American Mathematical Monthly 46(5), 281–283.

Schrijver, A. (2003), Combinatorial Optimization,
Springer.

Venkateswaran, V. (2004), ‘Minimizing maximum
indegree’, Discrete Applied Mathematics 143(1-
3), 374–378.

CRPIT Volume 128 - Theory of Computing 2012

146

