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Abstract. We consider a graph orientation problem that can be viewed
as a generalization of Minimum Graph Coloring. Our problem takes as
input an undirected graph G = (V, E) in which every edge {u, v} ∈
E has two (potentially different and not necessarily positive) weights
representing the lengths of its two possible directions (u, v) and (v, u),
and asks for an orientation, i.e., an assignment of a direction to each
edge of G, such that the length of a longest simple directed path in
the resulting directed graph is minimized. A longest path in a graph is
not always a maximal path when some edges have negative lengths, so
the problem has two variants depending on whether all simple directed
paths or maximal simple directed paths only are taken into account in
the definition. We prove that the problems are NP-hard to approximate
even if restricted to subcubic planar graphs, and develop fast polynomial-
time algorithms for both problem variants for three classes of graphs:
path graphs, cycle graphs, and star graphs.
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1 Introduction

1.1 Background

An orientation of an undirected graph is an assignment of a direction to each of
its edges. Based on this natural concept, many kinds of algorithmic problems with
applications to telecommunications, scheduling, data structures for supporting
fast adjacency queries in sparse graphs, bioinformatics, etc. can be defined (see,
e.g., [2,3,5,7,8,18,20]). Certain graph orientation problems have turned out to be
equivalent to well-known classic graph algorithmic problems, and modifying the
definitions of these graph orientation problems may then yield new generaliza-
tions of their classic counterparts. To illustrate, recall the Minimum Vertex Cover
problem and the Maximum Independent Set problem, which take as input an undi-
rected graph G = (V,E) and ask for a smallest possible subset V ′ ⊆ V such that
every edge in E is incident to at least one vertex in V ′, and a largest possible sub-
set V ′ ⊆ V such that no two vertices in V ′ are adjacent in G, respectively. As
shown in [1], to orient an undirected graph while minimizing the number of ver-
tices with outdegree at least 1 is in fact the Minimum Vertex Cover problem; by
replacing the number “1” by a parameter W , one obtains a relaxed variant of Min-
imum Vertex Cover in which every vertex of the input graph is allowed to cover
up to W −1 of its incident edges without having to be placed in the output vertex
cover. Similarly, maximizing the number of vertices that get outdegree at most W
is the Maximum Independent Set problem when W = 0 (see [1]).

In this paper, we study a graph orientation problem that can be viewed as
a generalization of another classic problem, namely Minimum Graph Coloring.
Our starting point is the following problem, which we call Unweighted Shortest
Longest-Path Orientation (USLPO): Given an undirected, unweighted graph G,
find an orientation of G that minimizes the length of a longest simple directed path.

For any undirected graph G, let H(G) and χ(G) denote the length of a
longest simple directed path in an optimal solution to USLPO for G and the
chromatic number of G, respectively. In the 1960s and 1970s, several researchers
independently proved that H(G)+1 = χ(G) [10,13,19,21] and that this equality
still holds when only acyclic orientations are allowed [7]. Note that since Mini-
mum Graph Coloring is NP-hard [15], this immediately implies that USLPO is
NP-hard. Moreover, known inapproximability results apply directly as well; e.g.,
Theorem 1.2 of [22] shows that Minimum Graph Coloring, and hence USLPO,
cannot be approximated within a ratio of n1−ε for any constant ε > 0 in polyno-
mial time, where n is the number of vertices in the input graph, unless P = NP.
Also, H(G)+1 = χ(G) implies that even if USLPO is restricted to 4-regular pla-
nar graphs, it cannot be approximated within a ratio of (3/2−ε) for any constant
ε > 0 in polynomial time, unless P = NP, because it is an NP-complete problem
to determine if a 4-regular planar graph G satisfies χ(G) ≤ 3 or χ(G) = 4 [6].

1.2 New Results

We generalize USLPO (thus making the problem even harder) to bi-weighted
edges, which means that every edge {u, v} in G has two (potentially different
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and not necessarily positive) weights representing the lengths of its two possible
directions (u, v) and (v, u). Our goal is then to determine whether the generalized
problem, from here on simply referred to as Shortest Longest-Path Orientation
(SLPO), becomes efficiently solvable in some special cases. Observe that in a
directed graph, if some edge lengths are negative then a longest path is not nec-
essarily a maximal path. For this reason, we consider two variants of the prob-
lem called SLPOs and SLPOm, in which the longest path is taken, respectively,
among all simple directed paths and among maximal simple directed paths only.

An undirected graph G is subcubic if every vertex in G has degree at most
three. We first prove that SLPOs and SLPOm are NP-hard to approximate even
if restricted to subcubic planar graphs. This result is important in view of the
close connection between USLPO and Minimum Graph Coloring described above
and the fact that the latter is polynomial-time solvable for subcubic graphs [11].

Motivated by the hardness of the general case, we then focus on special cases.
Throughout the paper, n denotes the number of vertices in the input graph.
As a first step, note that if G is a tree then one can root G in an arbitrarily
selected vertex and apply dynamic programming over rooted subtrees: For every
node v of G (in bottom-up order) and every possible triple (Wu,Wd,W�) of
weights, check if there exists an orientation of the subtree rooted at v whose
longest paths to, from, and not passing through v have lengths Wu, Wd, and W�,
respectively. Since G has Θ(n2) many paths, one can precompute the set of all
possible path weights and use this set to prune the dynamic programming table,
resulting in a polynomial-time algorithm. However, the degree of the polynomial
will be large because the table can have Ω(n · n2 · n2 · n2) = Ω(n7) entries and
computing any entry involving a node v may take Ω(n6 · deg(v)) time, where
deg(v) is the number of children of v, if done by directly looking at the entries
for (Wu,Wd,W�)-triples for each child of v. The rest of the paper is devoted
to developing much faster algorithms for solving SLPOs and SLPOm on path
graphs, cycle graphs, and star graphs. See the following table for a summary of
our algorithms’ time complexities.

Graph class SLPOs SLPOm Section Theorems

Tree (Polynomial time) (Polynomial time) 1.2 –

Path graph O(n) O(n log n) 4 4 and 5

Cycle graph O(n) O(n2 log n) 5 6 and 7

Star graph O(n log n) O(n log n) 6 9 and 8

The paper is organized as follows. Section 2 defines SLPOs and SLPOm for-
mally and lists some useful properties. The NP-hardness result is presented in
Sect. 3. We describe our fast algorithms for path graphs in Sect. 4, for cycle
graphs in Sect. 5, and for star graphs in Sect. 6. Due to space constraints, several
correctness proofs have been omitted from the conference version of this paper.
They will be available in the journal version.
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Fig. 1. An example. Let G be the undirected graph in (a). For every edge {u, v}, its
two weights w(u, v) and w(v, u) are specified as w(v, u) / w(u, v). The orientation in (b)

satisfies hs(
∼
G) = hm(

∼
G) = 2, while the one in (c) satisfies hs(

∼
G) = 3, hm(

∼
G) = −7.

They are optimal under hs and hm, respectively, so Hs(G) = 2 and Hm(G) = −7.

2 Preliminaries

An orientation of an undirected graph G = (V,E) is a directed graph
∼
G obtained

by replacing each undirected edge {u, v} ∈ E by either the directed edge (u, v)
or the directed edge (v, u). Denote by O(G) the set of all orientations of G.

An edge-bi-weighted graph is an undirected graph G = (V,E) in which every
edge {u, v} ∈ E has a pair of possibly nonpositive weights w(u, v) and w(v, u)
associated with the two directions (u, v) and (v, u), respectively. The length of
a directed edge (u, v) in an orientation of an edge-bi-weighted graph is w(u, v),
and the length of a path �P = 〈v1, . . . , vq〉 is:

W (�P ) =
q−1∑

k=1

w(vk, vk+1). (1)

A path in a directed graph is said to be maximal if it is not contained in
any path with more edges. As pointed out in Sect. 1.2, if some edge lengths are
negative in a directed graph then a longest path is not necessarily a maximal
path. We therefore employ two ways of measuring the cost of orienting a graph.

Definition 1. Define the following two cost measures for an oriented graph
∼
G:

hs(
∼
G) = max{W (�P ) | �P is a simple directed path in

∼
G}, (2)

hm(
∼
G) = max{W (�P ) | �P is a maximal simple directed path in

∼
G}. (3)

The corresponding cost functions for orienting an undirected graph are:

Hs(G) = min{hs(
∼
G) | ∼

G∈ O(G)}, (4)

Hm(G) = min{hm(
∼
G) | ∼

G∈ O(G)}. (5)

Figure 1 illustrates the difference between Hs(G) and Hm(G).
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The two problem variants that we consider in this paper are the following:

The Shortest Longest-Path Orientation Problem, variants SLPOs & SLPOm:
Input: An undirected, edge-bi-weighted graph G.

Output: An orientation
∼
G of G such that hs(

∼
G) = Hs(G) (for SLPOs) or

hm(
∼
G) = Hm(G) (for SLPOm).

In other words, SLPOs and SLPOm ask for orientations of G such that the
length of a longest simple path in the resulting directed graph is minimized,
using the two alternative definitions of a “longest path”.

We now state some easily verified properties of the cost measures. Note that
the empty path participates in determining the value of hs(

∼
G), so hs(

∼
G) ≥ 0 for

any
∼
G and Hs(G) ≥ 0. Another useful property of Hs is its monotonicity:

Lemma 1. If G′ is a subgraph of an edge-bi-weighted graph G then Hs(G′) ≤
Hs(G).

Hm is not monotone in general, but if all weights are nonnegative then Hm

is monotone as well. In fact, if all weights are nonnegative then the definitions
of Hm and Hs coincide:

Lemma 2. If all weights of an edge-bi-weighted graph G are nonnegative then
hs(

∼
G) = hm(

∼
G) for any orientation

∼
G of G. In particular, Hs(G) = Hm(G), and

∼
G is an optimal orientation of G with respect to hs if and only if it is optimal
with respect to hm.

3 NP-Hardness for Subcubic Planar Graphs

The following theorem is proved by a polynomial-time reduction from Planar
3-SAT restricted to instances where each variable occurs in at most four clauses,
which is known to be NP-hard [14]. For the details of the reduction, the reader
is referred to the journal version of this paper.

Theorem 1. SLPOs is NP-hard even if restricted to subcubic planar graphs
where all edge weights belong to {0, 1, 2}.

By Lemma 2, we immediately obtain:

Corollary 1. SLPOm is NP-hard even if restricted to subcubic planar graphs
where all edge weights belong to {0, 1, 2}.

The reduction in the proof of Theorem 1 constructs a subcubic planar
graph G such that if one could determine whether Hs(G) = 2 or Hs(G) ≥ 3
then one would know if the instance of Planar 3-SAT is satisfiable or not.
This yields:

Theorem 2. If, for any constant ε > 0, there exists a polynomial-time (3/2−ε)-
approximation algorithm for SLPOs or SLPOm (even if restricted to subcubic
planar graphs) then P = NP.
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4 Algorithms for Path Graphs

A path graph is an undirected, connected graph in which two vertices have
degree 1 and all other vertices have degree 2. In Sect. 4.1 below, we first give
a generic dynamic programming algorithm for finding the cost of an optimal
orientation of an edge-bi-weighted path graph L. A straightforward implemen-
tation of the algorithm runs in O(n2) time. This high-level version makes no
use of the details of the cost function, be it Hm or Hs. Then, Sects. 4.2 and 4.3
present faster implementations that take into account the specifics of Hs and Hm,
thereby improving the time complexity to O(n) and O(n log n), respectively.

4.1 A Generic Algorithm for Path Graphs

Given a path graph L with n vertices, assume without loss of generality that
its vertices are numbered from 1 to n. For simplicity, we present an algorithm
that computes the cost of an optimal orientation only; a corresponding opti-
mal orientation can be found by adding a traceback step at no increase in the
asymptotic time complexity. The algorithm is named BestOrientPathx(L) and
its pseudocode is listed in Algorithm 1.

Algorithm 1: BestOrientPathx(L)
Input: an edge-bi-weighted path graph L with n vertices
Output: an optimal orientation of L under Hx

1 if n = 1 then
2 return 0;

3 H→
x (1) = H←

x (1) = −∞;
4 for j = 2 to n do

5 H→
x (j) = min1≤i<j max{H←

x (i), hx(�Li,j)};

6 H←
x (j) = min1≤i<j max{H→

x (i), hx( �Li,j)};

7 return min{H→
x (n), H←

x (n)};

We use the following notation.

• Li,j is the subgraph of L induced by the vertices i, . . . , j.
• �Li,j and �Li,j are the oriented versions of Li,j in which all edges are directed

towards larger numbered vertices (i.e., of the form (i, i + 1)) and towards
smaller numbered vertices (i.e., of the form (i + 1, i)), respectively.

• The subscript x satisfies x ∈ {s,m}.
• H→

x (i) is the value of an optimal orientation of L1,i under Hx assuming that
edge {i − 1, i} is directed towards i. Analogously, H←

x (i) is the value of an
optimal orientation of L1,i under Hx assuming that edge {i− 1, i} is directed
towards i− 1. In particular, the cost of an optimal orientation of L under Hx

is given by min{H→
x (n), H←

x (n)}.
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To compute H→
x (n) and H←

x (n), we compute H→
x (j) and H←

x (j) using dynamic
programming from j = 2 up to j = n. The idea is to locate, in an optimal
orientation of L1,j , the largest vertex i at which there is a change in direction
given that the last edge {j − 1, j} has a specified direction.

Theorem 3. BestOrientPathx finds the cost of an optimal orientation of L.

4.2 Running Time Under Cost Function Hs

Here, we show that Algorithm BestOrientPaths can be made to run in O(n)
time.

The first issue is computing hs(�Li,j) and hs( �Li,j) for given 1 ≤ i < j ≤ n.
The weight of an edge {i, i+1} when oriented as (i, i+1) is denoted by w(i, i+1)
and when oriented as (i + 1, i) by w(i + 1, i). Equations (1) and (2) give:

hs(�Li,j) = max

⎧
⎨

⎩

j′−1∑

t=i′
w(t, t + 1) | i ≤ i′ ≤ j′ ≤ j

⎫
⎬

⎭ . (6)

Computing hs(�Li,j) for a pair (i, j) is therefore an instance of the Range
Maximum-sum Segment Online Query problem, RMSOQ for short [4]:

Problem 1 (Range Maximum-sum Segment Online Query).
Input to be preprocessed: A nonempty sequence a1, . . . , an of real numbers.
Online query: respond to a query of the form RMSOQ(i, j) by returning a
pair of indices (i′, j′) that maximizes

∑j′

t=i′ at over all i ≤ i′ ≤ j′ ≤ j.

Chen and Chao [4] presented a method for answering each such query in
constant time after A has been preprocessed in O(n) time. This gives:

Lemma 3. Suppose w(i, i + 1), 1 ≤ i < n and w(i + 1, i), 1 ≤ i < n have been
preprocessed in linear time for the RMSOQ problem. After H←

s (i) and H→
s (i)

have been computed for 1 ≤ i < j, each value of the form max{H←
s (i), hs(�Li,j)}

and max{H→
s (i), hs( �Li,j)} appearing in steps 5 and 6 in iteration j can be eval-

uated in constant time.

Next, we address the second issue: what is the time needed to find all mini-
mum values in steps 5 and 6 in Algorithm BestOrientPaths(L)? To answer the
question, first define two (n × n)-matrices M→(i, j) and M←(i, j) by:

• M→[1, j] = hs(�L1,j) and M←[1, j] = hs( �L1,j) for 2 ≤ j ≤ n
• M→[i, j] = M←[i, j] = ∞ for 1 ≤ j ≤ i ≤ n

• M→[i, j] = max{H←
s (i), hs(�Li,j)} and M←[i, j] = max{H→

s (i), hs( �Li,j)} for
2 ≤ i < j ≤ n

In these terms, the algorithm computes the minimum value in column j of
the matrices M→ and M← for 1 ≤ j ≤ n. Two features of this computation
deserve particular attention. The first is that before computing the minimum
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value in column j of the matrix M→, or M←, the minimum values of all previous
columns j′ < j, H←

s [j′], respectively H→
s [j′], must have been computed already.

The second feature we want to point out is that it follows from Eq. (6) that
both matrices M→ and M← are of the form M [i, j] = max{f(i), g(i, j)}, with g
non-increasing in i and non-decreasing in j. This leads to the next proposition,
where a matrix M is called totally r-monotone if it has the following property:
If M [i1, j1] ≥ M [i2, j1] then M [i1, j2] ≥ M [i2, j2] for all i1 < i2 and j1 < j2.

Proposition 1. If g(i, j) is non-increasing in i and non-decreasing in j and
M(i, j) = max{f(i), g(i, j)} then M is totally r-monotone.

Proof. Suppose that M [i1, j1] ≥ M [i2, j1] holds. Then max{f(i1), g(i1, j1)} ≥
max{f(i2), g(i2, j1)}. In particular, we have f(i2) ≤ max{f(i1), g(i1, j1)} ≤
max{f(i1), g(i1, j2)} since g is non-decreasing in j. Moreover, g(i1, j2) ≥ g(i2, j2).
Hence max{f(i1), g(i1, j2)} ≥ max{f(i2), g(i2, j2)}. 	


To find all minimum values in steps 5 and 6 of the algorithm, we apply a
solution to the following problem.

Problem 2 (Online Column Minima of a Totally r-Monotone Matrix). For 1 ≤
j ≤ n, compute H(j) = min{M(i, j) | 1 ≤ i ≤ n}, where M is totally r-
monotone and the values of H(j′), j′ < j have to be computed before M(i, j)
can be evaluated.

Several linear-time online algorithms for solving Problem 2 exist [9,16,17].

Theorem 4. BestOrientPathx with cost function Hs runs in O(n) time.

4.3 Running Time Under Cost Function Hm

We now make BestOrientPathm run in O(n log n) time. Combining (1) and (3):

hm(�Li,j) = Wj − Wi =
j−1∑

t=i

w(t, t + 1), (7)

where W1 = 0 and Wj =
∑j−1

t=1 w(t, t + 1) for j ≥ 2. A similar equality holds
for hm( �Li,j). Consequently, finding the minimum values in steps 5 and 6 takes
on a form different from the one obtained for Hs; more precisely, Eq. (7) shows
that for 2 ≤ j ≤ n, H→

m (j) = min1≤i<j max{H←
m (i),Wj − Wi}. We split the

points of the interval 1 ≤ i < j into those that satisfy H←
m (i) + Wi ≥ Wj and

the remainder. Since H←
m (1) = −∞, the point i = 1 belongs to the latter. Also,

H→
m (2) = W2, and for j ≥ 3, H→

m (j) = min{M1(j),M2(j)} with:

M1(j) = min
2≤i<j

{H←
m (i) | H←

m (i) + Wi ≥ Wj}, (8)

M2(j) = min
1≤i<j

{Wj − Wi | H←
m (i) + Wi < Wj}. (9)

Next, we consider how to efficiently compute the minima in Eq. (8).
Equation (9) can be handled similarly. We rephrase the problem as:
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Problem 3 (Minima of Sequence Prefixes under Key-Bounds).

Given: A sequence KV of n pairs of the form (key, value), and a sequence of
lower bounds Wj , 1 ≤ j ≤ n,

Compute: minj(Wj) = min{value | (key, value) ∈ Prej and key ≥ Wj}, for
1 ≤ j ≤ n, where Prej is the prefix of length j of KV .

Problem 3 can be solved by red-black trees [12]; see the journal version for details.
This gives:

Theorem 5. BestOrientPathx with cost function Hm runs in O(n log n) time.

5 Algorithms for Cycle Graphs

A cycle graph is an undirected, connected graph in which all vertices have
degree 2. Given a cycle graph C on n vertices, we fix a numbering of its vertices
by assigning the number 0 to an arbitrarily selected vertex and then assigning
the numbers 1 through n−1 to the remaining vertices in the order that they are
visited by a depth-first traversal starting at 0. Denote the weight of a directed
edge (i, i+1) by w(i, i+1). When a vertex j with j ≥ n is referred to, it should be
understood as referring to vertex j mod n. For example, w(n−1, n) = w(n−1, 0).

5.1 An Algorithm for Cost Function Hs

Our algorithm for cycle graphs under Hs, BestOrientCycles, employs the follow-
ing strategy. It first creates a special path graph L from the input cycle graph C
and then applies BestOrientPaths from Sect. 4.2 to L to find an optimal orien-
tation

∼
L

∗
of L. An optimal orientation of C will always be one of five possible

orientations that depends on the structure of
∼
L

∗
, so the algorithm simply checks

which one of five conditions holds and outputs the corresponding orientation
of C.

The pseudocode is given in Algorithm 2. It uses the following notation.

Definition 2. Let C be a cycle graph, L the path graph constructed in step 1 of
BestOrientCycles(C), and

∼
L

∗
an optimal orientation of L. The five orientations

of C denoted by
∼
C

∗1way
,

∼
C

2+xx
,

∼
C

i
,

∼
C

rflipi

, and
∼
C

lflipi

are defined as:

–
∼
C

∗1way
is a one-way orientation of C whose cost, OneWayCosts, is the least.

– For a cycle graph of odd length,
∼
C

2+xx
is the orientation of C obtained as

follows: among all possible directed paths of length two find one, L2
�

�

, whose
weight is minimal; starting with this path, direct each successive edge of the
cycle graph in the direction opposite to that of its predecessor.
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–
∼
C

i
is the orientation of C obtained by copying from

∼
L

∗
the directions of the

edges {k, k + 1}, i ≤ k < i + n.

–
∼
C

rflipi

is created when 0 ≤ i ≤ 2n and
∼
L

∗
has the directed edges (i, i+1), (i+

1, i + 2), (i + 3, i + 2). Its first directed edge is (i + 1, i), and the directions of
the following edges {k, k + 1}, i + 1 ≤ k < i + n, are copied from

∼
L

∗
.

–
∼
C

lflipi

is created when n ≤ i ≤ 3n and
∼
L

∗
has the directed edges (i, i−1), (i−

1, i − 2), (i − 3, i − 2). Its first directed edge is (i − 1, i), and the directions of
the following edges {k, k − 1}, i − n < k ≤ i − 1, are copied from

∼
L

∗
.

The algorithm’s time complexity is linear because running BestOrientPaths in
step 2 takes O(n) time according to Theorem 4 and each of the other steps is
easy to implement in O(n) time.

Theorem 6. BestOrientCycles returns an orientation for a cycle graph that is
optimal under the cost function Hs in O(n) time.

5.2 An Algorithm for Cost Function Hm

A simple method that works for cycle graphs under the cost function Hm is shown
in Algorithm 3 (BestOrientCyclem). It tries all ways of breaking the input cycle
graph into a path graph by cutting one edge, applies BestOrientPathm to each
such obtained path graph, and chooses one with the least cost. (This approach

Algorithm 2: BestOrientCycles(C)
Input: an edge-bi-weighted cycle graph C
Output: an optimal orientation of C under Hs

1 create a path graph L of length 3n by unrolling the cycle graph three times
starting from vertex 0, numbering its vertices 0 to 3n, and assigning each
edge {i, i + 1} of L the same weights as edge {i, i + 1} of C;

2 let
∼
L

∗
be the oriented graph returned by BestOrientPaths(L);

3 if hs(
∼
L

∗
) ≥ OneWayCosts then set

∼
C to

∼
C

∗1way
;

4 else if n is odd and every two consecutive edges in
∼
L

∗
have opposite directions

then set
∼
C to

∼
C

2+xx
;

5 else if two edges {i, i + 1} and {i + n − 1, i + n} have opposite directions in
∼
L

∗

then set
∼
C to

∼
C

i
;

6 else if there is an i, 0 ≤ i ≤ 2n, such that the directed edges

(i, i + 1), (i + 1, i + 2), (i + 3, 1 + 2) appear in
∼
L

∗
then set

∼
C to

∼
C

rflipi
;

7 else find i, n ≤ i ≤ 3n, such that
∼
L

∗
contains the directed edges

(i, i − 1), (i − 1, i − 2), (i − 3, i − 2), and set
∼
C to

∼
C

lflipi
;

8 return
∼
C;



Shortest Longest-Path Graph Orientations 151

would also work for the cost function Hs, but the resulting time complexity
would be worse than the one in Theorem 6.)

In the pseudocode,
∼
C

∗1way
denotes the one-way orientation of C whose cost,

OneWayCostm, is the least. Also, Li+1,i−1 for 0 ≤ i ≤ n is the subgraph of C
induced by vertices i + 1, i + 2, . . . , i − 1, with sums taken mod n.

Theorem 7. Algorithm BestOrientCyclem(C) returns an optimal orientation
of C in O(n2 log n) time.

Proof. Let
∼
C

∗
be an optimal orientation of C. If

∼
C

∗
is a directed cycle then an

optimal solution will be found in step 1. Otherwise,
∼
C

∗
has at least one vertex i

such that both edges {i − 1, i} and {i, i + 1} are oriented away from i. Consider
the path graph Li constructed in iteration i. Denote by

∼
Li the orientation of

Li induced by breaking the cycle at vertex i, and note that hm(
∼
Li) = hm(

∼
C

∗
).

Let
∼
Li

∗
be an optimal orientation of Li.

∼
Li

∗
induces an orientation

∼
C of C

by identifying i′ with i′′. Then hm(
∼
C) = hm(

∼
Li

∗
) ≤ hm(

∼
Li) = hm(

∼
C

∗
). Since

hm(
∼
C) ≥ hm(

∼
C

∗
), it follows that hm(

∼
Li

∗
) = hm(

∼
C

∗
).

Because one call to BestOrientPathm takes O(n log n) time by Theorem 5,
the algorithm runs in O(n2 log n) time. 	


Algorithm 3: BestOrientCyclem(C)
Input: an edge-bi-weighted cycle graph C
Output: an optimal orientation of C under Hm

1 set
∼
C to

∼
C

∗1way
and set BestCost to OneWayCostm;

2 for i = 0 to n − 1 do
3 construct a path graph Li by adding two vertices i′ and i′′ and two edges

{i + 1, i′} and {i − 1, i′′} to Li+1,i−1 with edge weights
wLi(i + 1, i′) = ∞, wLi(i′, i + 1) = w(i, i + 1), wLi(i − 1, i′′) = ∞, and
wLi(i′′, i − 1) = w(i, i − 1);

4 let
∼
Li be the graph returned by BestOrientPathm(Li);

5 if hm(
∼
Li) < BestCost then

6 set
∼
C to the orientation of C induced by

∼
Li and BestCost to hm(

∼
Li);

7 return
∼
C;

6 Algorithms for Star Graphs

A star graph is a tree with exactly one internal node and at least two leaves. In
this section, the internal node of a given star graph is denoted by c.
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6.1 An Algorithm for Cost Function Hm

Algorithm BestOrientStarm for SLPOm on star graphs is given in Algorithm 4. It
initially orients each edge so that it points in its lighter direction and then refines
this solution to obtain an optimal orientation. To do so, it either flips edges that
were initially pointing inwards only or edges that were initially pointing outwards
only. The correctness of this approach is guaranteed by:

Lemma 4. There is no optimal orientation of a star graph in which both the
largest inward edge weight is less than w(u1, c) and the largest outward edge
weight is less than w(c, v1).

Proof. The cost of the initial orientation is hm(
∼
S) = w(u1, c) + w(c, v1). For the

purpose of obtaining a contradiction, suppose that there is an optimal orientation
∼
S

∗
with largest inward weight w(x, c) < w(u1, c) and largest outward weight

w(c, y) < w(c, v1). Then hm(
∼
S

∗
) = w(x, c) + w(c, y). The initial orientation

implies that w(c, u1) > w(u1, c), and w(v1, c) ≥ w(c, v1). Since {u1, c} is an
outward edge in

∼
S

∗
and {v1, c} an inward edge, hm(

∼
S

∗
) ≥ w(v1, c) + w(c, u1) >

w(u1, c) + w(c, v1) = hm(
∼
S), which is impossible. 	


Theorem 8. BestOrientStarm solves SLPOm on star graphs in O(n log n) time.

6.2 An Algorithm for Cost Function Hs

Based on the observation in the next lemma, we can use BestOrientStarm from
Sect. 6.1 as a subroutine to obtain a solution for SLPOs on star graphs, as shown
in Algorithm 5 (BestOrientStars).

Algorithm 4: BestOrientStarm(S)
Input: an edge-bi-weighted star graph S
Output: an optimal orientation of S under Hm

1 orient each edge {u, c} inwards to c if w(u, c) < w(c, u), and outwards from c
otherwise;

2 denote by
∼
S the resulting directed graph, by BestCost its cost,

3 by Ein = {(u1, c), . . . , (u�, c)} the list of its inward edges,
4 and by Eout = {(c, v1), . . . , (c, vr)} the list of its outward edges;
5 reorder each of Ein and Eout so that the weights of its edges are in

non-increasing order;

6 set
∼
S′ to

∼
S;

7 for k = 1 to � do

8 flip the direction of edge (uk, c) in
∼
S′ and update BestCost if necessary;

9 set
∼
S′ to

∼
S;

10 for k = 1 to r do

11 flip the direction of edge (c, vk) in
∼
S′ and update BestCost if necessary;

12 return an orientation whose cost is BestCost;
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Lemma 5. Suppose S has a vertex u with an edge to or from c with non-positive
weight. Let S′ be the star graph obtained by removing u from S. Then an optimal
orientation of S is obtained by first optimally orienting S′, and then adding to it
the vertex u with its edge {u, c} oriented in a direction with non-positive weight.

Proof. The number of edges on a directed path in an oriented star graph is no
more than two. An edge with non-positive weight is therefore either the first or
the last edge on any directed path, and does not contribute to its cost. 	

Theorem 9. BestOrientStars solves SLPOs on star graphs in O(n log n) time.

Algorithm 5: BestOrientStars(S)
Input: an edge-bi-weighted star graph S
Output: an optimal orientation of S under Hs

1 remove from S every edge with a direction of non-positive weight, and denote
the resulting star graph S′;

2 set
∼
S′ to BestOrientStarm(S′);

3 direct all edges removed in step 1 in a direction of non-positive weight and add

them to
∼
S′, and denote the resulting directed star graph

∼
S;

4 return
∼
S;
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