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Abstract. The R+−F+− Consistency problem takes as input two
sets R+ and R− of resolved triplets and two sets F+ and F− of fan
triplets, and asks for a distinctly leaf-labeled tree that contains all ele-
ments in R+ ∪ F+ and no elements in R− ∪ F− as embedded subtrees,
if such a tree exists. This paper presents a detailed characterization of
how the computational complexity of the problem changes under vari-
ous restrictions. Our main result is an efficient algorithm for dense inputs
satisfying R− = ∅ whose running time is linear in the size of the input
and therefore optimal.
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1 Introduction

Phylogenetic trees have been used by biologists for more than 150 years to
describe evolutionary history. In the last 50 years, many methods for systemat-
ically reconstructing phylogenetic trees from different kinds of data have been
proposed [10,23]. In general, inferring a reliable phylogenetic tree is a time-
consuming task for large data sets, but the supertree approach (see, e.g., [2,3])
may in many cases provide a reasonable compromise between accuracy and com-
putational efficiency by way of divide-and-conquer: first, infer a set of trees
for small, overlapping subsets of the species using a computationally expensive
method such as maximum likelihood [7,10], and then merge all the small trees
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into one big tree with some combinatorial algorithm. In this context, the funda-
mental problem of determining if a given set of resolved triplets (rooted, binary
phylogenetic trees with exactly three leaf labels each) can be combined without
conflicts, and if so, constructing such a tree can be solved efficiently by Aho
et al.’s BUILD algorithm from [1]. BUILD has therefore been extended in vari-
ous ways [8,12,13,16,18–21,24], for example, to also allow fan triplets (rooted,
non-binary phylogenetic trees with three leaf labels each) or forbidden resolved
triplets in the input, and to handle related optimization problems where the
input may contain errors and the objective is to find a tree that satisfies as
much of the input as possible (for details, see [6,9] and the references therein).

Below, we investigate how the computational complexity of the basic decision
problem varies according to which types of inputs are allowed and present some
new results that expose the boundary between efficiently solvable and intractable
versions of the problem.

1.1 Problem Definitions

A phylogenetic tree is a rooted, unordered, distinctly leaf-labeled tree in which
every internal node has at least two children. (From here on, phylogenetic trees
are simply referred to as “trees” and every leaf in a tree is identified with its cor-
responding leaf label.) For any tree T , the set of all nodes in T is denoted by V (T )
and the set of all leaf labels occurring in T is denoted by Λ(T ). The degree of
a node u ∈ V (T ) is the number of children of u, and the degree of T is the
maximum degree of all nodes in V (T ). For any u, v ∈ V (T ), lcaT (u, v) denotes
the lowest common ancestor in T of u and v.

A rooted triplet is a tree with precisely three leaves. Let t be any rooted
triplet and suppose that Λ(t) = {x, y, z}. If t is binary then t is called a resolved
triplet and we write t = xy|z, where lcat(x, y) is a proper descendant of lcat(x, z)
= lcat(y, z). On the other hand, if t is not binary then t is called a fan triplet and
we write t = x|y|z. Note that there are four different rooted triplets leaf-labeled
by {x, y, z}, namely xy|z, xz|y, yz|x, and x|y|z.

For any tree T and {x, y, z} ⊆ Λ(T ), the resolved triplet xy|z is consis-
tent with T if lcaT (x, y) is a proper descendant of lcaT (x, z) = lcaT (y, z). Sim-
ilarly, the fan triplet x|y|z is consistent with T if lcaT (x, y) = lcaT (x, z) =
lcaT (y, z). Finally, for any tree T , let T ||{x,y,z} be the rooted triplet with leaf
label set {x, y, z} that is consistent with T , and let t(T ) be the set of all rooted
triplets (resolved triplets as well as fan triplets) consistent with T , i.e., define
t(T ) = {T ||{x,y,z} : {x, y, z} ⊆ Λ(T )}.

The problem studied in this paper is:

The R+−F+− Consistency problem:
Given two sets R+ and R− of resolved triplets and two sets F+ and F− of
fan triplets over a leaf label set L, output a tree T with Λ(T ) = L such that
R+ ∪ F+ ⊆ t(T ) and (R− ∪ F−) ∩ t(T ) = ∅, if such a tree exists; otherwise,
output null.
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In other words, R+ and F+ specify rooted triplets that are required to be
embedded in the output tree, while R− and F− are forbidden rooted triplets.
See Fig. 1 for two examples. Throughout the paper, we use n to denote the
cardinality of the input leaf label set L.

db

ca

T:

Fig. 1. As an example, consider the following instance of the R+−F+− Consistency
problem: L = {a, b, c, d}, R+ = ∅, R− = {cd|a}, F+ = {a|b|c}, and F− = {b|c|d}.
The shown tree T satisfies t(T ) = {a|b|c, bd|a, a|c|d, bd|c}, so R+ ∪ F+ ⊆ t(T ) and
(R− ∪F−) ∩ t(T ) = ∅ hold. Thus, T is a valid solution. As another example, if L, R+,
R−, and F− are the same as above but F+ is changed to F+ = {a|b|c|, a|b|d} then the
answer is null.

The special cases of the R+−F+− Consistency problem where one or more
of the four input sets R+, R−, F+, F− are empty will also be denoted by remov-
ing the corresponding “+” and “−” symbols from the problem name. For exam-
ple, the R−F+ Consistency problem requires that R+ = F− = ∅. To simplify
the notation, if R+ = R− = ∅ then we omit the “R”, and analogously for “F”;
e.g., R− means R+ = F+ = F− = ∅. Ignoring the trivial case where all of
R+, R−, F+, F− are empty, this yields exactly 14 problem variants in addition
to the original problem. Our goal is to establish the computational complexity of
all these problem variants as well as some other potentially useful special cases.
Because of space constraints, the proofs of Lemmas 5 and 6 have been deferred
to the journal version.

1.2 Overview of Old and New Results

Aho et al. [1] presented a polynomial-time algorithm named BUILD that solves
the R+ Consistency problem, and Ng and Wormald [18] extended BUILD
to solve R+F+ Consistency in polynomial time. Using a similar approach,
He et al. [13] showed how to solve R+− Consistency in polynomial time. As
for negative results, Bryant [4, Theorem 2.20] proved that R− Consistency is
NP-hard under the additional constraint that the output tree is binary. Three
direct consequences of these known results are given in Sect. 2 (Lemmas 1, 2,
and 3). In Sect. 3, we shall prove that the F+− Consistency problem is NP-
hard (Theorem1). Significantly, Lemmas 1, 2, and 3 together with Theorem 1
then provide a complete characterization of the polynomial-time solvability of
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all 15 variants of the R+−F+− Consistency problem defined in Sect. 1.1 since
each of the remaining problem variants is either a special case of a polynomial-
time solvable problem variant or a generalization of an NP-hard one. See Table 1.

Table 1. Overview of the computational complexity of the 15 different variants of the
R+−F+− Consistency problem. “P” means solvable in polynomial time. The results
written in bold text are due to [1,13,18].

Consistency ∅ F+ F− F+−

∅ × P P NP-hard (Theorem 1)

R+ P P P (Lemma 2) NP-hard

R− P P NP-hard (Lemma 3) NP-hard

R+− P P (Lemma 1) NP-hard NP-hard

Motivated by these observations, we then try to identify some way of restrict-
ing the R+−F+− Consistency problem that leads to more efficiently solvable
problem variants. One natural restriction is to require the degree of the output
tree to be at most D for some integer D ≥ 2; unfortunately, Sect. 4 demon-
strates that this generally makes the problems harder. See Table 2 for a sum-
mary. In particular, Theorem2 proves that even F+ Consistency is NP-hard
when restricted to degree-D trees for every fixed D ≥ 4. Furthermore, by Corol-
lary 2, D-bounded degree R− Consistency becomes NP-hard for every fixed
D ≥ 2. The only efficiently solvable problem variants that we know of are covered
by Corollary 1, stating that D-bounded degree R+F− Consistency remains
polynomial-time solvable for every D ≥ 2.

Table 2. The complexity of R+−F+− Consistency when the output tree is required
to have degree at most D. “NP-hard∗” (with an asterisk) means NP-hard for every
fixed D ≥ 4 and trivially polynomial-time solvable for D = 2 while the complexity for
D = 3 is still open.

Bounded degree
Consistency

∅ F+ F− F+−

∅ × NP-hard∗ (Theorem 2) P NP-hard∗

R+ P NP-hard∗ P (Corollary 1) NP-hard∗

R− NP-hard
(Corollary 2)

NP-hard NP-hard NP-hard

R+− NP-hard NP-hard NP-hard NP-hard

Therefore, we need to find another way to restrict the problem. For this
purpose, Sect. 5 considers inputs that are dense in the sense that for each L′ ⊆ L
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with |L′| = 3, at least one rooted triplet t with Λ(t) = L′ is specified in R+, R−,
F+, or F−. As shown in [9], the maximization version of R+−F+− Consistency
(whose objective is to output a tree T with Λ(T ) = L maximizing the value
of |T (R+ ∪ F+)| + |(R− ∪ F−) \ T (R− ∪ F−)|, where T (X) for any set X of
rooted triplets denotes the subset of X consistent with T ) admits a polynomial-
time approximation scheme (PTAS) when restricted to dense inputs, whereas no
such PTAS is known for the non-dense case; in fact, the non-dense case of the
maximization problem is APX-complete [5, Proposition 2]. This gives us some
hope that R+−F+− Consistency may be easier for dense inputs. Although
R−F− Consistency turns out to be NP-hard in the dense case by Lemma 3,
R+F+− Consistency restricted to dense inputs indeed admits a polynomial-
time algorithm (Theorem 4), and moreover, its time complexity is O(n3) which
is optimal because the size of a dense input is Ω(n3). The situation for dense
inputs is summarized in Table 3.

Table 3. The complexity of R+−F+− Consistency restricted to dense inputs. The
results written in bold text are due to [1,13,18].

Dense Consistency ∅ F+ F− F+−

∅ × P P P

R+ P P P P (Theorem 4)

R− P P NP-hard (Lemma 3) NP-hard

R+− P P (Lemma 1) NP-hard NP-hard

2 Preliminaries

This section lists some simple results that follow immediately from previous
work.

Lemma 1. The R+−F+ Consistency problem is solvable in polynomial time.

Proof. For any instance of R+−F+ Consistency, by removing each fan triplet
of the form x|y|z from F+ and inserting the three resolved triplets xy|z, xz|y,
yz|x into R−, one obtains an equivalent instance of R+− Consistency to which
the MTT algorithm in [13] can be applied. By [13], the running time becomes
O(|R+| · n + (|R−| + |F+|) · n log n + n2 log n). �	
Lemma 2. The R+F− Consistency problem is solvable in polynomial time.

Proof. For any instance of R+F− Consistency, run the BUILD algorithm [1]
with input R+ and let T be its output. If T is not null then, as long as T
is non-binary, select any internal node u with degree larger than two and any
two children c1 and c2 of u, remove the edges {u, c1} and {u, c2}, create a new
child v of u, and insert the edges {v, c1} and {v, c2}. Finally, output T . Using a
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fast implementation of BUILD from [14] along with an improved data structure
for supporting dynamic graph connectivity queries [15] (see [17] for details), the
R+F− Consistency problem becomes solvable in min{O(|R+| · log2 n+ |F−|+
n), O(|R+| + |F−| + n2 log n)} time. �	
Lemma 3. The R−F− Consistency problem is NP-hard, even if restricted to
dense inputs.

Proof. According to Bryant [4, Theorem 2.20], the R− Consistency problem
is NP-hard when the output tree is constrained to be binary. Given any instance
of Bryant’s version of the problem consisting of a set R of (forbidden) resolved
triplets, construct an equivalent instance of the R−F− Consistency problem
by letting R− = R and letting F− be the set of all

(|L|
3

)
fan triplets over the

leaf label set L =
⋃

t∈R Λ(t) (note that F− is dense). Since the reduction is a
polynomial-time reduction, the latter problem is also NP-hard. �	

3 F+− CONSISTENCY is NP-Hard

Here, we prove that the F+− Consistency problem is NP-hard by giving
a polynomial-time reduction from the NP-hard problem Set Splitting (see,
e.g., [11]):

Set Splitting:
Given a set S = {s1, s2, . . . , sn} and a collection C = {C1, C2, . . . , Cm} of
subsets of S where |Cj | = 3 for every Cj ∈ C, does (S, C) have a set splitting,
i.e., can S be partitioned into two disjoint subsets S′ and S′′ such that for
every Cj ∈ C it holds that Cj is not a subset of S′ and Cj is not a subset
of S′′?

We now describe the reduction. Given an instance (S, C) of Set Splitting,
where we assume w.l.o.g. that

⋃
Cj∈C Cj = S, construct an instance of F+−

Consistency as follows:

• Let L = S ∪ {x, y, z′, z′′} ∪ {αj , βj , γj : 1 ≤ j ≤ m} be the leaf label set.
• For 1 ≤ j ≤ m, denote Cj = {c1j , c

2
j , c

3
j}, where c1j , c

2
j , c

3
j ∈ S. Define

F+ = {x|y|z′, x|y|z′′, x|z′|z′′} ∪ {x|y|si : si ∈ S} ∪ {x|c1j |αj , c2j |c3j |αj , x|c2j |βj ,

c1j |c3j |βj , x|c3j |γj , c1j |c2j |γj : 1 ≤ j ≤ m}.
• Define F− = {si|z′|z′′ : si ∈ S}.

The next lemma ensures the correctness of the reduction:

Lemma 4. (S, C) has a set splitting if and only if there exists a tree T with
Λ(T ) = L such that F+ ⊆ t(T ) and F− ∩ t(T ) = ∅.
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Proof. ⇒) Suppose that (S′, S′′) is a set splitting of (S, C). Create a tree T with
Λ(T ) = L whose root has 4 + 2m children in the following way. First, let two
leaves labeled by x and y as well as two internal nodes u′ and u′′ be children
of the root of T , and attach 1 + |S′| leaves labeled by {z′} ∪ S′ and 1 + |S′′|
leaves labeled by {z′′} ∪ S′′ as children of u′ and u′′, respectively. Next, for each
Cj ∈ C, exactly two of the three elements c1j , c

2
j , c

3
j have the same parent in T

because (S′, S′′) is a set splitting; let uj be this common parent. By definition,
uj ∈ {u′, u′′}. The three leaves αj , βj , γj are inserted into T according to which
one of these cases holds:
• c1j and c2j have the same parent uj : Attach a leaf labeled by γj as a child of uj

and two leaves labeled by αj , βj as children of the root of T .
• c1j and c3j have the same parent uj : Attach a leaf labeled by βj as a child of uj

and two leaves labeled by αj , γj as children of the root of T .
• c2j and c3j have the same parent uj : Attach a leaf labeled by αj as a child of uj

and two leaves labeled by βj , γj as children of the root of T .

It is straightforward to verify that F+ ⊆ t(T ) and F− ∩ t(T ) = ∅.

⇐) Suppose that T is a tree with Λ(T ) = L such that F+ ⊆ t(T ) and F−∩t(T ) =
∅. Let r = lcaT (x, y). The node r must be the root of T because (1) x|y|q ∈ t(T )
for all q ∈ {z′, z′′} ∪ S and (2) for each δj ∈ {αj , βj , γj}, 1 ≤ j ≤ m, there exists
an si ∈ S such that x|si|δj ∈ t(T ). Let T ′ (resp. T ′′) be the subtree of T rooted
at a child of r which contains z′ (resp. z′′); then, T ′ = T ′′ since x|z′|z′′ ∈ t(T )
and x cannot belong to T ′ due to x|y|z′ ∈ t(T ). Furthermore, each si ∈ S belongs
to either T ′ or T ′′ since si|z′|z′′ ∈ t(T ).

Next, we show by contradiction that for every Cj ∈ C, exactly one or two
of the three elements c1j , c

2
j , c

3
j belong to T ′ (and hence, that exactly one or

two of the three elements belong to T ′′). Suppose that all three elements belong
to T ′. The condition c1j |c2j |γj , c1j |c3j |βj , c2j |c3j |αj ∈ t(T ) implies that αj , βj , γj also
belong to T ′. But then x|c1j |αj , x|c2j |βj , x|c3j |γj cannot be consistent with T ,
which is impossible. In the same way, all three elements cannot belong to T ′′.

In summary, selecting S′ = Λ(T ′) ∩ S and S′′ = Λ(T ′′) ∩ S yields a set
splitting of (S, C). �	

Since the reduction can be carried out in polynomial time, Lemma4 gives:

Theorem 1. The F+− Consistency problem is NP-hard.

4 D-Bounded Degree R+−F+− CONSISTENCY

We now consider the computational complexity of D-bounded degree R+−F+−

Consistency, i.e., where the degree of the output tree is constrained to be at
most D for some integer D ≥ 2. First, by noting that the method in the proof
of Lemma 2 always outputs a binary tree, we have:

Corollary 1. For every fixed D ≥ 2, the D-bounded degree R+F− Consis-
tency problem is solvable in polynomial time.

In contrast, many other variants become NP-hard, as shown in the rest of
this section.
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4.1 D-Bounded Degree F+ CONSISTENCY is NP-Hard

This subsection proves that for every fixed integer D ≥ 4, the D-bounded degree
F+ Consistency problem is NP-hard. The proof relies on a simple polynomial-
time reduction from the K-Coloring problem, which is NP-hard for every
fixed K ≥ 3 (see [11]):

K-Coloring:
Given an undirected, connected graph G = (V,E) and a positive integer K,
does G have a K-coloring, i.e., can V be partitioned into K (possibly empty)
disjoint subsets V1, V2, . . . , VK such that for every {u, v} ∈ E it holds that
i = j where u ∈ Vi and v ∈ Vj?

The reduction is as follows. Given an instance of (D − 1)-Coloring, create
an instance of D-bounded degree F+ Consistency by setting L = V ∪{x} and
F+ =

{
x|u|v : {u, v} ∈ E

}
.

Lemma 5. G has a (D − 1)-coloring if and only if there exists a tree T with
degree at most D and Λ(T ) = L such that F+ ⊆ t(T ).

Theorem 2. For every fixed D ≥ 4, the D-bounded degree F+ Consistency
problem is NP-hard.

4.2 D-Bounded Degree R− CONSISTENCY is NP-Hard

Bryant [4, Theorem 2.20] proved that the D-bounded degree R− Consistency
problem is NP-hard for D = 2 by reducing from the following NP-hard problem
(see, e.g., [11]):

3SAT:
Given a set U of Boolean variables and a collection C = {C1, C2, . . . , Cm} of
disjunctive clauses over U , each containing exactly 3 literals, is there a truth
assignment for U that makes every clause in C true?

The main idea in Bryant’s reduction is to represent every literal by a leaf
label and define the forbidden resolved triplets so that in any valid tree, assigning
true to all literals contained in one particular subtree rooted at a child of the
root (and assigning false to the rest) results in a valid truth assignment. In this
subsection, we adapt Bryant’s proof to obtain an analogous result for the case
D = 3 by introducing an additional leaf label x and defining a slightly more
involved set of forbidden resolved triplets. More precisely, given an instance of
3SAT, we construct an instance of 3-bounded degree R− Consistency with
L = U∪U∪C∪C ′∪{x, t, f} and R− = R1∪R2∪R3∪R4, where U = {u : u ∈ U},
C ′ = {C ′

j : Cj ∈ C}, and:

• R1 = {tf |x, tx|f, fx|t},
• R2 = {uu|x, ux|u, ux|u, uu|t, uu|f : u ∈ U},
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• R3 = {CjC
′
j |x, Cjx|C ′

j , C ′
jx|Cj , CjC

′
j |t, CjC

′
j |f : Cj ∈ C}, and

• R4 = {ujvj |Cj , wjCj |t : Cj ∈ C}, where we write Cj = (uj ∨ vj ∨ wj) with
uj , vj , wj ∈ U ∪ U .

Note that R4 is defined asymmetrically.

Lemma 6. There is a truth assignment for U making every clause in C true if
and only if there exists a tree T with degree at most 3 and Λ(T ) = L such that
R− ∩ t(T ) = ∅.
Theorem 3. For D = 3, the D-bounded degree R− Consistency problem is
NP-hard.

Corollary 2. For every fixed D ≥ 2, the D-bounded degree R− Consistency
problem is NP-hard.

Proof. For D ∈ {2, 3}, see above. For D ≥ 4, the NP-hardness follows from
Theorem 2 and the polynomial-time reduction which, for each fan triplet of the
form x|y|z in F+ in any given instance of the D-bounded degree F+ Consis-
tency problem, includes three resolved triplets xy|z, xz|y, yz|x in R−. �	

5 An Optimal Algorithm for Dense R+F+− CONSISTENCY

Recall from Sect. 1.2 that an input to R+−F+− Consistency is called dense
if, for every L′ ⊆ L with |L′| = 3, at least one rooted triplet t with Λ(t) = L′ is
in R+, R−, F+, or F−. In this section, we present the main result of the paper,
namely an algorithm called DenseBuild that solves the special case R+F+−

Consistency (i.e., where R− = ∅) restricted to dense inputs, and show that
its running time is O(n3), which is optimal. Two tools used by DenseBuild
are the fan graph and the clique graph, defined and studied in Sect. 5.1. Algo-
rithm DenseBuild is presented in Sect. 5.2.

According to Sect. 1.2, R+F+− Consistency is NP-hard. Intuitively, the
problem becomes easier for dense inputs because if T is a tree consistent with
the input then the set Z = {x|y|z : x, y, z ∈ L and x, y, z belong to three
different subtrees attached to the root of T} forms a subset of F+, in which
case F+ contains enough information to partition L into the leaf label sets of
the subtrees rooted at the children of the root of T (see Lemma 7). Moreover,
such a partition can be computed in polynomial time using Lemmas 8–10. In
contrast, when the input is not dense or when one considers dense R+−F+−

Consistency, not all of Z may appear in the input F+.

5.1 The Fan Graph and the Clique Graph

Consider any L′ ⊆ L. Define R+|L′ = {t ∈ R+ : Λ(t) ⊆ L′}, F+|L′ = {t ∈
F+ : Λ(t) ⊆ L′}, and F−|L′ = {t ∈ F− : Λ(t) ⊆ L′}. The fan graph GL′ is the
undirected graph (L′, E′), where for any x, y ∈ L′, it holds that {x, y} ∈ E′ if
and only if x|y|z ∈ F+|L′ for some z ∈ L′.

If T is a tree that is consistent with the input then the degree of the root
of T can be determined from GL as follows:
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Lemma 7. Suppose |L| ≥ 3 and that there exists a tree T that is consistent with
the input. Let p be the degree of the root of T , let C1, C2, . . . , Cm be the connected
components of GL, and let Λ(Ci) for each i ∈ {1, 2, . . . ,m} be the set of vertices
in Ci. The following holds:

1. If m ≥ 2 then p = 2. Furthermore, if S′ is any binary tree with m leaves
and for each i ∈ {1, 2, . . . ,m}, Si is a tree with Λ(Si) = Λ(Ci) such that
(F+|Λ(Ci)) ⊆ t(Si) and (F−|Λ(Ci)) ∩ t(Si) = ∅, then the tree S obtained
by replacing the m leaves in S′ by the trees in {Si : 1 ≤ i ≤ m} satisfies
F+ ⊆ t(S) and F− ∩ t(S) = ∅.

2. If m = 1 then p ≥ 3. Furthermore, the value of p and the partition of L
into subsets L1, L2, . . . , Lp are unique, where each Li is the leaf label set of a
subtree rooted at a child of the root of T .

Proof.

1. First we show that p = 2 by contradiction. Suppose p ≥ 3 and let x, y, and z
be any three leaves from three different subtrees rooted at the children of
the root of T . Since the input is dense, at least one rooted triplet t with
Λ(t) = {x, y, z} is specified in R+, F+, or F−; by the choice of x, y, z, it
has to be x|y|z. But then the edges {x, y}, {x, z}, and {y, z} are in GL so
x, y, and z belong to the same connected component Ci. By repeating the
argument, every leaf in L belongs to Ci, which contradicts m ≥ 2.
Next, consider any two connected components Ci and Cj in GL. By the
definition of GL, there is no fan triplet in F+ with leaves belonging to
both Ci and Cj . Hence, F+ equals

⋃m
i=1(F

+|Λ(Ci)). By the definition
of S,

⋃m
i=1(F

+|Λ(Ci)) ⊆ t(S). Finally, since S is binary, F− ∩ t(S) =
F− ∩ (

⋃m
i=1 t(Si)) =

⋃m
i=1((F

−|Λ(Ci)) ∩ t(Si)) = ∅.
2. To prove that p ≥ 3, suppose on the contrary that p = 2. Let A and B be

the two sets of leaves in the subtrees rooted at the two children of the root
of T . Since GL is connected, there exists some a ∈ A and b ∈ B such that
{a, b} is an edge of GL. By the definition of GL, there exists some c ∈ L where
a|b|c ∈ F+. However, this is impossible since p = 2. This gives p ≥ 3.
Next, we prove the uniqueness of the partition of L by contradiction. Suppose
that T1 and T2 are two trees with F+ ⊆ t(T1), F+ ⊆ t(T2), and F− ∩ t(T1) =
F− ∩ t(T2) = ∅ and that the partitions of L induced by the children of the
root of Ti are different for i = 1 and i = 2. For i ∈ {1, 2}, denote the
root of Ti by ri. We claim that there exist x, y, z ∈ L such that for some
i ∈ {1, 2}: (1) x, y appear in the same subtree rooted at a child of ri and z
in another such subtree; and (2) x, y, z appear in three different subtrees
rooted at the children of r3−i. To prove the claim, for some i ∈ {1, 2}, take
any two leaves x and y in the same subtree Di rooted at a child of ri but
in different subtrees D3−i,D

′
3−i rooted at a child of r3−i. Without loss of

generality, assume i = 1. If there exists a leaf z in another subtree D′
1 rooted

at a child of r1 and z belongs to a subtree D′′
2 rooted at a child of r2 different

from D2 and D′
2 then we are done. Otherwise, all leaves not in D2 or D′

2 also
appear in D1 and we let a be any such leaf; moreover, all leaves not in D1
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appear in either D2 or D′
2 and we let b be any such leaf, and then define w

as follows: (i) w = x if b and y are in the same subtree rooted at a child
of r2, and (ii) w = y if b and x are in the same subtree. The three leaves a,
b, and w then satisfy the claim. Since the claim is true, x|y|z ∈ t(Ti) while
x|y|z ∈ t(T3−i). This means that if x|y|z ∈ F+ then F+ ⊆ t(Ti) is false, if
x|y|z ∈ F− then F− ∩ t(T3−i) is false, and if one of xy|z, xz|y, and yz|x is
in R+ then R+ ⊆ t(T3−i) is false, giving a contradiction in every case. �	
The three lemmas below will be used by DenseBuild in Sect. 5.2 to con-

struct the partition in Lemma 7.2. In the rest of this subsection, assume that
GL contains a single connected component and that there exists a tree T that is
consistent with the input. For every a, b ∈ L, define f(a, b) =

∣
∣{z : a|b|z ∈ F+}∣

∣.

Lemma 8. If a, b ∈ L are any two leaves that maximize the value of f(a, b),
i.e., f(a, b) = maxx,y∈L f(x, y), then a and b belong to the smallest and second
smallest subtrees Ta and Tb rooted at children of the root of T (with ties broken
arbitrarily). Also, f(a, b) = |Λ(T )| − |Λ(Ta)| − |Λ(Tb)|.
Proof. Consider any x, y ∈ L and define s = lcaT (x, y). For any x|y|z ∈ F+, we
have lcaT (x, y) = lcaT (x, z) = lcaT (y, z) = s, which means that z ∈ Λ(T [s]) \
(Λ(T [sx]) ∪ Λ(T [sy])), where T [u] for any node u in T denotes the subtree of T
rooted at u and sx (resp., sy) is the child of s that is an ancestor of x (resp., y).
Thus, f(x, y) = |Λ(T [s])| − |Λ(T [sx])| − |Λ(T [sy])|.

Next, according to Lemma 7.2, since GL consists of one connected compo-
nent, T has at least three subtrees attached to the root. To maximize the value
of f(x, y), we therefore choose s to be the root of T and T [sx] and T [sy] to be
the smallest and second smallest subtrees attached to s. The lemma follows. �	
Lemma 9. Let a, b ∈ L be two leaves that maximize the value of f(a, b). Define
L′ = {a, b} ∪ {x ∈ L : a|b|x ∈ F+} and take any z ∈ L′. Then the leaf label sets
of the two smallest subtrees attached to the root of T are A = {a} ∪ {x ∈ L′ :
a|x|z ∈ F+} and B = L′ \ A = {b} ∪ {x ∈ L′ : b|x|z ∈ F+}.
Proof. By Lemma 8, a and b appear in the two smallest subtrees Ta and Tb

attached to the root of T . For every leaf label x in Ta or Tb, a|b|x ∈ F+. Thus,
L′ = Λ(Ta)∪Λ(Tb). Since z ∈ L′, z is not in the subtrees containing a and b. On
the other hand, for every leaf x in Ta with x = a, we have x ∈ L′ and therefore
a|x|z ∈ F+. Hence, Λ(Ta) = {a} ∪ {x ∈ L′ : a|x|z ∈ F+}. In the same way,
Λ(Tb) = {b} ∪ {x ∈ L′ : b|x|z ∈ F+}. �	

Finally, suppose that a, b, and L′ are defined as in Lemma 9. Let c be either
one of a and b. The clique graph QL is the undirected graph (L′′, E′′), where
L′′ = L \ L′ and {x, y} ∈ E′′ if and only if c|x|y ∈ F+. The clique graph has the
following useful properties:

Lemma 10. Let C be any connected component in QL. Then C forms a com-
plete graph. Also, the set of vertices in C equals the set of leaves in some subtree
attached to the root of T .
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Proof. Let Tc be the subtree rooted at a child of the root of T that contains c.
Consider any x ∈ L\L′ and note that x cannot appear in Tc. For any y ∈ L\L′,
if c|x|y ∈ F+ then x and y have to be in two different subtrees attached to the
root of T . Conversely, for any x, y ∈ L \ L′ in the same subtree attached to
the root of T , we have c|x|y ∈ F+. Therefore, the set of leaves in each subtree
attached to the root of T induce a complete subgraph in QL. �	

5.2 Algorithm DenseBuild

We now develop an efficient algorithm for R+F+− Consistency restricted
to dense inputs. The algorithm is named DenseBuild and its pseudocode is
summarized in Fig. 2. (Refer to Sect. 5.1 for the notation defined there.) The basic
strategy is to use the information contained in R+, F+, and F− to partition the
leaf label set L into subsets corresponding to the leaf label sets of the subtrees
rooted at the children of the root of the solution, and then construct each such
subtree recursively. On a high level, this is similar to the BUILD algorithm of
Aho et al. [1] which also uses top-down recursion, but DenseBuild has to do the
leaf partitioning in a different way to take the fan triplets into account. Also,
DenseBuild needs to distinguish between when the root has degree 2 and degree
strictly larger than 2 (cf., Lemma7).

As a preprocessing step, DenseBuild constructs the fan graph GL and assigns
a weight w(x, y) to each edge {x, y} in GL equal to

∣
∣{x|y|z ∈ F+ : z ∈ L}∣∣. In

the preprocessing step, the algorithm also computes and stores the value f(a, b)
for every a, b ∈ L. The next lemma shows that when the algorithm calls itself
recursively, it does not have to recompute any f(a, b)-values. For any L′ ⊆ L
and a, b ∈ L′, define fL′(a, b) =

∣
∣{z : a|b|z ∈ F+|L′}∣

∣.

Lemma 11. Suppose that T is a tree with Λ(T ) = L and that T is consistent
with the input. Let L′ ⊆ L be the set of leaves in a subtree rooted at any child of
the root of T . Then fL′(a, b) = fL(a, b) = f(a, b) for every a, b ∈ L′.

Proof. Fix a, b ∈ L′. For any fan triplet of the form a|b|z ∈ F+, z also has to
belong to L′, and therefore a|b|z ∈ F+|L′. Conversely, a|b|z ∈ F+|L′ implies
a|b|z ∈ F+ by definition. Hence, {z : a|b|z ∈ F+} = {z : a|b|z ∈ F+|L′}. �	

After the preprocessing step is complete, DenseBuild proceeds as follows. It
computes the connected components C1, C2, . . . , Cm of GL in step 1. According to
Lemma 7, there are two main cases: if m ≥ 2 then the root of any tree consistent
with the input must have degree two, but if m = 1 then the root must have
degree at least three.

In the former case (steps 2.1–2.3), the algorithm recursively constructs a
tree Ti for the leaves in Ci for each i ∈ {1, 2, . . . ,m}, thus handling the input
rooted triplets over leaves within each connected component. To handle the rest,
i.e., those whose leaves belong to more than one connected component in GL,
the algorithm constructs an instance of non-dense R+ Consistency whose leaf
label set represents the set of connected components in GL and whose set of
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Algorithm DenseBuild

Input: Three sets R+, F+, F − of rooted triplets over a leaf label set L forming
a dense instance of R+F+− Consistency.
The algorithm assumes the following preprocessing: GL has been con-
structed and edge-weighted, and f(a, b) for all a, b ∈ L have been pre-
computed.
When making recursive calls, the algorithm passes L ⊆ L and GL as
parameters.

Output: A tree T with Λ(T ) = L such that R+ ∪ F+ ⊆ t(T ) and F − ∩ t(T ) = ∅,
if such a tree exists; otherwise, null.

1 Let C1, C2, . . . , Cm be the connected components of GL;

2 if (m > 1) then

2.1 For i ∈ {1, 2, . . . , m}, extract GLi from GL and compute Ti =
DenseBuild(Li, GLi), where Li is the set of leaf labels in Ci;

2.2 Let R = {CiCj |Ck : ∃xy|z ∈ R+ with x ∈ Ci, y ∈ Cj , z ∈ Ck} and let T
be the output of the BUILD algorithm on input R ;

2.3 if T = null or Ti = null for any i ∈ {1, 2, . . . , m} then return null ;
else let T be the tree obtained by arbitrarily refining T to a binary tree
and replacing each leaf Ci in T by the tree Ti, and return T ;

else

3 /* (m = 1) */

3.1 Find a, b ∈ L that maximize f(a, b);

3.2 Let L = {a, b} ∪ {x : a|b|x F+}, z L , L1 = {a} ∪ {x ∈ L : a|x|z
F+}, and L2 = L \ L1;

3.3 Build the clique graph QL and let L3, . . . , Lp be the leaf labels in the dif-
ferent connected components in QL;

3.4 if ({x|y|z : x ∈ Li, y ∈ Lj , z ∈ Lk, where i, j, k are different} ⊆ F+) and
{xy|z ∈ R+ : x ∈ Li, y ∈ Lj , z ∈ Lk, where i, j, k are different} = ∅ then

3.4.1 Decrement w(x, y), w(x, z), and w(y, z) by one for every x|y|z ∈ F+ such
that x ∈ Li, y ∈ Lj , z ∈ Lk, and i, j, k are different;

3.4.2 For i ∈ {1, 2, . . . , p}, extract GLi from GL and compute Ti =
DenseBuild(Li, GLi);

3.4.3 if Ti = null for any i ∈ {1, 2, . . . , p} then return null ;
else create a tree T by attaching the root of Ti for every i ∈ {1, 2, . . . , p}
to a common root node and return T ;

else

3.4.4 return null ;

endif

endif

End DenseBuild

Fig. 2. Algorithm DenseBuild.
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resolved triplets is {CiCj |Ck : ∃xy|z ∈ R+ with x ∈ Ci, y ∈ Cj , z ∈ Ck}. It then
applies the BUILD algorithm from [1] to obtain a tree T ′ (if one exists) consistent
with all resolved triplets in R+ involving leaves from more than one connected
component. (If no such T ′ exists or if some Ti-tree is null, DenseBuild will
return null and give up.) Then, DenseBuild arbitrarily refines T ′ into a binary
tree as in the proof of Lemma 2 above. Finally, the output tree T is obtained by
replacing each Ci-leaf in T ′ by the corresponding Ti-tree. By Lemma 7.1, T is
consistent with all fan triplets in F+ and no fan triplets in F−.

In the latter case (steps 3.1–3.4.4), Lemma 7.2 ensures that the partition
of L into leaf label sets of the subtrees rooted at the children of the root is
uniquely defined. This partition is recovered in steps 3.1–3.3 in accordance with
Lemmas 8–10. Next, step 3.4 verifies that the resulting partition L1, L2, . . . , Lp

is valid by checking if x|y|z ∈ F+ and xy|z ∈ R+ hold for every x ∈ Li,
y ∈ Lj , z ∈ Lk where i, j, k are different. If the partition is valid then, for each
i ∈ {1, 2, . . . , p}, the algorithm first constructs GLi

(to avoid building GLi
from

scratch, the weight w(x, y) of each edge {x, y} in GLi
is updated by subtract-

ing 1 for every fan triplet x|y|z ∈ F+ that contributed to w(x, y) in GL but no
longer exists on subsequent recursion levels; any edge whose weight reaches 0
is removed). Then, it recursively builds a tree Ti with Λ(Ti) = Li. The output
tree T is formed by attaching the roots of all the Ti-trees to a common root
node.

Theorem 4. Algorithm DenseBuild solves the dense version of the R+F+−

Consistency problem in O(n3) time.

Proof. The preprocessing step constructs GL, assigns weights to the edges in GL,
and computes all values of f(a, b) where a, b ∈ L, which takes TA(n) = O(n3)
time in total. We now bound the time needed to execute DenseBuild(L,GL)
assuming that the preprocessing has been taken care of.

Let TB(n) be the total time used by the calls to BUILD in step 2.2 on all
recursion levels, and let TC(n) be the total time for all other computations.
To analyze TB(n), let n1, n2, . . . , nk be the cardinalities of the leaf label sets
of the constructed sets R′ of resolved triplets in the successive calls to BUILD
in step 2.2. By applying Henzinger et al. fast implementation of BUILD (Algo-
rithm B’ in [14]), we get TB(n) =

∑k
i=1 O(n3

i + n2
i log ni) = O(

∑k
i=1 n3

i ). Also,
n1 + n2 + · · · + nk = O(n) because every leaf in each such constructed instance
of R+ Consistency corresponds to either an internal node or a leaf in the tree
output by DenseBuild, which has O(n) nodes. Thus, TB(n) = O(n3). Next, we
derive an upper bound on TC(n). For any partition of L into L1, L2, . . . , Lm,
let c(L1, L2, . . . , Lm) denote the number of possible fan triplets of the form
x|y|z such that x ∈ Li, y ∈ Lj , z ∈ Lk and i, j, k are different. Observe that
c(L1, L2, . . . , Lm) = O

((|L|
3

) − ∑m
i=1

(|Li|
3

))
. Then TC(n) consists of the time

needed to find the m connected components in GL, which is O(|L|2), plus the
time to:
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– If m ≥ 2:
(a) build GLi

for all i ∈ {1, 2, . . . ,m} (O(c(L1, L2, . . . , Lm)) time);
(b) construct R′ (also O(c(L1, L2, . . . , Lm)) time); and
(c) handle the recursive calls (

∑m
i=1 TC(|Li|) time).

– If m = 1:
(a) find the partition of L into L1, L2, . . . , Lp in steps 3.1–3.3 (O(|L|2) time);
(b) verify that the partition is valid in step 3.4 (O(c(L1, L2, . . . , Lp)) time);

and
(c) handle the recursive calls (

∑p
i=1 TC(|Li|) time).

Define q = max{m, p}. In total, TC(n) = O(|L|2) + O(c(L1, L2, . . . , Lq)) +∑q
i=1 TC(|Li|), which gives TC(n) = O(n3) by induction.
Finally, TA(n) + TB(n) + TC(n) = O(n3). �	

6 Concluding Remarks

The newly derived results (see Tables 1, 2, 3 for a summary) highlight the fol-
lowing open problems:

• What is the computational complexity of the D-bounded degree F+ Con-
sistency problem when D = 3? I.e., is the following problem solvable in
polynomial time: Given a set F+ of fan triplets, does there exist a degree-3
tree consistent with all of F+?

• For the special case of D = 3, do the following problems have the same compu-
tational complexity or not: D-bounded degree F+ Consistency, D-bounded
degree F+− Consistency, D-bounded degree R+F+ Consistency, and D-
bounded degree R+F+− Consistency?

• How does the complexity of R+−F+− Consistency and its problem vari-
ants change when other parameters such as the height of the output tree are
restricted or if one requires the output tree to be ordered in such a way that its
left-to-right sequence of leaves must equal a prespecified sequence? Note that
the analogue of R+ Consistency in the unrooted setting where the input
is a set of “quartets” (unrooted, distinctly leaf-labeled trees with four leaves
where every internal node has three neighbors) is already NP-hard [22].

• Can fixed-parameter tractable algorithms be developed for any of the NP-hard
variants of R+−F+− Consistency?

One may also consider a minimization version of the D-bounded degree
F+ Consistency problem, in which the input is a set F+ of fan triplets and the
objective is to construct a tree with as small degree as possible that is consistent
with all fan triplets in F+. However, this is a difficult problem since Lemma 5
and the polynomial-time inapproximability result for the minimization version
of K-Coloring by Zuckerman [25, Theorem 1.2] imply that the problem cannot
be approximated within a ratio of n1−ε for any constant ε > 0 in polynomial
time, unless P = NP.
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