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Abstract. We generalize the concept of a 2-coloring of a graph to what we call a semi-
balanced coloring by relaxing a certain discrepancy condition on the shortest-paths
hypergraph of the graph. Let G be an undirected, unweighted, connected graph with n
vertices and m edges. We prove that the number of different semi-balanced colorings of G is:
(1) at most nþ 1 if G is bipartite; (2) at most m if G is non-bipartite and triangle-free; and
(3) at most mþ 1 if G is non-bipartite. Based on the above combinatorial investigation, we
design an algorithm to enumerate all semi-balanced colorings of G in Oðnm2Þ time.

1. Introduction

Given a set V, a coloring of V is a mapping from V to f�1; 1g. For a graph
G ¼ ðV ;EÞ, a coloring p of the vertex set V is called a 2-coloring of G if
pðxÞ 6¼ pðyÞ for every edge fx; yg in E. We call a vertex which has been mapped to
1 (resp. �1) a red (resp. blue) vertex. A graph has a 2-coloring if and only if it is
bipartite; in fact, by symmetry, a bipartite graph always has two different 2-
colorings. A natural way to extend 2-colorings is by allowing k colors to be used,
where k is any positive integer. Such a coloring is called a k-coloring of G. The
number of possible k-colorings of a graph is given by its chromatic polynomial,
and has been studied extensively (see, e.g., [11] or [13]). It is well known that for
any fixed k � 3, a connected graph can have an exponential number (in jV j) of
different k-colorings and that the problem of determining if a given graph has any
k-colorings at all is NP-complete [13].

Another way to generalize 2-colorings is by relaxing the restriction on two
adjacent vertices never being allowed to have the same color. For this purpose,
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we view the 2-coloring condition as a discrepancy condition on a special hy-
pergraph induced by the graph called the shortest-paths hypergraph.

1.1. Discrepancy Conditions

The red and blue vertices along any path in a 2-colored bipartite graph are always
arranged in an alternating fashion. Thus, �1 �

P
v2P pðvÞ � 1 must hold for the

set P of vertices on any path in the graph. This can be regarded as a discrepancy
condition.

Discrepancy is a popular measure of uniformity and the quality of
approximations, and has been used in combinatorics, geometry, and Monte-
Carlo simulations [5,9,10]. It is defined as follows. Let H ¼ ðV ;FÞ be a hy-
pergraph, where F � 2V . Given a coloring p of V , let pðF Þ ¼

P
v2F pðvÞ for

every F 2F and let DcðH ; pÞ ¼ maxF2F jpðF Þj. The combinatorial (or homo-
geneous) discrepancy DcðHÞ is defined as DcðHÞ ¼ minp DcðH ;pÞ, where the
minimum is taken over all possible colorings of V . In particular, if DcðH ; pÞ � 1
then p yields a coloring which is uniform in every hyperedge; this means that
�1 � pðF Þ � 1 for every F 2F. Such a p is called a balanced coloring of H .
We call p a semi-balanced coloring of H if �1 � pðF Þ � 2 for every F 2F. The
shortest-paths hypergraph induced by G is the hypergraph HðGÞ ¼ ðV ;PGÞ,
where PG is the set of all shortest-path vertex sets in G. A 2-coloring of G is
equivalent to a balanced coloring of HðGÞ; hence, we generalize 2-colorings of
G by considering semi-balanced colorings of HðGÞ. A balanced (semi-balanced)
coloring of HðGÞ is also called a balanced (semi-balanced) coloring of G.

1.2. Relation to a Rounding Problem

Our motivation for studying semi-balanced colorings comes from a conjecture
in [2] called the rounding conjecture. Given a hypergraph H ¼ ðV ;FÞ, where
F � 2V , along with a real-valued function a : V ! ½0; 1�, a rounding of a is any
function from V to f0; 1g. For every rounding b of a, define the linear discrepancy
D‘ðH ; a; bÞ ¼ maxF2F jaðF Þ � bðF Þj, where aðF Þ ¼

P
v2F aðvÞ and bðF Þ ¼P

v2F bðvÞ. Roundings with low linear discrepancy have several applications,
including digital halftoning [1–3, 6, 12]. If, for a rounding b of a, it holds that
D‘ðH ; a; bÞ < 1 then b is called a global rounding of a in H . When F ¼ PG for a
graph G with real-valued vertex weights, a global rounding approximates the
vertex weights by integral vertex weights so that the weight sum of each shortest
path becomes either floor or ceiling of the original weight sum.

Now, the rounding conjecture states that if G ¼ ðV ;EÞ is a connected graph
with n vertices and a is a function V ! ½0; 1� then there are at most nþ 1
global roundings of a in the shortest-paths hypergraph HðGÞ ¼ ðV ;PGÞ,
regardless of a. The rounding conjecture has been proved for some special
types of graphs: if G is a path then PG is a set of intervals; the corresponding
rounding problem was studied by Sadakane et al. in [12]. This is a natural
extension of the fact that a single real number (i.e., the case n ¼ 1) has at most
two roundings (floor and ceiling). The conjecture has also been proved for
cycles, meshes, trees, and trees of cycles [2]. However, it seems difficult to prove
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in general, and it will be helpful to investigate other special cases. One such
case is when the input a is restricted to aUþðvÞ ¼ 1=2þ � for every v 2 V , where
0 < � < 1=n; then, the number of global roundings in HðGÞ is precisely the
number of semi-balanced colorings of G:1 Thus, although our results so far on
semi-balanced colorings provide weak evidence in support of the rounding
conjecture, we hope that they will give some insight. Moreover, our algorithm
in Section 6 might be useful when searching for a counterexample to the
rounding conjecture.

1.3 Independent Sets

If we only require that no blue vertices are adjacent to each other, the problem
of 2-coloring the graph becomes equivalent to the problem of finding an
independent set (also called a stable set) in the graph since any set of blue
vertices then forms an independent set of G. However, the number of different
independent sets of G can be very large, and we usually want one which
satisfies some additional restrictions: the maximum independent set problem
and the minimum maximal independent set problem are famous examples where
the additional restriction is basically quantitative. These two optimization
problems cannot be solved exactly, or even approximated within a factor of
jV j1�� for any constant � > 0, in polynomial time unless some hypotheses
concerning the computational hierarchy widely believed to be true turn out to
be false [4,7,8]. But by restricting the set of valid colorings to semi-balanced
colorings, we obtain a class of independent sets with an imposed structural
restriction which not only allows one member to be computed efficiently but in
fact all members to be enumerated in polynomial time.

Although a semi-balanced coloring of G does not always exist, for any inde-
pendent setW inG there is a supergraphG0 ofGobtained by adding suitable edges so
that W becomes the set of blue vertices in one of the semi-balanced colorings of G0.
Thus, the set of independent sets of G corresponds to the union of sets of semi-
balanced colorings of supergraphs of G, yielding a covering structure of the set of
independent sets. This further motivates us to study combinatorics and algorithms
for semi-balanced graph colorings.

1.4. Our Results

We show that if G is a connected graph with n vertices and m edges, then the
number mðGÞ of semi-balanced colorings of G is always polynomial in n. More
precisely, we prove that mðGÞ is: (1) at most nþ 1 if G is bipartite; (2) at most m if
G is non-bipartite and triangle-free; and (3) at most mþ 1 if G is non-bipartite.
Moreover, the semi-balanced colorings of G can be enumerated in Oðnm2Þ time;
thus, this version of the independent set problem is polynomial-time solvable.

1Given a rounding b of aUþ, define b0 through b0ðvÞ ¼ 2bðvÞ � 1 for every v 2 V : Then b is a
global rounding in HðGÞ if and only if b0 is a semi-balanced coloring of G.
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2. Preliminaries

Let H ¼ ðV ;FÞ be a hypergraph, where F � 2V . A coloring of H is a mapping
from V to f�1; 1g. For any coloring p of H and any F 2F, let pðF Þ ¼

P

v2F
pðvÞ.

Definition 2.1. A coloring p of H is called a balanced coloring of H if for every
F 2F, it holds that:

�1 � pðF Þ � 1:

p is called a semi-balanced coloring of H if for every F 2F, it holds that:

�1 � pðF Þ � 2:

For the rest of this paper, let G ¼ ðV ;EÞ be an undirected, unweighted, connected
graph with n vertices and m edges.

Consider a path p in G connecting two vertices u and v. The set of all vertices
on p (including u and v) is called the vertex set of p and is denoted by F ðpÞ. If p is a
shortest path between u and v, then F ðpÞ is a shortest-path vertex set. There may
exist several different shortest paths between u and v, and hence each pair of
vertices induces one or more shortest-path vertex sets. For any two vertices
u; v 2 V , distðu; vÞ denotes the length of a shortest path in G between u and v.

Given G, the shortest-paths hypergraph induced by G is the hypergraph
HðGÞ ¼ ðV ;PGÞ, where PG is the set of all shortest-path vertex sets in G. Our
focus is on the semi-balanced colorings of HðGÞ.

Definition 2.2. A coloring2 of G is a mapping p : V ! f�1; 1g. A vertex v in V is
said to be colored red if pðvÞ ¼ 1, or blue if pðvÞ ¼ �1.

A balanced (semi-balanced) coloring of the shortest-paths hypergraphHðGÞ is
also called a balanced (semi-balanced) coloring of G.

Definition 2.3. Let p be a coloring of G and fu; vg 2 E. The edge fu; vg is called
dangerous in p if pðuÞ ¼ pðvÞ ¼ 1, i.e., if both of u and v are colored red.

We say that an edge is ‘‘dangerous’’ rather than ‘‘dangerous in p’’ when there
is no confusion about which coloring is being referred to.

Observation. A balanced coloring can not contain any dangerous edges. Similarly, if
fu; vg 2 E then a coloring in which both u and v are colored blue can never be a semi-
balanced coloring of G. Furthermore, in any semi-balanced coloring, a shortest path
between two vertices cannot include two dangerous edges.

Definition 2.4. mðGÞ is the number of different semi-balanced colorings of G.

2In traditional graph coloring terminology, a coloring of a graph often requires that adjacent
vertices are assigned different colors; here, we refer to such a coloring as a balanced coloring in
order to generalize the concept.
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It is easy to calculate mðGÞ for certain types of graphs. For example,
mðGÞ ¼ nþ 1 if G is a tree since any semi-balanced coloring of a tree can have at
most one dangerous edge and G has n� 1 edges, and there are exactly two
balanced colorings of G. Also, mðGÞ ¼ nþ 1 if G is a complete graph because a
semi-balanced coloring of a complete graph can have at most one blue vertex. If G
is a cycle of length n, then mðGÞ ¼ 4 if n ¼ 3, mðGÞ ¼ n if n is odd and n � 5,
mðGÞ ¼ n=2þ 2 if n � 2 (modulo 4), and mðGÞ ¼ 2 if n � 0 (modulo 4).

Not all graphs admit semi-balanced colorings. Fig. 1 shows one such graph.
However, if we add an edge between the leftmost and the rightmost vertices in

the graph in Fig. 1, the coloring which makes the top and bottom vertices blue
becomes a semi-balanced coloring. In general:

Proposition 2.5. For any independent set W of G ¼ ðV ;EÞ, there is a graph
G0 ¼ ðV ;E0Þ such that E0 � E and W is the set of blue vertices in a suitable semi-
balanced coloring of G0.

Proof. For every pair of vertices u and v in V n W , if u and v are nonadjacent
then add an edge between u and v. Call the resulting graph G0. Note that W is
still an independent set in G0. Let p be the coloring of G0 in which all vertices
in W are colored blue and the rest red. Consider a shortest path p in G0

between any two vertices u and v. If u and v belong to V n W , then p consists of
a single dangerous edge and pðpÞ ¼ 2. If one of u and v belongs to W and the
other to V n W , then p contains one blue vertex and one or two red vertices,
i.e., pðpÞ ¼ 0 or 1. Similarly, if both of u and v belong to W , then pðpÞ ¼ �1 or
0 since no path contains two consecutive blue vertices. Hence, p is a semi-
balanced coloring of G0. h

The rest of this paper is devoted to proving the following enumerative com-
binatorial result and then designing a polynomial-time enumeration algorithm
based upon it.

Theorem 2.6. Let G be an undirected, unweighted, connected graph with n vertices
and m edges. If G is bipartite, mðGÞ � nþ 1. If G is not bipartite, mðGÞ � mþ 1;
moreover, if G is triangle-free, mðGÞ � m.

Fig. 1. This graph has no semi-balanced coloring
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Remark. Definition 2.1 is not generalized to allow pðF Þ to belong to arbitrary
intervals in order to guarantee that any graph has only a polynomial number (in its
input size) of semi-balanced colorings. Generalizing to ½�2; 2� means that there
can be an exponential number of valid colorings: take, e.g., the complete graph on
n vertices; each vertex can be either blue or red, so there are 2n such colorings.
Similarly, generalizing to ½�1; 3� means that the star graph with n vertices has
2n�1 þ 1 valid colorings.

3. The Bipartite Case

We start with an upper bound on the number of semi-balanced colorings of a
bipartite graph.

Proposition 3.1. If Gis a bipartite graph, then mðGÞ � nþ 1.

Proof. Fix a spanning tree S of G. Any semi-balanced coloring of G is either a
balanced coloring of S or a coloring of S with one or more dangerous edges. For
each edge e in S, we claim that there is at most one semi-balanced coloring of G
that makes e dangerous.

Suppose e ¼ fu; vg 2 S is dangerous in a semi-balanced coloring of G. Since G
is bipartite, it contains no odd cycles. Therefore, there is no vertex whose shortest
distance in G to u equals its shortest distance in G to v. Thus, we can divide the
vertices into two disjoint sets Vu and Vv so that Vu contains all vertices which are
closer to u than v in G, and analogously for Vv. Let Tu and Tv be two shortest path
trees (in G) of Vu and Vv rooted at u and v, respectively. We claim there is no
dangerous edge in Tu [ Tv. Assume that an edge fx; yg 2 Tu is dangerous, where x
is the parent of y in Tu. Let p be the path from u to y in Tu. Since
distðu; yÞ < distðv; yÞ and every edge in a path contributes 1 to its length, the path
appending e to p is a shortest path between y and v. But this path has two
dangerous edges, which is a contradiction. Thus, Tu and Tv must be colored in an
alternating fashion (each node in Tu is colored red or blue depending on if its
distance from u is even or odd, and similarly for Tv). This shows that there is a
unique (if any) semi-balanced coloring of G in which e is dangerous.

Since S has n� 1 edges, there are at most n� 1 semi-balanced colorings of G
which make at least one edge of S dangerous. S is a tree, so there are exactly two
balanced colorings of S. Thus, we obtain the proposition. (

4. The Non-bipartite, Triangle-free Case

In this section, we assume that G is non-bipartite and triangle-free.3 Although the
triangle-free case is a special case, we investigate it in detail since it helps the
reader understand our tools and strategy.

3Triangle-free means that if two edges fu; vg and fv;wg belong to G then G cannot contain the
edge fu;wg.
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The following dominating relation is our key tool. It will be utilized later in an
extended form for the case of general graphs.

Definition 4.1. (Dominating relation between edges) For a pair of edges e; f in E,
we say that e dominates f if we can write e ¼ fu; rg and f ¼ fv;wg so that
distðr; vÞ ¼ distðr;wÞ ¼ k and distðu; vÞ ¼ distðu;wÞ ¼ k þ 1, where k is an even
integer. We denote by e > f that e dominates f .

See Fig. 2 for an example.

Lemma 4.2. Let e; f 2 E. If e is dangerous in a semi-balanced coloring p and e > f ,
then f is also dangerous in p.

Proof. Let e ¼ fu; rg and f ¼ fv;wg, where r is closer than u to f . Consider a
shortest path p from r to v. By Definition 4.1, the path appending e to p is a
shortest path from u to v. Hence, if there is a dangerous edge on p, it contradicts
the semi-balanced condition. Thus, the vertices along p are colored in an alter-
nating fashion. Since distðr; vÞ is even, v has the same color as r, namely red.
Similarly, w must be colored red, and hence f is dangerous. h

Definition 4.3. DðGÞ, the dominance graph of G, is a directed graph whose vertices
are in one-to-one correspondence with the edges of G. For any two edges e; f 2 E,
there is a directed edge from e to f in DðGÞ if and only if e > f .

Given a coloring p of G, a vertex of DðGÞ is called dangerous in p if the
corresponding edge in G is dangerous in p.

Next, consider the decomposition of DðGÞ into strongly connected compo-
nents C1;C2; . . . ;Ch.

Corollary 4.4. If a vertex in a strongly connected component Ci is dangerous in a
semi-balanced coloring p, then all vertices belonging to Ci are dangerous in p.
Furthermore, all elements in its transitive closure in DðGÞ are also dangerous.

To find an upper bound on mðGÞ, we need one more definition.

Definition 4.5. For an edge e of E, a regular coloring associated with e is a semi-
balanced coloring which makes all the vertices in the strongly connected compo-
nent of DðGÞ containing e dangerous and no other vertex dominating e dangerous.

e

w

f

v

u

r

Fig. 2. Edge e dominates edge f
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Lemma 4.6. If G is not bipartite then any semi-balanced coloring of G is a regular
coloring associated with some edge e in E.

Proof. Let p be a semi-balanced coloring of G. p cannot be balanced since G is
non-bipartite, so there is at least one dangerous edge. Let EðpÞ be the set of
dangerous edges. Consider the subgraph H induced by EðpÞ in DðGÞ. By Corol-
lary 4.4, H must be the union of some strongly connected components. Consider
H as a directed acyclic graph on these strongly connected components, and pick a
source component C. Then, for any element e in C, p is a regular coloring. h

Lemma 4.7. For each edge e 2 E, there is at most one regular coloring associated
with e.

Proof. Write e ¼ fr; pg and let C be the set of vertices in DðGÞ which are reachable
from e. We call the edges in G which are represented by vertices of C predicted
edges. Construct a shortest path tree T of G rooted at r. In the construction of T ,
whenever two or more paths in G to the same vertex are of equal length, we apply a
convention that a path containing a predicted edge is preferred; if two or more
paths contain predicted edges, the one in which the predicted edge is nearer to r is
preferred. For any vertex v, let pathðr; vÞ be the path in T from r to v.

Consider a regular coloring associated with e. By definition, e and all other
predicted edges are dangerous. Below, we show that for every edge belonging
to T , it is dangerous only if it is a predicted edge, implying that the set of vertices
colored red is uniquely determined.

Suppose there exists a dangerous edge in T which is not predicted. Let
f ¼ fs; tg be such an edge with the smallest distance between r and s (without loss
of generality, assume that s is the parent node of t in T ). Then s cannot be equal to
r since otherwise f and e are adjacent dangerous edges, which is impossible in a
semi-balanced coloring of a triangle-free graph. Also, s cannot be be closer to p
than to r because then the shortest path pathðr; tÞ would contain two dangerous
edges. Let k ¼ distðr; sÞ. Note that k is even; otherwise, there would be another
dangerous edge on pathðr; sÞ, and pathðr; tÞ would contain two dangerous edges.

Consider the path appending e to pathðr; tÞ. This path has length k þ 2, and
contains two dangerous edges; hence, it cannot be a path with the shortest length.
Thus, there is a path p in G between p and t whose length is less than k þ 2. If it is
less than or equal to k, the path obtained by appending e to p has length at most
k þ 1 from r to t. Moreover, it should have been preferred to the current path
pathðr; tÞ when constructing T ; thus, we have a contradiction. Therefore, the path
p has length k þ 1. If p contains the edge f , then f dominates e. But because the
coloring is a regular coloring associated with e, f can be dangerous only if f is
in C and hence predicted.

Thus, we assume that p does not contain f . Since p has odd length, p has a
dangerous edge g ¼ fu; vg. We assume that u is nearer than v to p on the path. If
v ¼ t, we can again derive a contradiction because then g and fs; tg are adjacent
dangerous edges. Hence, v 6¼ t. The length ‘ of the path from p to u must be even
since we cannot have a dangerous edge on p in the part from p to u, and both p
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and u are colored red. Consider the path pathðr; vÞ in T . The length of pathðr; vÞ
must be ‘þ 1 (if it is less than or equal to ‘ then the path connecting pathðr; vÞ to
the part of p from v to t has length k or less, which contradicts that pathðr; tÞ is the
shortest; if it is greater than or equal to ‘þ 2 then the path appending e to the
part of p from p to v is a shortest path with two dangerous edges). Thus, pathðr; vÞ
has odd length, and hence contains a dangerous edge. If it is not predicted, it
contradicts that f is the nearest edge among non-predicted dangerous edges on T .
If it is predicted, the path connecting pathðr; vÞ and the part of p from v to t has
length k þ 1, and it is preferred to the current path pathðr; tÞ, which is a con-
tradiction.

Thus, we have proved that all dangerous edges on T are predicted, giving a
unique way (if one exists) of assigning colors to the nodes of T . h

Proposition 4.8. If G is a non-bipartite, triangle-free graph, then mðGÞ � m.

Proof. G is non-bipartite, so any semi-balanced coloring of G must be a regular
coloring associated with some edge in E by Lemma 4.6. Next, Lemma 4.7 implies
that there are at most m semi-balanced colorings of G. h

5. The General Non-bipartite Case

In this section, we assume that G is non-bipartite.
A clique Q of G is called maximal if there is no other clique in G containing Q.

A clique is called submaximal if it has at least two vertices and it is contained in a
maximal clique which has one more vertex. For a clique Q in G, VQ denotes the set
of vertices of Q. The following lemma is immediate since two blue vertices can
never be adjacent in a semi-balanced coloring.

Lemma 5.1. Let Q be a maximal clique in a graph G. In any semi-balanced coloring
of G, there is at most one vertex in VQ colored blue.

In a coloring of G, Q is called a dangerous clique if all vertices in VQ are red.
Lemma 5.1 implies that in any semi-balanced coloring, every maximal clique of at
least three vertices is either dangerous or has a dangerous submaximal clique.

Lemma 5.2. Let Q1 and Q2 be a pair of maximal cliques in G and let W ¼ VQ1
\ VQ2

.
In any semi-balanced coloring of G, the following holds:

(1) If jW j � 2, all vertices in W must be colored red.
(2) If W ¼ fwg and jVQ1

j � 3 and jVQ2
j � 3, the vertex w must be colored red if

there is an edge between VQ1
� W and VQ2

� W ; otherwise, it must be colored blue.
(3) If W ¼ fwg and jVQ1

j � 3 and jVQ2
j ¼ 2, the clique (indeed, the edge) Q2

cannot be dangerous.

Proof. (1) Assume some vertex in W is colored blue. Then all other vertices in
VQ1
[ VQ2

must be colored red. Since jW j � 2, there is a vertex w in W colored red.
For any pair of vertices x 2 VQ1

� W and y 2 VQ2
� W , the path x! w! y cannot
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be a shortest path; hence the edge fx; yg must be in the graph G. This means that
G contains the complete bipartite graph between VQ1

� W and VQ2
� W , and thus

it has a complete graph on VQ1
[ VQ2

, which is a contradiction.
(2) If there is a vertex x 2 VQ1

� W and a vertex y 2 VQ2
� W such that fx; yg is

an edge of G then the vertices fw; x; yg constitute a triangle which is contained in a
maximal clique Q3 intersecting Q1 at x and w. Therefore, w must be colored red
by (1) above. If there are no edges between VQ1

� W and VQ2
� W , then there are

two red vertices x 2 VQ1
� W and y 2 VQ2

� W with x! w! y being a shortest
path from x to y. Hence, w must be colored blue.

(3) Suppose that Q2 is an edge fw; yg. There is no edge between y and a
vertex x in VQ1

� W ; otherwise, we have a triangle with node set fw; x; yg, con-
tradicting the maximality of Q2. Thus, for any vertex x in VQ1

� W , the path
x! w! y is a shortest path. If Q2 is dangerous, w and y are colored red so x must
be colored blue. However, there can be at most one blue vertex in Q1, yielding a
contradiction since VQ1

� W contains at least two vertices. h

Because of Lemma 5.2, if two maximal cliques intersect at two or more vertices,
we can fix the colors of all vertices in the intersection. Also, if two maximal cliques
of size at least three intersect at one vertex, we can fix the color of that vertex.

We first remove those vertices and their incident edges from G. For any
maximal clique Q, let ~Q be the remaining part. Next, for each maximal clique Q of
size two (i.e., edge) intersecting another clique of size greater than two, we set
~Q ¼ ; and remove the corresponding edge but keep both endpoints of the edge if
they have not been removed so far. Thus, we obtain a subgraph ~G of G.

For a submaximal clique R in a maximal clique Q, ~R denotes R \ ~Q. We call ~Q
a restricted clique if Q is either maximal or submaximal.

Observe that if we give a coloring of ~Q for each maximal clique Q having at
least three vertices and determine the set of dangerous edges (i.e., red-colored
cliques of size two), the coloring of G is uniquely determined.

To count the number of colorings, we use a function t defined below. For a
maximal clique Q of size at least 3, there are at most tðQÞ ways to color the vertices
in ~Q so that ~Q or some submaximal clique of ~Q is dangerous.

Definition 5.3. Let Q be a maximal clique with k vertices in ~Q. Define tðQÞ as:

tðQÞ ¼
k þ 1; if Q has three or more vertices and ~Q 6¼ ;
1; if Q is an edge and ~Q ¼ Q
0; if Q is an edge and ~Q has one vertex
0; if ~Q ¼ ;

8
>><

>>:

Lemma 5.4.
P

Q tðQÞ � mþ 1, where the summation is taken over all maximal
cliques of G.

Proof. Assign mþ 1 tokens to G in such a way that every edge of G initially
receives one token and one extra token is not assigned to any edge. To prove the
lemma, we demonstrate how the tokens can be distributed among the maximal
cliques of G so that every maximal clique Q is given tðQÞ tokens.
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In the graph ~G, ~Q for a maximal clique Q of size at least three cannot intersect
any other restricted cliques and is therefore isolated. First, consider the case
Q 6¼ ~Q. We can assume jVQj � 3 since otherwise tðQÞ ¼ 0. If ~Q has k vertices, there
are m1ðQÞ ¼ k 	 ðjVQj � kÞ edges in G that are adjacent to vertices in ~Q. None of
these edges are in another maximal clique since otherwise the endpoints of these
edges should have been removed in ~G, too. ~Q itself has m2ðQÞ ¼ kðk � 1Þ=2 edges.
Thus, we can take m1ðQÞ þ m2ðQÞ tokens from these edges and give to Q. It is easy
to see that m1ðQÞ þ m2ðQÞ � tðQÞ.

Next, consider the cases where Q ¼ ~Q. If Q has k � 4 vertices then ~Q has
kðk � 1Þ=2 > k þ 1 ¼ tðQÞ edges from which tokens can be taken. If Q has two
vertices (i.e., Q is an edge e) then tðQÞ ¼ 1 and we assign to Q the token of the
edge e itself. Finally, if Q is a triangle, it has three edges but tðQÞ ¼ 4. Suppose
there are d such triangles; the sum of the corresponding tðQÞ’s is 4d. The tri-
angles are isolated in ~G; however, G itself is connected. Hence, we can find d � 1
edges which are adjacent to the triangles in G and removed in the construction
of ~G. These edges’ tokens have not previously been assigned to any maximal
cliques, so we can use them together with the tokens of the 3d edges in the
triangles. We then use the extra token, for a total of ðd � 1Þ þ 3d þ 1 ¼ 4d
tokens. h

Next, we define a dominating relation among maximal and submaximal cli-
ques which generalizes Definition 4.1. Let Q be the set of all cliques which are
maximal or submaximal.

Definition 5.5. (Dominating relation between cliques) Let Q1;Q2 2 Q. We say that
Q1 dominates Q2 if there exists an even integer k such that for every v 2 VQ2

, there
is a vertex r 2 VQ1

and a vertex u 2 VQ1
for which distðr; vÞ ¼ k and

distðu; vÞ ¼ k þ 1. We write Q1 > Q2 if Q1 dominates Q2.

Note that by Definition 5.5, a submaximal clique is dominated by a maximal
clique containing it.

Lemma 5.6. If Q1 is dangerous in a semi-balanced coloring p and Q1 > Q2, then Q2

is dangerous in p.

Proof. Let k be an integer which satisfies the conditions in Definition 5.5. Let v
be any vertex in VQ2

, and let r and u be two vertices in VQ1
such that distðr; vÞ ¼ k

and distðu; vÞ ¼ k þ 1. Since distðu; vÞ ¼ k þ 1, there is at least one shortest path
from u to v which contains the edge fu; rg. See Fig. 3. Both u and r are colored
red in p, and since no shortest path from u to v can include two dangerous edges
and the distance between r and v is even, v must be colored red. Thus, Q2 is
dangerous. h

Definition 5.7. DðGÞ, the dominance graph of G, is a directed graph whose vertices
are in one-to-one correspondence with Q. For any two (maximal or submaximal)
cliques Q1;Q2 2 Q, there is a directed edge from Q1 to Q2 in DðGÞ if and only if
Q1 > Q2.
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Definition 5.8. Dð ~GÞ, the dominance graph of ~G, is the directed graph obtained
from DðGÞ by identifying vertices associated with Q1 and Q2 if ~Q1 ¼ ~Q2, and
removing the vertex associated with Q if ~Q ¼ ; or Q� ~Q is known to contain a
blue vertex in any semi-balanced coloring. Note that the last case may happen if
the vertex is the intersection of two maximal cliques, each of size at least three.

Corollary 5.9. If a restricted clique ~Q is dangerous in a semi-balanced coloring, the
restricted cliques in its transitive closure in Dð ~GÞ are also dangerous.

Definition 5.10. For a member ~Q of a strongly connected component C of Dð ~GÞ, a
regular coloring associated with ~Q is a semi-balanced coloring which makes all
restricted cliques in C dangerous and no other restricted clique dominating ~Q
dangerous.

Lemma 5.11. If G is not bipartite and if there is a clique Q of size more than two
such that ~Q 6¼ ;, then any semi-balanced coloring is a regular coloring associated
with some restricted clique in G.

Proof. Let p be a semi-balanced coloring of G. p cannot be balanced since G is non-
bipartite, so there is at least one dangerous edge. Let QðpÞ be the set of dangerous
restricted cliques. Consider the subgraph H induced by QðpÞ in Dð ~GÞ. By Corol-
lary 5.9, H must be the union of some strongly connected components. Consider H
as a directed acyclic graph on these strongly connected components, and pick a
source component C. Then, for any element in C, p is a regular coloring. h

Lemma 5.12. For each restricted clique ~Q, there is at most one regular coloring
associated with ~Q.

Proof. Let C be the set of vertices in Dð ~GÞ which are reachable from ~Q. The
cliques in G which are represented by vertices of C are called predicted cliques, and
edges in G belonging to predicted cliques are called predicted edges. Let Q be any

Q 2

Q 1

u

r

v

Fig. 3. Illustrating the proof of Lemma 5.6
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maximal or submaximal clique whose restriction is ~Q, fix an ordering
fv1; v2; . . . ; vqg of VQ, and partition V into q groups W1;W2; . . . ;Wq such that a
vertex w in V is placed in Wi if vi has the smallest index among all vertices in VQ

that are nearest to w in G. For every i 2 f1; 2; . . . ; qg, construct a shortest path
tree Ti on Wi rooted at vi. In the construction of Ti, whenever two or more paths to
the same vertex in Wi are of equal length, we apply a convention that a path
containing a predicted edge is preferred; if two or more paths contain predicted
edges, the one in which the predicted edge is nearer to vi is preferred.

Consider a regular coloring associated with ~Q. By definition, ~Q and all other
predicted cliques are dangerous. Therefore, any edge of G contained in a predicted
clique is dangerous. Below, we show that for every edge belonging to a tree Ti, it is
dangerous only if it lies in a predicted clique, implying that the set of vertices
colored red is uniquely determined.

Suppose there exists at least one dangerous, non-predicted edge in some Ti. Let
fs; tg be a dangerous, non-predicted edge in Ti which is closest to vi, and assume
without loss of generality that s is the parent node of t in Ti. Denote the distance
between vi and s by d, i.e., distðvi; tÞ ¼ distðvi; sÞ þ 1 ¼ d þ 1. and let p be the path
in Ti from vi to t. Note that d must be even since otherwise p has two or more
dangerous edges. If i 6¼ 1 then distðv1; sÞ > distðvi; sÞ and distðv1; tÞ > distðvi; tÞ
(otherwise, s and t would have been placed in W1), so distðv1; sÞ ¼ d þ 1 and
distðv1; tÞ ¼ d þ 2. The path in G obtained by appending fv1; vig to p is therefore a
shortest path with two dangerous edges, which is a contradiction. Thus, we have
i ¼ 1.

Next, for every 2 � j � q, it holds that: (1) distðvj; tÞ � d is impossible (since
t 2 W1); (2) distðvj; tÞ � d þ 3 is impossible (since there is a path of length d þ 2
from vj to t beginning with the edge fvj; v1g); (3) distðvj; tÞ ¼ d þ 2 is impossible (if
distðvj; tÞ ¼ d þ 2 then the path vj ! v1 ! s! t of length d þ 2 is a shortest path
with two dangerous edges, which is a contradiction). Thus, distðvj; tÞ ¼ d þ 1 for
every vj 2 VQ.

Let A be a dangerous maximal clique containing s and t, if one exists; other-
wise, let A be a dangerous submaximal clique containing s and t. Consider any
shortest path in G from a vertex vj 2 VQ to t. The path has odd length and
consequently includes a dangerous edge fx; yg, where x is nearer than y to vj. If
y ¼ t then x also belongs to VA (otherwise, for some a 2 VA there would exist a
shortest path x! y ! a consisting of two dangerous edges), and furthermore,
distðvj; xÞ ¼ d and distðvj; yÞ ¼ d þ 1. Hence by Definition 5.5, if for every vj 2 VQ

there exists a shortest path in G from vj to t whose dangerous edge contains t, then
A dominates ~Q. But then A must belong to C since the coloring is a regular
coloring associated with ~Q and A is dangerous; however, this means that the edge
fs; tg is contained in a predicted clique, which is a contradiction. Therefore, we
may assume there exists a k 6¼ 1 such that there is no shortest path in G from vk to
t whose dangerous edge contains t.

Now, let q be a shortest path from vk to t. q has a dangerous edge fx; yg, where
x is nearer than y to vk, satisfying y 6¼ t. Denote distðvk; yÞ by ‘. ‘ must be odd
since vk and y are colored red and the path from vk to y through x contains exactly
one dangerous edge. Let r be a shortest path from v1 to y; its length is ‘ since if it
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was ‘þ 1 then the path consisting of the edge fv1; vkg together with the shortest
path from vk to y through x would be a shortest path with two dangerous edges,
and if distðvj; yÞ ¼ ‘� 1 for any vj 2 VQ then distðvj; tÞ ¼ d, which is a contra-
diction. This also shows that y 2 W1. Next, note that there is a dangerous edge on
r since v1 and y are colored red and ‘ is odd. In particular, the above holds for the
shortest path r� from v1 to y consisting of edges in T1; let e be the dangerous edge
on r�.

The path in G of length d þ 1 from v1 to t containing e is a shortest path. If e
is not predicted, it contradicts the choice of fs; tg because fs; tg was the dan-
gerous, non-predicted edge in T1 nearest to v1. If e is predicted, there is a
contradiction because the path from v1 to t in T1 contains the non-predicted edge
fs; tg but a path containing e should have been preferred in the construction
of T1.

Thus, every dangerous edge in a shortest path tree belongs to some predicted
clique, giving a unique way (if one exists) of assigning colors to V . h

Now, we can derive our main result:

Proposition 5.13. If G is a non-bipartite graph, then mðGÞ � mþ 1.

Proof. If there is a clique Q of size more than two with ~Q 6¼ ;, then every semi-
balanced coloring of G must be a regular coloring associated with some re-
stricted clique by Lemma 5.11. By Lemma 5.12, there is at most one regular
coloring associated with each restricted clique. Thus, the number of semi-bal-
anced colorings of G is at most

P
Q tðQÞ (if it was greater, there would exist

some maximal clique R with at least tðRÞ þ 1 regular colorings associated with
restrictions of it or its submaximal cliques, contradicting that for each maximal
clique Q, there are at most tðQÞ ways to color the vertices in ~Q so that ~Q or some
submaximal clique of ~Q is dangerous), and therefore at most mþ 1 by
Lemma 5.4.

Otherwise, there is no clique Q of size more than two satisfying ~Q 6¼ ;, in
which case there may be a semi-balanced coloring of G which makes none of the
restricted cliques dangerous. However, there is a most one such coloring since G is
non-bipartite. In this case,

P
Q tðQÞ � m since ~G has no triangles. Thus, the

number of semi-balanced colorings is bounded by mþ 1. h

6. An Algorithm for Enumerating Semi-Balanced Colorings

6.1. Testing a Coloring

To test if a given coloring satisfies the semi-balanced condition, we first observe
the following:

Lemma 6.1. Let p1 and p2 be two shortest paths in G from a vertex s to a vertex t. If
p is a semi-balanced coloring of G then pðp1Þ must be equal to pðp2Þ.
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Proof. Let p1 be the path s! a1 ! a2 ! :::! al ! t and p2 the path
s! b1 ! b2 ! :::! bl ! t, and suppose that pðp1Þ 6¼ pðp2Þ. Assume without loss
of generality that pðp1Þ < pðp2Þ. Since p1 and p2 have the same length, either both of
pðp1Þ and pðp2Þ are even or both of pðp1Þ and pðp2Þ are odd. For any shortest path q

in G, it holds that pðqÞ belongs to f�1; 0; 1; 2g. Thus, we have pðp1Þ þ 2 ¼ pðp2Þ
and pðp1Þ 2 f�1; 0g. Set k ¼ pðp1Þ. There are four cases to consider:

– If pðsÞ ¼ 1 and pðtÞ ¼ 1 then pða1 ! a2 ! :::! alÞ equals k � 2 which is always
less than �1. Contradiction since a1 ! a2 ! :::! al is a shortest path in G.

– Similarly, if pðsÞ ¼ �1 and pðtÞ ¼ �1 then pðb1 ! b2 ! :::! blÞ equals k þ 4
which is always greater than 2. Contradiction.

– If pðsÞ ¼ 1 and pðtÞ ¼ �1 then pða1 ! a2 ! :::! al ! tÞ equals k � 1 and
pðs! b1 ! b2 ! :::! blÞ equals k þ 3. Both k � 1 and k þ 3 cannot belong to
f�1; 0; 1; 2g. Contradiction.

– The case with pðsÞ ¼ �1 and pðtÞ ¼ 1 is analogous to the previous case. h

Next, we have:

Lemma 6.2. Given a graph G ¼ ðV ;EÞ and a coloring p of G, we can decide whether
p is a semi-balanced coloring of G or not in OðnmÞ time.

Proof. Since the number of shortest paths in G may be exponential in n, a naive
algorithm that computes pðpÞ for every hyperedge p inPG is inefficient. Instead, we
compute a shortest path tree Tu by breadth-first search in G for each vertex u 2 V .
In the construction of Tu, we associate with each vertex w 2 V two values P ½w� and
D½w�. Initially, P ½u� ¼ pðuÞ and D½u� ¼ 0. Whenever an edge ðv;wÞ is traversed in
the breadth-first search, where v is the parent of w, if w has not been visited before
then u! v! w must be a shortest path and we set P ½w� to P ½v� þ pðwÞ and D½w� to
D½v� þ 1. If w has been visited before and D½w� equals D½v� þ 1 (i.e., if this is also a
shortest path from u) then check if P ½w� equals P ½v� þ pðwÞ; if not then we can
immediately answer ‘‘no’’ because if there are two shortest paths p1 and p2 from u
to w and pðp1Þ 6¼ pðp2Þ then p is not a semi-balanced coloring by Lemma 6.1. Thus,
we do not need to store one value for every possible shortest path. Next, if in every
tree Tu it holds that P ½w� equals �1, 0, 1, or 2 for every vertex w, we decide that p is
semi-balanced and answer ‘‘yes’’, and otherwise answer ‘‘no’’. (In fact, we can stop
the process and answer ‘‘no’’ directly if we discover that P ½w� � 3 or P ½w� � �2 for
some vertex w in some tree Tu.)

For each vertex u, the breadth-first search from u takes OðmÞ time and the
values of P ½w� can be checked in OðnÞ time, so the total time complexity is
OðnmÞ. h

6.2. The Enumeration Algorithm

Here, we give an algorithm for enumerating all semi-balanced colorings of a given
graph in Oðnm2Þ time. The strategy is to generate a polynomial-sized set of
candidate colorings that includes all the semi-balanced colorings and then test each
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candidate coloring for the semi-balanced condition in polynomial time using the
method described in the proof of Lemma 6.2. The algorithm is outlined in Fig. 4.

The algorithm first checks if G is bipartite by breadth-first search starting at an
arbitrary vertex. If it is bipartite, the two balanced colorings of G are returned and
then the proof of Proposition 3.1 provides a method for enumerating all
remaining semi-balanced colorings of G; as each candidate coloring is generated,
test if it is semi-balanced using Lemma 6.2.

If G is not bipartite, the ideas from Section 5 are employed. The algorithm
computes ~G and assigns colors to all vertices in G� ~G according to Lemma 5.2
(The colors of these vertices are uniquely determined for all semi-balanced col-
orings of G, and can therefore be fixed for the remainder of the algorithm.) To
implement this step, we proceed as follows.

To start with, we locate intersections having at least two vertices between pairs
of maximal cliques. Note that such an intersection must contain an edge.

Lemma 6.3. An edge e is contained in just one maximal clique if and only if the
union of all triangles containing e forms a clique.

Proof. The if part is trivial. For proving the only-if part, consider a pair of
vertices u1 and u2 forming triangles D1 and D2 with e, respectively. If fu1; u2g is
not an edge of G, any maximal clique containing D1 must be different from any
maximal clique containing D2. h

For each edge e in G, we check whether it is contained in the intersection of
two maximal cliques. From Lemma 6.3, it suffices to look at the set of triangles
containing e and check whether the set of all vertices of triangles forms a clique or

Fig. 4. An algorithm for enumerating all semi-balanced colorings of G
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not. This can be done in OðmÞ time for each edge e. Hence, it takes a total of
Oðm2Þ time.

Then, we check every vertex v not detected to be red in the previous stage if it is
the intersection of twomaximal cliques, each of size greater than two. The neighbors
of v must be a disjoint union of cliques (otherwise, v would have been colored red
previously) so this can be carried out in OðmÞ time, i.e., in OðnmÞ time in total.

Next, the algorithm builds Dð ~GÞ. We need to retrieve a maximal clique Q from
a reduced clique ~Q under the assumption that ~Q or one of its submaximal cliques
is dangerous. Below, we refer to the vertices in G� ~G which are known to be red
as purple vertices. Since we do not permit a path of length two consisting of two
dangerous edges to become a shortest path, we obtain the following lemma.

Lemma 6.4. Let Q be a maximal clique and let R be a submaximal clique of Q. If ~R
is dangerous, Q must be the clique consisting of all vertices in ~Q together with the set
of all purple vertices adjacent to R. If ~Q is dangerous, Q must contain the clique
Q0consisting of all vertices in ~Q together with the set of all purple vertices adjacent to
Q; furthermore, Q0 is either Q or a submaximal clique of Q.

Thus, we can retrieve Q or its submaximal clique corresponding to R from ~R in
polynomial time. To construct Dð ~GÞ, we have to check the dominating relation
between such cliques. For this purpose, we compute the all-pairs shortest dis-
tances in G in Oðn3Þ time; once we have computed the distances, it is possible to
construct Dð ~GÞ.

Then, regular colorings are generated and tested. The proof of Lemma 5.12
gives a procedure for generating regular colorings. Each candidate coloring is
tested using the method described in Lemma 6.2.

Constructing ~G and Dð ~GÞ takes Oðm2Þ þ OðnmÞ þ Oðn3Þ ¼ Oðm2 þ n3Þ time.
At most mþ 1 candidate colorings are generated; for each one, it takes OðnmÞ
time to check if it is semi-balanced. Hence, the total time complexity of the
algorithm is Oðnm2Þ.

Theorem 6.5. Given an undirected, unweighted, connected graph with n vertices and
m edges, all semi-balanced colorings of G can be enumerated in Oðnm2Þ time.

7. Concluding Remarks

We have defined and studied the combinatorial concept of a semi-balanced col-
oring, obtained by generalizing 2-colorings. Motivated by our results, we state the
following conjecture. If it is true, it means that mðGÞ is maximized at the two
extremes: when G is a tree and when G is a complete graph. (The only graph that
the authors know of which satisfies mðGÞ ¼ mþ 1 is the triangle; incidentally, this
graph also satisfies mðGÞ ¼ nþ 1.) The conjecture is a special case of the rounding
conjecture mentioned in Section 1.

Conjecture. For any undirected, unweighted, connected graph G with n vertices,
mðGÞ � nþ 1.
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As seen in Section 2, there are graphs for which mðGÞ ¼ 0. We would like to
know if there is some way to characterize all graphs with mðGÞ > 0.

Open problem. Determine the class of graphs for which a semi-balanced coloring
always exists.

The algorithm presented in Section 6 may be a useful tool for resolving these
two issues.
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