
Determining the Consistency of Resolved Triplets

and Fan Triplets

JESPER JANSSON,1 ANDRZEJ LINGAS,2 RAMESH RAJABY,3 and WING-KIN SUNG3,4

ABSTRACT

The R+ -F + -
Consistency problem takes as input two sets R + and R - of resolved triplets

and two sets F + and F - of fan triplets, and asks for a distinctly leaf-labeled tree that
contains all elements in R + [F + and no elements in R - [F - as embedded subtrees, if such
a tree exists. This article presents a detailed characterization of how the computational
complexity of the problem changes under various restrictions. Our main result is an efficient
algorithm for dense inputs satisfying R - = ; whose running time is linear in the size of the
input and therefore optimal.

Keywords: computational complexity, phylogenetic tree, rooted triplets consistency, tree

algorithm.

1. INTRODUCTION

Phylogenetic trees have been used by biologists for more than 150 years to describe evolutionary

history. In the last 50 years, many methods for systematically reconstructing phylogenetic trees from

different kinds of data have been proposed (Felsenstein, 2004; Sung, 2010). In general, inferring a reliable

phylogenetic tree is a time-consuming task for large data sets, but the supertree approach (Bininda-Emonds,

2004; Bininda-Emonds et al., 2007) may in many cases provide a reasonable compromise between accuracy

and computational efficiency by way of divide-and-conquer: first, infer a set of trees for small, overlapping

subsets of the species using a computationally expensive method such as maximum likelihood (Felsenstein,

2004; Chor et al., 2007) and then merge all the small trees into one big tree with some combinatorial algorithm.

In this context, the fundamental problem of determining if a given set of resolved triplets (rooted, binary

phylogenetic trees with exactly three leaf labels each) can be combined without conflicts and if so,

constructing such a tree, can be solved with a polynomial-time algorithm named BUILD, invented by Aho

et al. (1981). BUILD has been extended in various ways (Constantinescu and Sankoff, 1995; Ng and

Wormald, 1996; Semple, 2003; Semple et al., 2004; Willson, 2004; He et al., 2006; Jansson et al., 2006,

1Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
2Department of Computer Science, Lund University, Lund, Sweden.
3School of Computing, NUS Graduate School for Integrative Sciences and Engineering, National University of

Singapore, Singapore.
4Genome Institute of Singapore, Genome, Singapore, Singapore.
A preliminary version of this article appeared in Proceedings of the 21st Annual International Conference on

Research in Computational Molecular Biology (RECOMB 2017), Volume 10229 of Lecture Notes in Computer
Science, pp. 82–98, Springer International Publishing AG, 2017.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 25, Number 7, 2018

Mary Ann Liebert, Inc.

Pp. 740–754

DOI: 10.1089/cmb.2017.0256

740

D
ow

nl
oa

de
d

by
 L

un
d

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

2012; Snir and Rao, 2006; Guillemot et al., 2011; Huber et al., 2017), for example, to also allow fan triplets

(rooted, nonbinary phylogenetic trees with three leaf labels each) or forbidden resolved triplets in the input.

It has also been adapted to related optimization problems where the input may contain errors and the

objective is to find a tree that satisfies as much of the input as possible; for details, see Byrka et al. (2010b)

and Dannenberg et al. (2015) and the references therein.

Below, we investigate how the computational complexity of the basic problem varies according to which

types of inputs are allowed and present some new results that expose the boundary between efficiently

solvable and intractable versions of the problem.

1.1. Problem definitions

A phylogenetic tree is a rooted, unordered, distinctly leaf-labeled tree in which every internal node has at

least two children (from here on, phylogenetic trees are simply referred to as ‘‘trees’’ and every leaf in a

tree is identified with its corresponding leaf label). For any tree T, the set of all nodes in T is denoted by

V(T) and the set of all leaf labels occurring in T is denoted by L(T). The degree of a node u 2 V(T) is the

number of children of u, and the degree of T is the maximum degree of all nodes in V(T). For any

u‚ v 2 V(T), lcaT (u‚ v) denotes the lowest common ancestor in T of u and v.

A rooted triplet is a tree with precisely three leaves. Let t be any rooted triplet and suppose that

L(t) = fx‚ y‚ zg. If t is binary, then t is called a resolved triplet and we write t = xyjz, where lcat(x‚ y) is a

proper descendant of lcat(x‚ z) = lcat(y‚ z). On the other hand, if t is not binary, then t is called a fan triplet

and we write t = xjyjz. Note that there are four different rooted triplets leaf-labeled by fx‚ y‚ zg, namely xyjz,

xzjy, yzjx, and xjyjz.

For any tree T and fx‚ y‚ zg � L(T), the resolved triplet xyjz is consistent with T if lcaT (x‚ y) is a proper

descendant of lcaT (x‚ z) = lcaT (y‚ z). Similarly, the fan triplet xjyjz is consistent with T if lcaT (x‚ y) = lcaT

(x‚ z) = lcaT (y‚ z). Finally, for any tree T, let T jjfx‚ y‚ zg be the rooted triplet with leaf label set fx‚ y‚ zg
consistent with T, and let t(T) be the set of all rooted triplets (resolved triplets as well as fan triplets)

consistent with T, that is, define t(T) = fT jjfx‚ y‚ zg : fx‚ y‚ zg � L(T)g.
The problem studied in this article is defined as follows:

In other words, R + and F + specify rooted triplets that are required to be embedded in the output tree,

while R - and F - are forbidden rooted triplets. See Figure 1 for two examples. Throughout the text, we use

n to denote the cardinality of the input leaf label set L.

The special cases of the R + -F + -
Consistency problem where one or more of the four input sets

R + ‚ R - ‚ F + ‚ F - are empty will also be denoted by removing the corresponding ‘‘ + ’’ and ‘‘ - ’’ symbols

from the problem name. For example, the R -F +
Consistency problem requires that R + = F - = ;. To

simplify the notation, if R + = R - = ;, then we omit the ‘‘R’’ and analogously for ‘‘F ’’; for example, R -

means R + = F + = F - = ;. Ignoring the trivial case where all of R + ‚ R - ‚ F + ‚ F - are empty, this yields

exactly 14 problem variants in addition to the original problem. Our goal is to establish the computational

complexity of all these problem variants as well as some other potentially useful special cases.

The R + -F + -
Consistency problem:

Given two sets R + and R - of resolved triplets and two sets F + and F - of fan triplets over a leaf label

set L, output a tree T with L(T) = L such that R + [F + � t(T) and (R - [F -) \ t(T) = ;, if such a tree

exists; otherwise, output null.

FIG. 1. As an example, consider the following instance of the R + -F + -
Consistency problem:

L = fa‚ b‚ c‚ dg, R + = ;, R - = fcdjag, F + = fajbjcg, and F - = fbjcjdg. The shown tree T satisfies

t(T) = fajbjc‚ bdja‚ ajcjd‚ bdjcg, so R + [F + � t(T) and (R - [F -) \ t(T) = ; hold. Thus, T is a

valid solution. As another example, if L, R + , R - , and F - are the same as above but F + is changed to

F + = fajbjcj‚ ajbjdg, then the answer is null.

CONSISTENCY OF RESOLVED TRIPLETS AND FAN TRIPLETS 741

D
ow

nl
oa

de
d

by
 L

un
d

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

1.2. Overview of old and new results

Aho et al. (1981) presented a polynomial-time algorithm named BUILD that solves the R +
Con-

sistency problem, and a faster implementation of it was given by Henzinger et al. (1999). Ng and

Wormald (1996) extended BUILD to solve R +F +
Consistency in polynomial time, and He et al. (2006)

later showed how to solveR + -
Consistency in polynomial time using a similar approach. As for negative

results, it is known that R -
Consistency is NP-hard under the additional constraint that the output tree is

binary (Bryant, 1997, Theorem 2.20).

Three direct consequences of these previously known results are given in Section 2 (Lemmas 1, 2, and

3). In Section 3, we prove that the F + -
Consistency problem is NP-hard (Theorem 1). Lemmas 1, 2, and

3 together with Theorem 1 then provide a complete characterization of the polynomial-time solvability of

all 15 variants of the R + -F + -
Consistency problem defined in Section 1.1 since each of the remaining

problem variants is either a special case of a polynomial-time solvable problem variant or a generalization

of an NP-hard one (see Table 1).

Motivated by these observations, we then try to identify some way of restricting the R + -F + -

Consistency problem that leads to more efficiently solvable problem variants. One natural restriction

is to require the degree of the output tree to be at most D for some integer D � 2; unfortunately, Section

4 demonstrates that this generally makes the problems harder. See Table 2 for a summary. In par-

ticular, Theorem 2 proves that even F +
Consistency is NP-hard when restricted to degree-D trees for

every fixed D � 4. Furthermore, by Corollary 2, D-bounded degree R -
Consistency becomes NP-

hard for every fixed D � 2. The only efficiently solvable problem variants that we know of are covered

by Corollary 1, stating that D-bounded degree R +F -
Consistency remains polynomial-time solvable

for every D � 2.

Therefore, we need to find another way to restrict the problem. For this purpose, Section 5 considers

inputs that are dense in the sense that for each L0 � L with jL0j = 3, at least one rooted triplet t with L(t) = L0

is specified in R + , R - , F + , or F - . As shown in Dannenberg et al., the maximization version of R + -F + -

Consistency (whose objective is to output a tree T with L(T) = L maximizing the value of

jT(R + [F +)j + j(R - [F -)nT(R - [F -)j, where T(X) for any set X of rooted triplets denotes the subset of

X consistent with T) admits a polynomial-time approximation scheme (PTAS) when restricted to dense

Table 1. Overview of the Computational Complexity of the 15 Different

Variants of the R + -F + -
Consistency Problem

Consistency ; F + F - F + -

; · P P NP-hard (Theorem 1)

R + P P P (Lemma 2) NP-hard

R - P P NP-hard (Lemma 3) NP-hard

R + - P P (Lemma 1) NP-hard NP-hard

‘‘P’’ means solvable in polynomial time. The results written in bold text are due to Aho et al.

(1981), He et al. (2006), and Ng and Wormald (1996).

Table 2. The Complexity of R + -F + -
Consistency When the Output

Tree Is Required to Have Degree at Most D

Bounded degree

Consistency ; F + F - F + -

; · NP-hard� (Theorem 2) P NP-hard�

R + P NP-hard� P (Corollary 1) NP-hard�

R - NP-hard (Corollary 2) NP-hard NP-hard NP-hard

R + - NP-hard NP-hard NP-hard NP-hard

‘‘NP-hard�’’ (with an asterisk) means NP-hard for every fixed D � 4 and trivially polynomial-time

solvable for D = 2, while the complexity for D = 3 is still open.

742 JANSSON ET AL.

D
ow

nl
oa

de
d

by
 L

un
d

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

inputs, whereas no such PTAS is known for the nondense case. Actually, the nondense case of the

maximization problem is APX-complete (Byrka et al., 2010a, Proposition 2). This gives us some hope that

R + -F + -
Consistency may be easier for dense inputs. Although R -F -

Consistency turns out to be

NP-hard in the dense case by Lemma 3, R +F + -
Consistency restricted to dense inputs indeed admits

a polynomial-time algorithm (Theorem 4), and moreover, its time complexity is O(n3), which is optimal

because the size of a dense input is O(n3). The situation for dense inputs is summarized in Table 3.

2. PRELIMINARIES

This section lists some simple results that follow immediately from previous work.

Lemma 1. The R + -F +
Consistency problem is solvable in polynomial time.

Proof. For any instance of R + -F +
Consistency, by deleting each fan triplet of the form xjyjz from F +

and inserting the three resolved triplets xyjz, xzjy, yzjx into R - , one obtains an equivalent instance of R + -

Consistency to which the MTT algorithm in He et al. (2006) can be applied.

By Theorem 1 in He et al. (2006), the running time becomes O(jR + j � n + (jR - j + jF + j) � n log n + n2 log n). -

Lemma 2. The R +F -
Consistency problem is solvable in polynomial time.

Proof. For any instance of R +F -
Consistency, run the BUILD algorithm (Aho et al., 1981) with input

R + and let T be its output. If T is not null then, as long as T is nonbinary, select any internal node u with

degree larger than two and any two children c1 and c2 of u, remove the edges fu‚ c1g and fu‚ c2g, create a

new child v of u, and insert the edges fv‚ c1g and fv‚ c2g. Finally, output T. Since T is binary, no fan triplets

in F - are consistent with T.

The original implementation of BUILD by Henzinger et al. (1999) runs in minfO(jR + j �
ffiffiffi
n
p

+ n)‚

O(jR + j + n2 log n)g time, and by replacing the data structure for supporting dynamic graph connectivity

queries by a more recent one by Wulff-Nilsen (2013), the
ffiffiffi
n
p

-factor is reduced to log2 n
log log n

. Thus, the R +F -

Consistency problem is solvable in min O jR + j � log2n
log log n

+ jF - j + n
� �

‚ O(jR + j + jF - j + n2 log n)
n o

time. -

Lemma 3. The R -F -
Consistency problem is NP-hard, even if restricted to dense inputs.

Proof. According to Theorem 2.20 in Bryant (1997), theR -
Consistency problem is NP-hard when the

output tree is constrained to be binary (see also Section 4.2 below for some comments related to the

correctness of Bryant’s proof). Given any instance of Bryant’s version of the problem consisting of a set R

of forbidden resolved triplets, construct an equivalent instance of the R -F -
Consistency problem by

letting R - = R and letting F - be the set of all
jLj
3

� �
fan triplets over the leaf label set L =

S
t2R L(t) (note

that F - is dense). The reduction is a polynomial-time reduction, so the latter problem is also NP-hard.-

Table 3. The Complexity of R + -F + -
Consistency Restricted

to Dense Inputs

Dense

Consistency ; F + F - F + -

; · P P P

R + P P P P (Theorem 4)

R - P P NP-hard (Lemma 3) NP-hard

R + - P P (Lemma 1) NP-hard NP-hard

The results written in bold text are due to Aho et al. (1981), He et al. (2006), and Ng and Wormald

(1996).

CONSISTENCY OF RESOLVED TRIPLETS AND FAN TRIPLETS 743

D
ow

nl
oa

de
d

by
 L

un
d

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

3. F + - CONSISTENCY IS NP-HARD

Here, we prove that the F + -
Consistency problem is NP-hard by giving a polynomial-time reduction

from the NP-hard problem Set Splitting (Garey and Johnson, 1979):

We now describe the reduction. Given an instance (S‚ C) of Set Splitting, where we assume without

loss of generality that
S

Cj2C Cj = S, construct an instance of F + -
Consistency as follows:

� Let L = S [fx‚ y‚ z0‚ z00g [faj‚ bj‚ cj : 1 � j � mg be the leaf label set.
� For 1 � j � m‚ denote Cj = fc1

j ‚ c2
j ‚ c3

j g‚ where c1
j ‚ c2

j ‚ c3
j 2 S: Define F + = fxjyjz0‚ xjyjz00‚ xjz0jz00g [

fxjyjsi : si 2 Sg [fxjc1
j jaj‚ c2

j jc3
j jaj‚ xjc2

j jbj‚ c1
j jc3

j jbj‚ xjc3
j jcj‚ c1

j jc2
j jcj : 1 � j � mg.

� Define F - = fsijz0jz00 : si 2 Sg.

The next lemma ensures the correctness of the reduction:

Lemma 4. (S‚ C) has a set splitting if and only if there exists a tree T with L(T) = L such that F + � t(T)

and F - \ t(T) = ;.

Proof. 0) Suppose that (S0‚ S00) is a set splitting of (S‚ C). Create a tree T with L(T) = L whose root has

4 + 2m children in the following way (refer to Fig. 2 for an illustration). First, let two leaves labeled by x

and y as well as two internal nodes u0 and u00 be children of the root of T, and attach 1 + jS0j leaves labeled

by fz0g [S0 and 1 + jS00j leaves labeled by fz00g [S00 as children of u0 and u00, respectively. Next, for each

Cj 2 C, exactly two of the three elements c1
j ‚ c2

j ‚ c3
j have the same parent in T because (S0‚ S00) is a set

splitting; let uj be this common parent. By definition, uj 2 fu0‚ u00g. The three leaves aj‚ bj‚ cj are inserted

into T according to which one of these cases holds:

� c1
j and c2

j have the same parent uj: Attach a leaf labeled by cj as a child of uj and two leaves labeled by

aj‚ bj as children of the root of T.
� c1

j and c3
j have the same parent uj: Attach a leaf labeled by bj as a child of uj and two leaves labeled by

aj‚ cj as children of the root of T.
� c2

j and c3
j have the same parent uj: Attach a leaf labeled by aj as a child of uj and two leaves labeled by

bj‚ cj as children of the root of T.

It is straightforward to verify that F + � t(T) and F - \ t(T) = ;.

*) Suppose that T is a tree with L(T) = L such that F + � t(T) and F - \ t(T) = ;. Let r = lcaT (x‚ y). The

node r must be the root of T because (1) xjyjq 2 t(T) for all q 2 fz0‚ z00g [S and (2) for each

dj 2 faj‚ bj‚ cjg, 1 � j � m, there exists an si 2 S such that xjsijdj 2 t(T). Let T 0 (resp. T 00) be the subtree of

T rooted at a child of r which contains z0 (resp. z00); then, T 0 6¼ T 00 since xjz0jz00 2 t(T) and x cannot belong to

T 0 due to xjyjz0 2 t(T). Furthermore, each si 2 S belongs to either T 0 or T 00 since sijz0jz00 =2 t(T).

FIG. 2. Let (S‚ C) be an instance of Set Splitting with

S = fs1‚ s2‚ s3‚ s4g and C = fC1‚ C2‚ C3g‚ where C1 = fs1‚

s2‚ s3g‚ C2 = fs1‚ s3‚ s4g‚ C3 = fs2‚ s3‚ s4g. The reduction

defines F + = fxjyjz0‚ xjyjz00‚ xjz0jz00‚ xjyjs1‚ . . . ‚ xjyjs4‚

xjs1ja1‚ s2js3ja1‚ xjs2jb1‚ s1js3jb1‚ xjs3jc1‚ s1js2jc1‚

xjs1ja2‚ s3js4ja2‚ xjs3jb2‚ s1js4jb2‚ xjs4jc2‚ s1js3jc2‚

xjs2ja3‚ s3js4ja3‚ xjs3jb3‚ s2js4jb3‚ xjs4jc3‚ s2js3jc3g and

F - = fs1jz0jz0 0‚ . . . ‚ s4jz0jz0 0g. The instance (S‚ C) has a set

splitting (S0‚ S0 0) where S0 = fs1‚ s3g and S0 0 = fs2‚ s4g, and

the shown tree T constructed from (S0‚ S0 0) as in the proof of

Lemma 4 satisfies F + � t(T) and F - \ t(T) = ;.

Set Splitting:

Given a set S = fs1‚ s2‚ . . . ‚ sng and a collection C = fC1‚ C2‚ . . . ‚ Cmg of subsets of S where jCjj= 3

for every Cj 2 C, does (S‚ C) have a set splitting, that is, can S be partitioned into two disjoint subsets S0

and S00 such that for every Cj 2 C it holds that Cj is not a subset of S0 and Cj is not a subset of S00?

744 JANSSON ET AL.

D
ow

nl
oa

de
d

by
 L

un
d

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Next, we show by contradiction that for every Cj 2 C, exactly one or two of the three elements c1
j ‚ c2

j ‚ c3
j

belong to T 0 (and hence, exactly one or two of the three elements belong to T 00). Suppose that all three

elements belong to T 0. The condition c1
j jc2

j jcj‚ c1
j jc3

j jbj‚ c2
j jc3

j jaj 2 t(T) implies that aj‚ bj‚ cj also belong to

T 0. However, then xjc1
j jaj‚ xjc2

j jbj‚ xjc3
j jcj cannot be consistent with T, which is impossible. In the same

way, all three elements cannot belong to T 00.
In summary, selecting S0 =L(T 0) \ S and S00 =L(T 00) \ S yields a set splitting of (S‚ C). -
Since the reduction can be carried out in polynomial time, Lemma 4 gives:

Theorem 1. The F + -
Consistency problem is NP-hard.

4. D-BOUNDED DEGREE R + -F + - CONSISTENCY

We now consider the computational complexity of D-bounded degree R + -F + -
Consistency, that is,

where the degree of the output tree is constrained to be at most D for some integer D � 2. First, by noting

that the method in the proof of Lemma 2 always outputs a binary tree, we have the following:

Corollary 1. For every fixed D � 2, the D-bounded degree R +F -
Consistency problem is solvable in

polynomial time.

In contrast, many other variants become NP-hard, as shown in the rest of this section.

4.1. D-bounded degree F +
Consistency is NP-hard

This subsection proves that for every fixed integer D � 4, the D-bounded degree F +
Consistency

problem is NP-hard. The proof relies on a simple polynomial-time reduction from the K-Coloring

problem, which is NP-hard for every fixed integer K � 3 (Garey and Johnson, 1979):

The reduction is as follows. Given an instance of (D - 1)-Coloring, create an instance of D-bounded degreeF +

Consistency by setting L = V [fxg and F + = fxjujv : fu‚ vg 2 Eg. See Figure 3 for an example.

Lemma 5. G has a (D - 1)-coloring if and only if there exists a tree T with degree at most D and L(T) = L

such that F + � t(T).

Proof. 0) Suppose that V1‚ V2‚ . . . ‚ VD - 1 is a (D-1)-coloring of G. For each j 2 f1‚ 2‚ . . . ‚ D - 1g, let

Tj be an arbitrary binary tree with L(Tj) = Vj. Construct a tree T of degree at most D by attaching a leaf

labeled by x and the roots of Tj for all 1 � j � D - 1 as children of a common root node. Clearly, L(T) = L

and for every xjujv 2 F + , it holds by definition that u and v belong to different Tj-subtrees, which gives

xjujv 2 t(T).

*) Suppose T is such a tree and let r be the root of T. Let T 0 be the subtree rooted at a child of r that

contains x. First, observe that L(T 0) = fxg (otherwise, T 0 would also contain some u 2 V ; however, since G

is connected, there exists some v 2 V with fu‚ vg 2 E and thus xjujv =2 t(T), which is a contradiction).

Next, denote the children of r that are not equal to x by c1‚ c2‚ . . . ‚ cD - 1 (if r has degree less than D then

some cj-nodes may be set to ;) and for j 2 f1‚ 2‚ . . . ‚ D - 1g, define Vj as the set of leaf labels that are

K-Coloring:

Given an undirected, connected graph G = (V‚ E), does G have a K-coloring, that is, can V be parti-

tioned into K (possibly empty) disjoint subsets V1‚ V2‚ . . . ‚ VK such that for every fu‚ vg 2 E it holds

that i 6¼ j where u 2 Vi and v 2 Vj?

FIG. 3. Let G be the graph on the left. The reduction from

(D - 1)-Coloring to D-bounded degree F +
Consistency sets

F + = fxjajb‚ xjajc‚ xjaje‚ xjbjd‚ xjbje‚ xjcje‚ xjcj f ‚ xjdje‚

xjej fg. Suppose D = 4 and consider the 3-coloring fa‚ d‚ fg‚
fb‚ cg‚ feg of G. The degree-4 tree T on the right, constructed

according to the first part of the proof of Lemma 5, satisfies

F + � t(T).

CONSISTENCY OF RESOLVED TRIPLETS AND FAN TRIPLETS 745

D
ow

nl
oa

de
d

by
 L

un
d

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

descendants of cj. Finally, consider any fu‚ vg 2 E and write u 2 Va, v 2 Vb. By construction, xjujv 2 F +

and hence xjujv 2 t(T), which directly implies a 6¼ b. Thus, V1‚ V2‚ . . . ‚ VD - 1 is a (D - 1)-coloring of G. -

Theorem 2. For every fixed D � 4, the D-bounded degree F +
Consistency problem is NP-hard.

4.2. D-bounded degree R-
Consistency is NP-hard

Theorem 2.20 of Bryant (1997) states that the D-bounded degree R -
Consistency problem is NP-hard

for D = 2. Its proof uses a polynomial-time reduction from the following NP-hard problem (Garey and

Johnson, 1979):

The main idea in Bryant’s reduction is to represent every literal in the given instance of 3SAT by a leaf

label and define the forbidden resolved triplets so that in any valid tree, assigning true to all literals

contained in one particular subtree rooted at a child of the root (and assigning false to the rest) results in a

valid truth assignment.

In this subsection, we adapt Bryant’s proof to obtain an analogous result for the case D = 3 by introducing

an additional leaf label x and defining a slightly more involved set of forbidden resolved triplets. More

precisely, given an instance of 3SAT, we construct an instance of 3-bounded degreeR -
Consistency with

L = U [U [C [fx‚ t‚ fg and R - = R1 [R2 [R3 [R4, where U = fu : u 2 Ug and:

� R1 = ftf jx‚ txj f ‚ fxjtg,
� R2 = ftf ju‚ tf ju‚ uxjt‚ uxjt‚ uujt‚ uuj f : u 2 Ug,
� R3 = ftf jCj‚ Cjxjt : Cj 2 Cg, and
� R4 = fujvjjCj‚ wjCjjt : Cj 2 Cg, where we write Cj = (uj _ vj _ wj) with uj‚ vj‚ wj 2 U [U.

Note that R4 is defined asymmetrically.

The correctness of the reduction follows from the next lemma.

Lemma 6. There is a truth assignment for U making every clause in C true if and only if there exists a

tree T with degree at most 3 and L(T) = L such that R - \ t(T) = ;.

Proof. 0) Suppose g : U ! ftrue‚ falseg is a truth assignment making every clause in C true. Extend g

to U by defining g(u) = false if g(u) = true, and g(u) = true if g(u) = false for every u 2 U. Partition U [U

into At and Af, where At = fz 2 U [U : g(z) = trueg and Af = fz 2 U [U : g(z) = falseg. Also define

Bt = fCj 2 C : g(uj) = true or g(vj) = trueg and Bf = CnBt.

Next, build a tree T with L(T) = L consisting of three subtrees attached to a common root node, as

illustrated in Figure 4. The first subtree is a single leaf labeled x. The second subtree is a binary caterpillar

(i.e., a binary tree in which every node has at most one child that is an internal node) whose leaves are

labeled by At [Bt [ftg in a way such that t is at maximum distance from the root and every leaf in At is

closer to the root than any leaf in Bt is. The third subtree is a binary caterpillar leaf-labeled by Af [Bf [ffg
so that f is at maximum distance from the root and every leaf in Af is closer to the root than any leaf in Bf is.

It follows that T is not consistent with any resolved triplet in R - .

*) Suppose that T is such a tree. By R1 \ t(T) = ;, we have xjtj f 2 t(T). Let r = lcaT

(x‚ t) = lcaT (x‚ f) = lcaT (t‚ f). Since R2 \ t(T) = ; and R3 \ t(T) = ;, T is not consistent with any resolved

triplets of the form tf jz with z 2 U [U [C, so the node r is the root of T. Let Tt (resp., Tf) be the subtree

rooted at a child of the root of T that contains t (resp., f). For every u 2 U, one of u and u belongs to Tt and

the other one to Tf because of R2 \ t(T) = ; and the constraint that the root of T has degree at most 3.

Similarly, R3 \ t(T) = ; implies that for every Cj 2 C, Cj belongs to either Tt or Tf.

Now, consider any Cj 2 C. If both of uj and vj belong to Tf then since ujvjjCj 2 R4 and R4 \ t(T) = ;, the

leaf Cj must also belong to Tf. In this case, wj cannot belong to Tf because wjCjjt 2 R4. Thus, for each

Cj 2 C, at least one of its literals is in Tt, so setting the variables in U \ L(Tt) to true and the variables in

U \ L(Tf) to false guarantees that each clause contains at least one true literal. -

3SAT:

Given a set U of Boolean variables and a collection C = fC1‚ C2‚ . . . ‚ Cmg of disjunctive clauses over

U, each containing exactly three literals, is there a truth assignment for U that makes every clause in C

true?

746 JANSSON ET AL.

D
ow

nl
oa

de
d

by
 L

un
d

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Theorem 3. For D = 3, the D-bounded degree R -
Consistency problem is NP-hard.

Remark: There is an error in the last part of the proof of Theorem 2.20 in Bryant (1997). If, for some

satisfied clause Cj 2 C, the first literal is set to true and the second and third literals are set to false then the

leaf representing Cj, denoted by wj in Bryant (1997), will end up in the set WB and hence in the same

subtree as the third literal zi, so the tree s in Figure 15 in Bryant (1997) will be consistent with a forbidden

resolved triplet ziwijT (s will also be consistent with Txijwi‚which is not allowed either). A correct proof of

Bryant’s theorem can be obtained from the construction above by removing x from L as well as all resolved

triplets involving x from R - , and requiring T to be binary. After doing so, the proof here becomes identical

to Bryant’s original proof but with the sets WA and WB, corresponding to Bt and Bf, respectively, redefined

so that the error is fixed.

Corollary 2. For every fixed D � 2, the D-bounded degree R -
Consistency problem is NP-hard.

Proof. For D 2 f2‚ 3g, see above. For D � 4, the NP-hardness follows from Theorem 2 and the

polynomial-time reduction from the D-bounded degree F +
Consistency problem, which, for each fan

triplet of the form xjyjz in F + , replaces it by three resolved triplets xyjz, xzjy‚ yzjx in R - so that any tree T

satisfies F + � t(T) for the given F + if and only if T satisfies R - \ t(T) = ; for the constructed R - . -

5. AN OPTIMAL ALGORITHM FOR DENSE R+F + - CONSISTENCY

Recall from Section 1.2 that an input toR + -F + -
Consistency is called dense if, for every L0 � L with

jL0j = 3, at least one rooted triplet t with L(t) = L0 is in R + , R - , F + , or F - . This section presents the main

result of the article, namely an algorithm called DenseBuild that solves the special case R +F + -
Con-

sistency (i.e., where R - = ;) restricted to dense inputs, and shows that its running time is O(n3), which is

optimal. Two tools used by DenseBuild are the fan graph and the clique graph, defined and studied in

Section 5.1. Algorithm DenseBuild is presented in Section 5.2.

According to Section 1.2,R +F + -
Consistency is NP-hard. Intuitively, the problem becomes easier for

dense inputs because if T is a tree consistent with the input, then the set Z = fxjyjz : x‚ y‚ z 2 L and x‚ y‚ z

belong to three different subtrees attached to the root of Tg forms a subset of F + , in which case F +

contains enough information to uniquely partition L into the leaf label sets of the maximal proper subtrees

of T (see Lemma 7). Moreover, such a partition can be computed in polynomial time using Lemmas 9 and

10. In contrast, when the input to R +F + -
Consistency is not dense or when one considers dense

R + -F + -
Consistency, not all of Z may appear in the input F + .

FIG. 4. Illustrating how a truth assignment for U that makes all

clauses in C true yields a degree-3 tree T with R - \ t(T) = ;, based

on the proof of Theorem 2.20 in Bryant (1997). In this example, three

clauses C1 = (u1 _ u2 _ u3), C2 = (u1 _ u2 _ u4), C3 = (u1 _ u3 _ u4)

with fC1‚ C2‚ C3g=C are satisfied by a truth assignment g that as-

signs g(u1) = false, g(u2) = true, g(u3) = false, g(u4) = true, so C1‚

C3 2 Bt and C2 2 Bf in the construction.

CONSISTENCY OF RESOLVED TRIPLETS AND FAN TRIPLETS 747

D
ow

nl
oa

de
d

by
 L

un
d

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

5.1. The fan graph and the clique graph

Let L0 � L. Define R + jL0 = ft 2 R + : L(t) � L0g, F + jL0 = ft 2 F + : L(t) � L0g, and F - jL0 =
ft 2 F - : L(t) � L0g. The fan graph GL0 is the undirected graph (L0‚ E0), where for any x‚ y 2 L0, it holds

that fx‚ yg 2 E0 if and only if xjyjz 2 F + jL0 for some z 2 L0 (see Fig. 5).

If T is a tree that is consistent with the input, then the degree of the root of T can be determined from GL

according to the next lemma.

Lemma 7. Suppose that jLj � 3 and there exists a tree T that is consistent with the input. Let p be the

degree of the root of T, let C1‚ C2‚ . . . ‚ Cm be the connected components of GL, and let L(Ci) for each

i 2 f1‚ 2‚ . . . ‚ mg be the set of vertices in Ci. The following holds:

1. If m � 2 then p = 2. Furthermore, if S0 is any binary tree with m leaves and for each i 2 f1‚ 2‚ . . . ‚ mg,
Si is a tree with L(Si) =L(Ci) such that (F + jL(Ci)) � t(Si) and (F - jL(Ci)) \ t(Si) = ;, then the tree S

obtained by replacing the m leaves in S0 by the trees in fSi : 1 � i � mg satisfies F + � t(S) and

F - \ t(S) = ;.
2. If m = 1 then p � 3. Furthermore, the value of p and the partition of L into subsets L1‚ L2‚ . . . ‚ Lp are

unique, where each Li is the leaf label set of a subtree rooted at a child of the root of T.

Proof.

1. First we show that p = 2 by contradiction. Suppose p � 3 and let x, y, and z be any three leaves from

three different subtrees rooted at the children of the root of T. Since the input is dense, at least one

rooted triplet t with L(t) = fx‚ y‚ zg is specified in R + , F + , or F - ; by the choice of x‚ y‚ z, it has to be

xjyjz. However, then the edges fx‚ yg, fx‚ zg, and fy‚ zg are in GL so x, y, and z belong to the same

connected component Ci. By repeating the argument, every leaf in L belongs to Ci, which contradicts

m � 2.

Next, consider any two connected components Ci and Cj in GL. By the definition of GL, there is no fan

triplet in F + with leaves belonging to both Ci and Cj. Hence, F + equals
Sm

i = 1 (F + jL(Ci)). By the

definition of S,
Sm

i = 1 (F + jL(Ci)) � t(S). Finally, since S is binary, F - \ t(S) = F - \
Sm

i = 1 t(Si)
� �

=Sm
i = 1 ((F - jL(Ci)) \ t(Si)) = ;.

2. To prove that p � 3, suppose on the contrary that p = 2. Let A and B be the two sets of leaves in the

subtrees rooted at the two children of the root of T. Since GL is connected, there exist some a 2 A and

b 2 B such that fa‚ bg is an edge of GL. By the definition of GL, there exists some c 2 L where

ajbjc 2 F + . However, this is impossible since p = 2. This gives p � 3.

Next, we prove the uniqueness of the partition of L by contradiction. Suppose that T1 and T2 are two

trees with F + � t(T1), F + � t(T2), and F - \ t(T1) = F - \ t(T2) = ; and that the partitions of L in-

duced by the children of the root of Ti are different for i = 1 and i = 2. For i 2 f1‚ 2g, denote the root of

Ti by ri.

We claim that there exist x‚ y‚ z 2 L such that for some i 2 f1‚ 2g: (1) x‚ y appear in the same subtree

rooted at a child of ri and z in another such subtree; and (2) x‚ y‚ z appear in three different subtrees

rooted at the children of r3 - i. To prove the claim, for some i 2 f1‚ 2g, take any two leaves x and y in

the same subtree Di rooted at a child of ri but in different subtrees D3 - i‚ D03 - i rooted at a child of r3 - i.

Without loss of generality, assume i = 1. If there exists a leaf z in another subtree D01 rooted at a child

of r1 and z belongs to a subtree D002 rooted at a child of r2 different from D2 and D02, then we are done.

Otherwise, all leaves not in D2 or D02 also appear in D1 and we let a be any such leaf; moreover, all

leaves not in D1 appear in either D2 or D02 and we let b be any such leaf. Now, we define w as follows:

(i) w = x if b and y are in the same subtree rooted at a child of r2, and (ii) w = y if b and x are in the

same subtree. The three leaves a, b, and w then satisfy the claim.

FIG. 5. An example. The fan graph GL for L = fa‚ b‚ c‚ d‚ e‚

f ‚ g‚ h‚ i‚ jg and F + = fajbjc‚ ajbjd‚ ej f jg‚ hjijjg is shown

above. Since GL has more than one connected component, Lemma 7

tells us that the root of any tree that is consistent with F + has

exactly two children.

748 JANSSON ET AL.

D
ow

nl
oa

de
d

by
 L

un
d

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Since the claim is true, xjyjz =2 t(Ti) while xjyjz 2 t(T3 - i). This means that if xjyjz 2 F + then

F + � t(Ti) is false, if xjyjz 2 F - then F - \ t(T3 - i) is false, and if one of xyjz, xzjy, and yzjx is in R +

then R + � t(T3 - i) is false, giving a contradiction in every case. -

The lemmas below are used by DenseBuild in Section 5.2 to construct the partition in Lemma 7.2. In the

rest of this subsection, assume that GL contains a single connected component and that there exists a tree T

that is consistent with the input. For every ‘ 2 L, let T‘ denote the subtree attached to the root of T that

contains ‘. Also, for every a‚ b 2 L, define f (a‚ b) = jfz : ajbjz 2 F + gj.

Lemma 8. If a‚ b 2 L are any two leaves that maximize the value of f (a‚ b), that is,

f (a‚ b) = maxx‚ y2L f (x‚ y), then a and b belong to two smallest subtrees rooted at children of the root of T

with Ta 6¼ Tb. Furthermore, f (a‚ b) = jL(T)j - jL(Ta)j - jL(Tb)j.

Proof. Consider any x‚ y 2 L and define s = lcaT (x‚ y). GL consists of one connected component, so T has

at least three subtrees attached to the root according to Lemma 7.2. If Tx = Ty, that is, if s is not the root of T,

then let x0‚ y0 2 L be two leaves from two other subtrees attached to the root. Since the input is dense, for

every xjyjz 2 F + , the fan triplet x0jy0jz also belongs to F + . Together with x0jy0jx 2 F + and x0jy0jy 2 F + , we

get f (x0‚ y0) > f (x‚ y). Thus, to maximize f (x‚ y), s must be the root of T.

Next, for every z 2 L(T)n(L(Tx) [L(Ty)), we have xjyjz 2 F + because the input is dense, which gives

f (x‚ y) = jL(T)j - jL(Tx)j - jL(Ty)j. From this formula, one can see that Tx and Ty have to be two smallest

subtrees attached to the root of T to make the value of f (x‚ y) as large as possible. -

Lemma 9. Let a‚ b 2 L be two leaves that maximize the value of f (a‚ b). Define L0 = fa‚ bg
[fx 2 L : ajbj x =2 F + g and take any z 2 LnL0. Then the leaf label sets of two smallest subtrees attached to

the root of T are A = fag [fx 2 L0 : ajxj z =2 F + g and B = L0nA = fbg [fx 2 L0 : bjxj z =2 F + g.

Proof. By Lemma 8, a and b appear in two smallest subtrees Ta and Tb attached to the root of T. For

every leaf label x in Ta or Tb, ajbjx =2 F + . Thus, L0 =L(Ta) [L(Tb). Since z =2 L0, z is not in the subtrees

containing a and b. On the other hand, for every leaf x in Ta with x 6¼ a‚ we have x 2 L0 and therefore

ajxjz =2 F + . Hence, L(Ta) = fag [fx 2 L0 : ajxjz =2 F + g. In the same way, L(Tb) = fbg [fx 2 L0 :
bjxjz =2 F + g. -

Finally, suppose that a, b, and L0 are defined as in Lemma 9. The clique graph QL is the undirected graph

(L00‚ E00), where L00 = LnL0 and fx‚ yg 2 E00 if and only if aj xj y =2 F + (or equivalently, bj xj y =2 F +) (see

Fig. 6). The clique graph has the following useful property:

Lemma 10. Let C be any connected component in QL. Then C forms a complete graph, and moreover,

the set of vertices in C equals the set of leaves in some subtree attached to the root of T.

Proof. By the definition of L0, if x 2 LnL0 then Ta 6¼ Tx.

Suppose that C is a connected component in QL with two edges of the form fx‚ yg‚ fx‚ zg. Then

ajxjy =2 F + . Since x and y do not belong to Ta, we have Tx = Ty. Similarly, aj xj z =2 F + yields Tx = Tz. By

transitivity, Ty = Tz, so aj yj z =2 F + and fy‚ zg 2 E00, which implies that C is a complete graph. Also, for

any vertex x in C, the fact that aj xj y =2 F + for any other vertex y in C means that either ajxjy 2 F - or

xyja 2 R + because the input is dense, which then yields Tx = Ty. In other words, all vertices in C belong to a

single subtree attached to the root of T.

Conversely, consider any subtree T 0 attached to the root of T with T 0 6¼ Ta. For every pair of vertices x‚ y in

T 0, fx‚ yg 2 E00 because aj xj y =2 F + , so the set of leaves in T 0 induces one connected component inQL.-

FIG. 6. If L = fa‚ b‚ c‚ d‚ e‚ f ‚ g‚ hg, L0 = fa‚ b‚ cg, L00 = fd‚ e‚ f ‚ g‚ hg and we have

ajdjg‚ ajdjh‚ ajejg‚ ajejh‚ aj f jg‚ aj f jh 2 F + but aj dje‚ ajdj f ‚ ajej f ‚ ajgjh =2 F + then

fd‚ e‚ fg and fg‚ hg form two complete subgraphs in the clique graph QL displayed above. By

Lemma 10, the leaves d, e, f are in one subtree attached to the root of T and the leaves g, h in

another.

CONSISTENCY OF RESOLVED TRIPLETS AND FAN TRIPLETS 749

D
ow

nl
oa

de
d

by
 L

un
d

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Thus, Lemma 9 lets us identify the leaf label sets of two different subtrees attached to the root of T. After

that, according to Lemma 10, the leaf label sets of the remaining subtrees can be obtained by taking the

connected components in the clique graph QL.

5.2. Algorithm DenseBuild

We now develop an efficient algorithm for R +F + -
Consistency restricted to dense inputs. The

algorithm is named DenseBuild and its pseudocode is summarized in Figure 7 (refer to Section 5.1 for the

notation defined there). The basic strategy is to use the information contained in R + , F + , and F - to

partition the leaf label set L into subsets corresponding to the leaf label sets of the subtrees rooted at the

children of the root of the solution, and then construct each such subtree recursively. On a high level, this is

similar to the BUILD algorithm of Aho et al. (1981), which also uses top-down recursion, but DenseBuild

has to do the leaf partitioning in a different way to take the fan triplets into account. Also, DenseBuild

needs to distinguish between when the root has degree 2 and degree strictly larger than 2 (cf., Lemma 7).

As a preprocessing step, DenseBuild constructs the fan graph GL and assigns a weight w(x‚ y) to each

edge fx‚ yg in GL equal to jfxjyjz 2 F + : z 2 Lgj. In the preprocessing step, the algorithm also computes

and stores the value f (a‚ b) for every a‚ b 2 L. The next lemma shows that when the algorithm calls itself

recursively, it does not have to recompute any f (a,b)-values. For any L0 � L and a‚ b 2 L0, define

fL0(a‚ b) = jfz : ajbjz 2 F + jL0gj.

Lemma 11. Suppose that T is a tree with L(T) = L and that T is consistent with the input. Let L0 � L be

the set of leaves in a subtree rooted at any child of the root of T. Then fL0 (a‚ b) = fL(a‚ b) = f (a‚ b) for every

a‚ b 2 L0.

Proof. Fix a‚ b 2 L0. For any fan triplet of the form ajbjz 2 F + , z also has to belong to L0, and therefore

ajbjz 2 F + jL0. Conversely, ajbjz 2 F + jL0 implies ajbjz 2 F + . Hence, fz : ajbjz 2 F + g = fz : ajbjz
2 F + jL0g. -

After the preprocessing step is complete, DenseBuild proceeds as follows. It computes the connected

components C1‚ C2‚ . . . ‚ Cm of GL in step 1. According to Lemma 7, there are two main cases: if m � 2

then the root of any tree consistent with the input must have degree 2, but if m = 1 then the root must have

degree at least 3.

In the former case (steps 2.1–2.3), the algorithm recursively constructs a tree Ti for the leaves in Ci for each

i 2 f1‚ 2‚ . . . ‚ mg, thus handling the input rooted triplets over leaves within each connected component. To

handle the rest, that is, those whose leaves belong to more than one connected component in GL, the algorithm

constructs an instance of nondense R +
Consistency whose leaf label set represents the set of connected

components in GL and whose set of resolved triplets is fCiCjjCk : 9xyjz 2 R + with x 2 Ci‚ y 2 Cj‚ z 2 Ckg.
It then applies the BUILD algorithm from Aho et al. (1981) to obtain a tree T 0 (if one exists) consistent with

all resolved triplets in R + involving leaves from more than one connected component (if no such T 0 exists or

if some Ti-tree is null, then DenseBuild will also return null and give up at this point). Then, DenseBuild

arbitrarily refines T 0 into a binary tree as in the proof of Lemma 2 above. Finally, the output tree T is obtained

by replacing each Ci-leaf in T 0 by the corresponding Ti-tree. By Lemma 7.1, T is consistent with all fan

triplets in F + and no fan triplets in F - .

In the latter case (steps 3.1–3.4.4), Lemma 7.2 ensures that the partition of L into leaf label sets of the

subtrees rooted at the children of the root is uniquely defined. This partition is recovered in steps 3.1–3.3 in

accordance with Lemmas 9 and 10. Next, step 3.4 verifies that the resulting partition L1‚ L2‚ . . . ‚ Lp is valid

by checking if xjyjz 2 F + and xyj z =2 R + hold for every x 2 Li, y 2 Lj, z 2 Lk where i‚ j‚ k are different. If

the partition is valid then, for each i 2 f1‚ 2‚ . . . ‚ pg, the algorithm first constructs GLi
(to avoid building

GLi
from scratch, the weight w(x‚ y) of each edge fx‚ yg in GLi

is updated by subtracting 1 for every fan

triplet xjyjz 2 F + that contributed to w(x‚ y) in GL but no longer exists on subsequent recursion levels; any

edge whose weight reaches 0 is removed). Then, it recursively builds a tree Ti with L(Ti) = Li. The output

tree T is formed by attaching the roots of all the Ti-trees to a common root node.

Theorem 4. Algorithm DenseBuild solves the dense variant of the R +F + -
Consistency problem in

O(n3) time.

750 JANSSON ET AL.

D
ow

nl
oa

de
d

by
 L

un
d

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

FIG. 7. Algorithm DenseBuild.

CONSISTENCY OF RESOLVED TRIPLETS AND FAN TRIPLETS 751

D
ow

nl
oa

de
d

by
 L

un
d

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Proof. The preprocessing step constructs GL, assigns weights to the edges in GL, and computes all values

of f (a‚ b) where a‚ b 2 L, which takes TA(n) = O(n3) time in total. We now bound the time needed to

execute DenseBuild(L‚GL) assuming that the preprocessing has been taken care of. Let TB(n) be the total

time used by the calls to BUILD in step 2.2 on all recursion levels, and let TC(n) be the total time for all

other computations.

To analyze TB(n), let n1‚ n2‚ . . . ‚ nk be the cardinalities of the leaf label sets of the constructed sets R0 of

resolved triplets in the successive calls to BUILD in step 2.2. By applying Henzinger et al.’s fast im-

plementation of BUILD [Algorithm B’ in Henzinger et al. (1999)], we get TB(n) =
Pk

i = 1 O(n3
i + n2

i log ni) =
O
Pk

i = 1 n3
i

� �
. Also, n1 + n2 + � � � + nk = O(n) because every leaf in each such constructed instance of R +

Consistency corresponds to either an internal node or a leaf in the tree output by DenseBuild, which has

O(n) nodes. Thus, TB(n) = O(n3).

Next, we derive an upper bound on TC(n). For any partition of L into L1‚ L2‚ . . . ‚ Lm, let

c(L1‚ L2‚ . . . ‚ Lm) denote the number of possible fan triplets of the form xjyjz such that

x 2 Li‚ y 2 Lj‚ z 2 Lk and i,j,k are different. Observe that c(L1‚ L2‚ . . . ‚ Lm) = O
jLj
3

� �
-
Pm

i = 1

jLij
3

� �� �
.

Then TC(n) consists of the time needed to find the m connected components in GL, which is O(jLj2), plus the

time to:

� If m � 2:

(a) Build GLi
for all i 2 f1‚ 2‚ . . . ‚ mg. This takes O(c(L1‚ L2‚ . . . ‚ Lm)) time.

(b) Construct R0. This also takes O(c(L1‚ L2‚ . . . ‚ Lm)) time.

(c) Handle the recursive calls. This takes
Pm

i = 1 TC(jLij) time.
� If m = 1:

(a) Find the partition of L into L1‚ L2‚ . . . ‚ Lp in steps 3.1–3.3. This takes O(jLj2) time.

(b) Verify that the partition is valid in step 3.4. This takes O(c(L1‚ L2‚ . . . ‚ Lp)) time.

(c) Handle the recursive calls. This takes
Pp

i = 1 TC(jLij) time.

Define q = maxfm‚ pg. In total, TC(n) = O(jLj2) + O(c(L1‚ L2‚ . . . ‚ Lq)) +
Pq

i = 1 TC(jLij), which gives

TC(n) = O(n3) by induction.

Finally, TA(n) + TB(n) + TC(n) = O(n3). -

6. CONCLUDING REMARKS

The decision problem version of the R + -F + -
Consistency problem belongs to NP since given any

instance along with a candidate tree T, one can check in polynomial time whether L(T) = L,

R + [F + � t(T), and (R - [F -) \ t(T) = ; hold. For every NP-hard variant of R + -F + -
Consistency

studied in this article, its corresponding decision problem is also NP-hard by the reductions used in

Lemmas 3–6, Corollary 2, and Theorem 2.20 in Bryant (1997), and thus NP-complete.

The newly derived results (see Tables 1–3 for a summary) highlight the following open problems:

� What is the computational complexity of the D-bounded degree F +
Consistency problem when

D = 3? That is, is the following problem solvable in polynomial time: Given a set F + of fan triplets,

does there exist a degree-3 tree consistent with all of F + ?
� For the special case of D = 3, do the following problems have the same computational complexity or

not: D-bounded degree F +
Consistency, D-bounded degree F + -

Consistency, D-bounded degree

R +F +
Consistency, and D-bounded degree R +F + -

Consistency?
� How does the complexity of R + -F + -

Consistency and its problem variants change when other

parameters such as the height of the output tree are restricted or if one requires the output tree to be

ordered in such a way that its left-to-right sequence of leaves must equal a prespecified sequence?

Note that the analog ofR +
Consistency in the unrooted setting where the input is a set of ‘‘quartets’’

(unrooted, distinctly leaf-labeled trees with four leaves where every internal node has three neighbors)

is already NP-hard (Steel, 1992).
� Can fixed-parameter tractable algorithms be developed for any of the NP-hard variants of R + -F + -

Consistency?

752 JANSSON ET AL.

D
ow

nl
oa

de
d

by
 L

un
d

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

One may define several optimization problems based on the R + -F + -
Consistency problem. One

example is the maximization problem referred to at the end of Section 1.2. Another example is a mini-

mization version of the D-bounded degree F +
Consistency problem in which the input is a set F + of fan

triplets and the objective is to construct a tree with as small degree as possible that is consistent with all fan

triplets in F + . However, this is a difficult problem because Lemma 5 and the polynomial-time in-

approximability result for the minimization version of K-Coloring in Theorem 1.2 of Zuckerman (2007)

imply that the problem cannot be approximated within a ratio of n1 - � for any constant �> 0 in polynomial

time, unless P = NP.

Another related optimization problem requires that the output tree has the smallest possible number of

internal nodes among all valid solutions; such a tree is called a minimally resolved supertree. Section 2.5.2

in Bryant (1997) proved that BUILD does not always return a minimally resolved supertree, and in fact this

minimization problem cannot be approximated within a ratio of n1 - � for any constant �> 0 in polynomial

time unless P = NP (Jansson et al., 2012). It is known that a minimally resolved supertree can be computed

in O(2:733n) time when R - = F + = F - = ; by dynamic programming (Jansson and Sung, 2016) and it is an

open problem to extend this algorithm to deal with inputs containing fan triplets and forbidden triplets.

ACKNOWLEDGMENTS

The authors thank Sylvain Guillemot and Avraham Melkman for some discussions related to the topic of

this article. J.J. was partially funded by The Hakubi Project at Kyoto University and KAKENHI grant

number 26330014. A.L. was partially funded by VR grant 2017-03750.

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Aho, A.V., Sagiv, Y., Szymanski, T.G., et al. 1981. Inferring a tree from lowest common ancestors with an application

to the optimization of relational expressions. SIAM J. Comput. 10, 405–421.

Bininda-Emonds, O.R.P. 2004. The evolution of supertrees. Trends Ecol. Evol. 19, 315–322.

Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., et al. 2007. The delayed rise of present-day mammals. Nature 446,

507–512.

Bryant, D. 1997. Building trees, hunting for trees, and comparing trees: Theory and methods in phylogenetic analysis

[Ph.D. thesis]. University of Canterbury, Christchurch, New Zealand.

Byrka, J., Gawrychowski, P., Huber, K.T., et al. 2010a. Worst-case optimal approximation algorithms for maximizing

triplet consistency within phylogenetic networks. J. Discrete Algorithms 8, 65–75.

Byrka, J., Guillemot, S., and Jansson, J. 2010b. New results on optimizing rooted triplets consistency. Discrete Appl.

Math. 158, 1136–1147.

Chor, B., Hendy, M., and Penny, D. 2007. Analytic solutions for three taxon ML trees with variable rates across sites.

Discrete Appl. Math. 155, 750–758.

Constantinescu, M., and Sankoff, D. 1995. An efficient algorithm for supertrees. J. Classif. 12, 101–112.

Dannenberg, K., Jansson, J., Lingas, A., et al. The approximability of maximum rooted triplets consistency with fan

triplets and forbidden triplets. In preparation. A Preliminary Version Appeared in the Proceedings of CPM 2015,

Volume 9133 of LNCS, pp. 272–283, 2015.

Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Inc., Sunderland, MA.

Garey, M., and Johnson, D. 1979. Computers and Intractability—A Guide to the Theory of NP-Completeness. W. H.

Freeman and Company, New York, NY.

Guillemot, S., Jansson, J., and Sung, W.-K. 2011. Computing a smallest multilabeled phylogenetic tree from rooted

triplets. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 1141–1147.

He, Y.J., Huynh, T.N.D., Jansson, J., et al. 2006. Inferring phylogenetic relationships avoiding forbidden rooted triplets.

J. Bioinform. Comput. Biol. 4, 59–74.

Henzinger, M.R., King, V., and Warnow, T. 1999. Constructing a tree from homeomorphic subtrees, with applications

to computational evolutionary biology. Algorithmica 24, 1–13.

CONSISTENCY OF RESOLVED TRIPLETS AND FAN TRIPLETS 753

D
ow

nl
oa

de
d

by
 L

un
d

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&crossref=10.1016%2Fj.dam.2005.05.043&citationId=p_98
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&pmid=16701277&crossref=10.1016%2Fj.tree.2004.03.015&citationId=p_93
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&pmid=20733243&crossref=10.1109%2FTCBB.2010.77&citationId=p_103
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&crossref=10.1016%2Fj.dam.2010.03.004&citationId=p_97
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&crossref=10.1016%2Fj.dam.2010.03.004&citationId=p_97
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&crossref=10.1137%2F0210030&citationId=p_92
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&crossref=10.1007%2FPL00009268&citationId=p_105
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&crossref=10.1007%2FBF01202270&citationId=p_99
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&pmid=17392779&crossref=10.1038%2Fnature05634&citationId=p_94
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&crossref=10.1016%2Fj.jda.2009.01.004&citationId=p_96
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&pmid=16568542&crossref=10.1142%2FS0219720006001709&citationId=p_104

Huber, K.T., van Iersel, L., Moulton, V., et al. 2017. Reconstructing phylogenetic level-1 networks from nondense binet

and trinet sets. Algorithmica 77, 173–200.

Jansson, J., Lemence, R.S., and Lingas, A. 2012. The complexity of inferring a minimally resolved phylogenetic

supertree. SIAM J. Comput. 41, 272–291.

Jansson, J., Nguyen, N. B., and Sung, W.-K. 2006. Algorithms for combining rooted triplets into a galled phylogenetic

network. SIAM J. Comput. 35, 1098–1121.

Jansson, J., and Sung, W.-K. 2016. Minimal phylogenetic supertrees and local consensus trees, 1–53. In Piotr Fa-

liszewski, Anca Muscholl, and Rolf Niedermeier. Proceedings of the 41st International Symposium on Mathematical

Foundations of Computer Science (MFCS 2016), LIPIcs, volume 58. Schloss Dagstuhl–Leibniz-Zentrum fuer In-

formatik, Saarbrücken, Germany.

Ng, M.P., and Wormald, N.C. 1996. Reconstruction of rooted trees from subtrees. Discrete Appl. Math. 69, 19–31.

Semple, C. 2003. Reconstructing minimal rooted trees. Discrete Appl. Math. 127, 489–503.

Semple, C., Daniel, P., Hordijk, W., et al. 2004. Supertree algorithms for ancestral divergence dates and nested taxa.

Bioinformatics 20, 2355–2360.

Snir, S., and Rao, S. 2006. Using Max Cut to enhance rooted trees consistency. IEEE/ACM Trans. Comput. Biol.

Bioinform. 3, 323–333.

Steel, M. 1992. The complexity of reconstructing trees from qualitative characters and subtrees. J. Classif. 9, 91–116.

Sung, W.-K. 2010. Algorithms in Bioinformatics: A Practical Introduction. Chapman & Hall/CRC, Boca Raton,

Florida, U.S.A.

Willson, S.J. 2004. Constructing rooted supertrees using distances. Bull. Math. Biol. 66, 1755–1783.

Wulff-Nilsen, C. 2013. Faster deterministic fully-dynamic graph connectivity. In Proceedings of the 24th Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA 2013), 1757–1769. SIAM, Philadelphia, Pennsylvania, U.S.A.

Zuckerman, D. 2007. Linear degree extractors and the inapproximability of Max Clique and Chromatic Number.

Theory Comput. 3, 103–128.

Address correspondence to:

Dr. Jesper Jansson

Department of Computing

The Hong Kong Polytechnic University

Hung Hom

Kowloon

Hong Kong

E-mail: jesper.jansson@polyu.edu.hk

754 JANSSON ET AL.

D
ow

nl
oa

de
d

by
 L

un
d

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&pmid=15522354&crossref=10.1016%2Fj.bulm.2004.04.006&citationId=p_116
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&crossref=10.1007%2Fs00453-015-0069-8&citationId=p_106
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&crossref=10.1016%2FS0166-218X%2802%2900250-0&citationId=p_111
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&crossref=10.4086%2Ftoc.2007.v003a006&citationId=p_118
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&crossref=10.1137%2FS0097539704446529&citationId=p_108
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&pmid=17085842&crossref=10.1109%2FTCBB.2006.58&citationId=p_113
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&pmid=17085842&crossref=10.1109%2FTCBB.2006.58&citationId=p_113
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&crossref=10.1016%2F0166-218X%2895%2900074-2&citationId=p_110
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&crossref=10.1137%2F100811489&citationId=p_107
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&pmid=15073021&crossref=10.1093%2Fbioinformatics%2Fbth246&citationId=p_112
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2017.0256&crossref=10.1007%2FBF02618470&citationId=p_114

