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Abstract. Given a distance matrix M that specifies the pairwise evolu-

tionary distances between n species, the phylogenetic tree reconstruction

problem asks for an edge-weighted phylogenetic tree that satisfies M , if

one exists. We study some extensions of this problem to rooted phylo-

genetic networks. Our main result is an O(n2 log n)-time algorithm for

determining whether there is an ultrametric galled network that satis-

fies M , and if so, constructing one. In fact, if such an ultrametric galled

network exists, our algorithm is guaranteed to construct one contain-

ing the minimum possible number of nodes with more than one parent

(hybrid nodes). We also prove that finding a largest possible subma-

trix M ′ of M such that there exists an ultrametric galled network that

satisfies M ′ is NP-hard. Furthermore, we show that given an incomplete

distance matrix (i.e., where some matrix entries are missing), it is also

NP-hard to determine whether there exists an ultrametric galled network

which satisfies it.

1 Introduction

A phylogenetic network is a generalization of a phylogenetic tree which can be
used to describe the evolutionary history of a set of species that is non-treelike,
for example, due to recombination events such as hybrid speciation or horizontal
gene transfer [8, 14, 15, 17] or to represent several conflicting phylogenetic trees
at once in order to identify parts where the trees disagree [2, 10].

To develop efficient methods for inferring phylogenetic networks is an im-
portant topic in computational biology. In particular, one promising category of
methods which includes methods such as Neighbor-Net [2] and several others
(see [15] for a survey) is known as distance-based. Here, the input consists of a
(symmetric and non-negative) distance matrix which specifies the pairwise evo-
lutionary distances between the species. To infer a phylogenetic tree from such
a matrix is a well-studied problem [3, 5, 6, 16, 18], the basic objective being
to construct an edge-weighted phylogenetic tree such that for any two species,
the length of the path between them in the tree equals the corresponding entry
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Fig. 1. The (galled and ultrametric) phylogenetic network on the left satisfies the

distance matrix M on the right. There are two evolutionary paths (a, n3, n4, n5, c) and

(a, n3, n1, n2, n5, c) with lengths 6 and 10, respectively, connecting a and c. The entry

M(a, c) corresponds to the first path. Note that there does not exist any phylogenetic

tree that satisfies M .

in the matrix. Note that in a phylogenetic tree, the path between two specified
leaves is always unique. On the other hand, due to recombination events, for
any two species in a phylogenetic network, there can be more than one path
connecting them with different path lengths. The entry in the input matrix may
correspond to one of these paths only. Hence, in some cases, there may exist a
phylogenetic network that satisfies the given distance matrix (see the definition
below) while no such phylogenetic tree exists. See Figure 1 for an example. In
this paper, we consider some natural extensions of the distance-based variant
of the phylogenetic tree reconstruction problem to phylogenetic networks and
present a new algorithm.

Problem Definitions: A rooted phylogenetic network for a set S of species
is a rooted, connected, directed acyclic graph such that: (1) exactly one node
(the root) has indegree 0 and all other nodes have indegree 1 or 2; (2) any
node with indegree 2 (called a hybrid node) has outdegree 1 and all other nodes
have outdegree 0 or 2; and (3) each node with outdegree 0 (a leaf ) is labeled
with a distinct species from S. A rooted phylogenetic network is called a galled
phylogenetic network, or galled network for short1, if all cycles in the underlying
undirected graph (i.e., where edge orientations are ignored) are node-disjoint. For
example, the phylogenetic network in Figure 1 and the network N1 in Figure 2
are galled networks. From here on, we only consider phylogenetic networks that
are edge-weighted, i.e., where each edge has a positive length. In analogy with
the standard usage of the term “ultrametric” for phylogenetic trees, we say that
a galled network is ultrametric if every directed path from the root to a leaf has
the same length.

1 Galled networks are also known in the literature as topologies with independent re-

combination events [17], galled-trees [8], gt-networks [14], and level-1 phylogenetic

networks [13].
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N1 N2

Fig. 2. N1 is a galled network, while N2 is not (The leaf labels are omitted for clarity.)

For any rooted phylogenetic network N , an evolutionary path between two
leaves a and b is a simple path which goes up (i.e., moving in a child-to-parent
direction) from a to a common ancestor u of a and b, and then down (i.e.,
moving in a parent-to-child direction) from u to b. Observe that even if N is
galled and ultrametric, there can be more than one evolutionary path between a

and b, and moreover, these paths may have different lengths (again, see Figure 1).
However, in an ultrametric galled network, there can exist at most two different
evolutionary path lengths between each pair of leaves.

A distance matrix for a set S of n species is a symmetric, non-negative (n×n)-
matrix M such that M(a, a) = 0 for every a ∈ S. Intuitively, for each a, b ∈ S,
M(a, b) contains the measured evolutionary distance between a and b. A rooted
phylogenetic network N for S satisfies M if, for every a, b ∈ S, it holds that N

contains an evolutionary path between a and b of length equal to M(a, b). In
this case, we also say that M is satisfied by N . We are now ready to define the
problem which is the main focus of this paper.

Problem Statement: Given a distance matrix M for a set S of n species,
return an ultrametric galled network for S satisfying M , if one exists; otherwise,
return fail.

Motivation: The rationale behind the way we define the problem is as follows.
There are a number of methods to estimate the evolutionary distance between
two species. One common approach is to align the DNA sequences for some re-
lated genes from the species. The alignment score usually provides a reasonable
estimation on the evolutionary distance between the species. However, if recom-
bination events had occurred, there may exist more than one common ancestor
(at different evolutionary distances) for a pair of species. Thus, depending on
which common ancestor the selected genes were inherited from, the measured
evolutionary distance may reflect only one of the possible evolutionary paths.
Therefore, for any two species in the phylogenetic network, we only require one
of their evolutionary paths to satisfy the matrix entry.

If there are no restrictions on the topological structure of the constructed
phylogenetic network, it may not make sense from a biological point of view.
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We therefore concentrate on galled networks, a very useful class of rooted phy-
logenetic networks which despite their simple structure are powerful enough
to describe evolutionary history when the frequency of recombination events is
moderate or when most of the recombination events have occurred recently [8].
See [8] for a discussion on the importance of galled networks. Also, the biological
meaning of the ultrametric assumption is that the species have evolved according
to a constant rate; see, e.g., [3, 5, 6, 18] and the references therein for justification
of this assumption.

Finally, there may be more than one ultrametric galled network that satisfies
an input matrix. From the biological point of view, it is more reasonable if we
could find the simplest explanation that is consistent with the observed distances.
So, although recombination events (corresponding to hybrid nodes) may occur, a
more reasonable network is the one with the minimum number of hybrid nodes.

Our Contributions: Our main result in this paper is an exact O(n2 log n)-time
algorithm to construct an ultrametric galled network (if one exists) that satisfies a
givendistancematrixM . When a solution exists, our algorithmalways outputs one
having as few hybrid nodes as possible. On the other hand, we prove that finding a
largest possible submatrix M ′ofM such that there exists an ultrametric galled net-
work that satisfies M ′ is an NP-hard problem. We also show that given an incom-
plete distance matrix (i.e., where some matrix entries are missing), it is NP-hard
to determine whether there exists an ultrametric galled network which satisfies it.

Related Works: In the context of reconstructing a phylogenetic network from
distance data, the most related work is the Neighbor-Net method, developed
by Bryant and Moulton [2], which outputs a planar, unrooted phylogenetic net-
work from a given distance matrix. Neighbor-Net is based on the well-known
Neighbor-Joining method for trees [16]. Earlier proposed distance-based meth-
ods for reconstructing phylogenetic networks include [4] and others described
in [15]. However, all of these approaches are heuristics-based and there is no
guarantee that the output is a phylogenetic network that satisfies the given ma-
trix exactly, even when a galled network exists. Also, Neighbor-Net runs in O(n3)
time, which is slower than the method we present here.

Some other models of computation for reconstructing phylogenetic networks
(i.e., assuming other types of input) are reviewed in [15]. Recently, in addition
to distance-based methods, researchers have also studied character-based [7, 8,
17] and supertree-based [9, 10, 11, 12, 14] methods for inferring phylogenetic
networks.

To reconstruct a phylogenetic tree with n species consistent with a given
distance matrix (if one exists) can easily be done in O(n2) time (see [5, 6]). Note
however, that when an exact solution does not exist, obtaining a tree that is
as “close” as possible to the matrix has been shown to be NP-hard on several
closeness metrics [3, 5, 18].
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2 Preliminaries

Let N be a galled network. In the rest of this paper, we will use the following
terminology. A node h in N is a hybrid node if the indegree of h is equal to 2.
Let s be an ancestor of h such that there are two edge-disjoint paths from s

to h. Then s is called the split node of h. In a galled network, each split node is
a split node of exactly one hybrid node, and each hybrid node has exactly one
split node (see Lemma 1 in [13]). The two paths from s to h are the merge paths
of h, and they form a galled loop rooted at s. The galled loop rooted at s is skew
if one of its two merge paths consists of a single edge from s to h; otherwise, it
is non-skew. Nodes other than h and s on the merge paths of h are called side
nodes, and a node is called a tree node if it is not on any galled loop. For any
node u in N , the subnetwork rooted at u is the minimal subgraph of N including
all nodes and directed edges reachable from u, and is denoted by Nu. Finally,
Nu is a side network if the parent of u belongs to a merge path P in N but u

itself is not on P .
In a galled network, the smallest possible galled loop is skew and consists

of exactly three nodes (a split node, a hybrid node, and a side node). A simple
induction can show that a galled network with n leaves contains at most 3n− 3
internal nodes. This property is useful to our algorithm.

For any internal node u of an ultrametric galled network N , every directed
path from u to a leaf under u has the same length. We call this length the height
of u and denote it by height(u). For any leaf a, height(a) = 0. Note that the
length of any edge (a, b) can be calculated from height(a) and height(b). Thus,
to find a network for M , we only need to determine the heights of all internal
nodes and the parent-child relations between nodes.

3 Framework of the Algorithm

Given an n×n distance matrix M for a set S of n species, we first analyze some
properties for the ultrametric galled network satisfying M . For simplicity, we
say a network to refer to an ultrametric galled network. M is satisfiable if there
exists a network satisfying it. For any S′ ⊆ S, if a network N for S′ satisfies the
submatrix of M induced by the species in S′, we say that N satisfies S′.

Consider any two species a and b in S. To satisfy M , the network contains
an evolutionary path between a and b with length equal to M(a, b). We notice
that this path starts from a, goes up to a common ancestor of height M(a, b)/2,
and then goes down to b. Let DS be the maximum distance between two species
in S as specified by M . If M is satisfiable, then there is a network satisfying M

whose root has height DS/2.
Also, we have the following observation about the internal nodes of N .



Reconstructing an Ultrametric Galled Phylogenetic Network 229

Observation 1. Assume that M can be satisfied by a network N . For any node
u that is a tree node or a split node, let Nu be the subnetwork rooted at u, and
let Su be the set of species in Nu.

– For any two species a, b ∈ Su, M(a, b) = 2×height(v) for some internal node
v in Nu, and hence M(a, b) ≤ 2 × height(u).

– For any species a ∈ Su and c ∈ S − Su, M(a, c) > 2 × height(u).

Observation 1 motivates us to consider the following definition.

Definition 1. For any set of species S′ ⊆ S, S′ is called a cluster if there exists
a value x such that for any two species a, b ∈ S′, M(a, b) ≤ x and for any species
a ∈ S′ and c ∈ S − S′, M(a, c) > x.

S itself is the biggest cluster. Note that clusters are nested, i.e., two clusters
are always either disjoint or one is a subset of the other. Observation 1 states
that every tree node and split node in N corresponds to a cluster. In fact, the
reverse is also true.

Lemma 1. Assume that M can be satisfied by some network. Then there exists
one such network N such that, for every cluster S′ ⊆ S, N has a tree node or a
split node u such that all species in S′ are in the subnetwork Nu, and no species
in S − S′ are in Nu.

To prove Lemma 1, we let N be any network satisfying M . If N does not
satisfy Lemma 1, we can modify it to obtain a network satisfying Lemma 1.
Details will be given in the full paper.

We call a network satisfying Lemma 1 a well-structured network, which has
a very nice property as follows. Consider any S′ ⊆ S that is a cluster. Let
S1, S2, . . . , St be all the maximal clusters which are proper subsets of S′. We call
S1, S2, . . . , St the side clusters of S′. Note that S′ = S1 ∪ S2 ∪ . . . ∪ St.

Lemma 2. Let S′ be a cluster with side clusters S1, . . . , St. Let N be any well-
structured network satisfying S′ (w.r.t. the submatrix of M induced by S′). N

consists of a root node u, with the networks satisfying S1, . . . , St attached to u,
or attached to a galled loop rooted at u.

Proof. As N is well-structured, for each side cluster Si, there is a tree node or
a split node v whose subnetwork contains exactly all species in Si. We notice
that on the path from v to the root u, there is no tree node or split node other
than u or v (otherwise, let v′ be that intermediate node; the species under the
subnetwork rooted at v′ form a cluster S′′ and Si ⊂ S′′ ⊂ S′, meaning that Si is
not a side cluster of S′). Thus, v is directly attached to u or a galled loop rooted
at u. It means that N is formed by attaching the networks for S1, . . . , St to u,
or to a galled loop rooted at u. �



230 H.-L. Chan et al.

The Algorithm

Lemma 2 states that we can construct a network for a cluster by connecting the
networks for its side clusters. Thus, our algorithm takes a bottom-up approach,
which continuously identifies subsets of S that are clusters, starting from smaller
ones to bigger ones. It maintains an invariant that as soon as a cluster S′ is found,
a subnetwork satisfying S′ is constructed. For the base case, a set containing only
a single species is a cluster, and the corresponding network is a single leaf for
this species. Since S is the biggest cluster, the algorithm will eventually find a
network satisfying S.

To ease the finding of clusters, our algorithm constructs a graph G as follows.
Initially, G has n isolated nodes, each representing a species in S. Edges which
represent the distance among the species are added in rounds, where two nodes
u, v will be connected by an edge of length M(u, v). In the i-th round, all edges
with the i-th shortest length are added. Suppose that after the i-th round, a
connected component of G becomes a clique. Then the species inside this con-
nected component form a cluster for which a network is built immediately. The
algorithm is shown below. Details of Step 2c will be given in the next section.

Algorithm 1. GalledNet
Step 1. Sort the entries in M and let m1 < m2 < ... < mr be the distinct positive

values in M . If r > 3n − 3, return failure.

Step 2. Build the networks while constructing a graph G. Initially, G contains n iso-

lated nodes representing the n species. For i = 1, 2, . . . , r,

a. Add all edges of length mi to G.

b. Identify all connected components that become a new clique.

c. For each new clique, let S′ ⊆ S be the corresponding cluster. Run the procedure

ConnectingSideClusters (shown in the next section) which constructs a network

satisfying S′, if S′ is satisfiable. This is done by creating a new root u, and

attaching the networks for the side clusters of S′ to u, or to a galled loop rooted

at u.

Note that any galled network for n species can contain at most 3n−3 internal
nodes, and the length of any evolutionary path is 2×height(u) for some internal
node u. Thus, if there are more than 3n − 3 distinct positive values in M , no
network can satisfy M .

We analyse the running time of GalledNet as follows. Step 1 takes O(n2 log n)
time. Step 2a takes O(n2) time over the whole algorithm. With some straight-
forward bookkeeping (which takes O(1) time for each edge added), Step 2b can
be done in O(n) time in each iteration and O(n2) time in total. We will show in
the next section that Step 2c, which calls ConnectingSideClusters, takes totally
O(n2) time. Thus, the whole algorithm takes O(n2 log n) time.
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Theorem 1. Algorithm GalledNet runs in O(n2 log n) time.

4 Attaching Side Clusters to a Galled Loop

This section explains how Step 2c of GalledNet is performed. Let S be a satisfi-
able cluster with side clusters S1, S2, · · · , St. Suppose that we have constructed
side networks for these side clusters. Below we overload Si to also denote the
corresponding side network. To build a network for S, we need to determine how
these side clusters (more precisely, their side networks) are attached to a new
root or to a galled loop, and compute the height of the new root and nodes on
the loop.

We skip the simple case of t = 2 and we consider only the general case that
t ≥ 3, i.e., S has three or more side clusters. We need to build a galled loop to
accommodate the corresponding side networks Si’s. We focus on the network N

that satisfies S and we show that the structure of N can be determined from
the relations between the side clusters. Recall that N has a galled loop at the
top. Let Sh be the side cluster attached to the hybrid node. Let LEFT(Sh) be
the group of side clusters attached to the side nodes on the left merge path.
Define RIGHT(Sh) similarly. The following lemma tells how to identify the side
clusters in the two groups. For simplicity, we say a species a is in LEFT(Sh) (resp.
RIGHT(Sh)) if a belongs to some side cluster in LEFT(Sh) (resp. RIGHT(Sh)).

Lemma 3 (Partitioning the side clusters to the two merge paths).
Let DS be the maximum distance between two species in S. (i) For any two
species a, b in LEFT(Sh), M(a, b) < DS; similarly, for any two species a, b in
RIGHT(Sh), M(a, b) < DS ; and (ii) for any species a in LEFT(Sh) and c in
RIGHT(Sh), M(a, c) = DS .

Assume that LEFT(Sh) contains � side clusters and their side networks are
attached to side nodes v1, v2, · · · , v� on the left merge path of N , where vi is the
i-th node next the hybrid node. Let r be the root. Denote the side cluster (as
well as the side network) attached to vi as S(vi). That is, LEFT(Sh) = {S(vi) |
1 ≤ i ≤ �}.

The following lemmas provide some structural characteristics of each side
network S(vi), which allow us to identify each of them easily. For each side
cluster S′ of S, let inter dist(S′) denote the minimum distance M(x, y) between
a species x in S′ and a species y in S − S′.

Lemma 4 (Identifying the order of side clusters). (i) inter dist(S(v1)) ≤
inter dist(S(v2)), and inter dist(S(v2)) < inter dist(S(v3)) < · · · < inter dist

(S(v�)); (ii) height(vi) = inter dist(S(vi))/2 for i = 2, · · · , �.
Lemma 4(i) allows us to identify which side cluster in LEFT(Sh) is attached

to each vi, except when inter dist(S(v1)) = inter dist(S(v2)). In this case, we



232 H.-L. Chan et al.

exploit the relationship with Sh to distinguish the side clusters attached to v1

and v2. Note that a species x in S(v2) and a species y in Sh are connected by
two evolutionary paths, with the root r and v2 as the highest node, respectively.
Since N satisfies S, the distance of x and y (i.e., M(x, y)) must equal the length
of either path, i.e., 2×height(r) or 2×height(v2). The latter value is strictly less
than 2 × height(r) = DS .

Lemma 5 (Resolving ambiguity). (i) If inter dist(S(v1)) = inter dist

(S(v2)), then S(v2), but not S(v1), contains a species x whose distance to
some species y in Sh (i.e., M(x, y)) is less than DS , and height(v1) can be
any value in the range (height(Sh), height(v2)). (ii) Otherwise, height(v1) =
inter dist(S(v1))/2.

The above lemmas explain how the side clusters are attached to the merge
paths, once the side cluster under the hybrid node is known. The following lemma
shows that we can in fact find the side cluster attached to the hybrid node easily.

Lemma 6 (Finding Sh). (i) inter dist(Sh) ≤ inter dist(Si) for any side clus-
ter Si of S; and (ii) there can be at most five side clusters Si of S such that
inter dist(Si) = inter dist(Sh).

Based on the above lemmas, we can construct a galled loop to connect the
side clusters for S, as follows. By Lemma 6, there are at most five candidates for
the side cluster attached to the hybrid node. We try to build the network using
each of the candidate according to Lemma 3, 4 and 5. We verify each network
constructed and return the one that satisfies S. Details of the algorithm are
shown in Algorithm 2. It builds a network for S if and only if S is satisfiable.

Algorithm 2. ConnectingSideClusters (S, S1, S2, . . . , St), t ≥ 3.
Find inter dist(Si) for each side cluster Si and sort the side clusters according to

the inter dist value. If there are more than five side clusters having the minimum

inter dist value, return failure. Otherwise, for each side cluster Sh with the mini-

mum inter dist value, try to build a network which attaches Sh to the hybrid node,

as follows.

a. Divide the remaining side clusters into two groups LEFT(Sh) and RIGHT(Sh) that

satisfy Lemma 3.

b. Sort the side clusters in LEFT(Sh) according to the inter dist value and attach

the side clusters to the left merge path according to Lemma 4 and 5. Repeat it for

the side clusters in RIGHT(Sh).

c. Let hl and hr be the height of the lowest side node on the left and right merge

path, respectively. Set height(h) to any value in (height(Sh), min{hl, hr}).
d. Verify that for any two species a, b ∈ S, there is an evolutionary path between a

and b with length equal to M(a, b). Return the network if it is true.



Reconstructing an Ultrametric Galled Phylogenetic Network 233

Runtime of ConnectingSideClusters. It is straightforward to implement
the procedure ConnectingSideClusters in O(tS log tS +#S) time, where tS is the
number of side clusters in S and #S is the number of species pair (x, y) where
x and y are species belonging to two different side clusters of S.

Over the whole execution of GalledNet,
∑

tS ≤ 2n− 1 and
∑

#S ≤ n(n−1)
2 .

Thus, the total runtime for ConnectingSideClusters is
∑

O(tS log tS + #S) =
O(n log n + n(n−1)

2 ) = O(n2).

The Minimality of Number of Hybrid Nodes. Given a satisfiable matrix
M , the network produced by GalledNet has the minimum number of hybrid
nodes among all networks satisfying M . Proofs will be given in the full paper.

5 NP-Hardness Results

In the following, we say that a distance matrix M admits an ultrametric galled
network if there exists such a network which satisfies M . We first prove that
finding a maximum submatrix M ′ of a given distance matrix M such that M ′

admits an ultrametric galled network is an NP-hard problem. Our proof consists
of a reduction from the NP-hard independent set problem.

The Independent Set Problem

Instance: An undirected graph G = (V, E) and a positive integer I ≤ |V |.
Question: Is there a subset V ′ of V with |V ′| = I such that V ′ is an independent

set, i.e., such that no two vertices in V ′ are joined by an edge in E?

The Maximum Submatrix Admitting an Ultrametric Galled Network
Problem, Decision Problem Version (MSGN-d)

Instance: A set S, a distance matrix M for S, and a positive integer K ≤ |S|.
Question: Is there a subset S′ of S with |S′| = K such that M restricted to S′

admits an ultrametric galled network?

The following shows the reduction of the independent set problem to MSGN-d.
Let (G, I) be any given instance of the independent set problem. For convenience,
write n = |V | and V = {v1, v2, . . . , vn}. Construct an instance (S, M, K) of
MSGN-d as follows. Let S = V ∪ P ∪ Q, where P = {p1, p2, . . . , pn} and Q =
{q1, q2, . . . , qn} are two disjoint sets of elements not in V , and set K = I + 2n.
Next, let M be a distance matrix for S satisfying, for every i, j ∈ {1, 2, . . . , n}:
M(pi, pj) = max{i, j}; M(qi, qj) = max{i, j}; M(pi, qj) = n + 1; M(vi, vj) =
max{i, j} if the edge {i, j} does not belong to E and M(vi, vj) = n+1 if the edge
{i, j} belongs to E; M(vi, pj) = n + 1; and M(vi, qj) = n + 1.

Lemma 7. M has a submatrix of size K×K which admits an ultrametric galled
network if and only if G has an independent set of size I.
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Theorem 2. MSGN is NP-hard.

Next, we prove that it is NP-hard to determine whether a given incomplete
distance matrix admits an ultrametric galled network. The proof consists of a
reduction from the NP-hard 3-coloring problem.

The 3-Coloring Problem

Instance: An connected undirected graph G = (V, E).
Question: Can G be 3-colored, i.e., can V be partitioned into three disjoint

subsets in such a way that E contains no edge between two vertices in the
same subset?

The Incomplete Distance Matrix Admitting an Ultrametric Galled
Network Problem (IDGN)

Instance: A set S and an incomplete distance matrix M (i.e., where some
entries are missing) for S.

Question: Is there an ultrametric galled network which satisfies all of the
nonempty entries in M?

Let G be any given instance of 3-coloring with at least two vertices. Construct
an instance (S, M) of IDGN by setting S = V and defining the (|S| × |S|)-
matrix M as follows: for every i ∈ V , let M(i, i) = 0; and for every edge
{i, j} ∈ E, let M(i, j) = M(j, i) = 1. For every pair of vertices i, j in V such
that {i, j} �∈ E, leave the matrix entries M(i, j) and M(j, i) empty.

Lemma 8. G is 3-colorable if and only if there exists an ultrametric galled net-
work which satisfies all of the nonempty entries in M .

Theorem 3. IDGN is NP-hard.
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