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An Efficient Algorithm for the Rooted Triplet

Distance Between Galled Trees
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ABSTRACT

The previous fastest algorithm for computing the rooted triplet distance between two input
galled trees (i.e., phylogenetic networks whose cycles are vertex-disjoint) runs in O(n2:687)

time, where n is the cardinality of the leaf label set. In this article, we present an O(n log n)-
time solution. Our strategy is to transform the input so that the answer can be obtained by
applying an existing O(n log n)-time algorithm for the simpler case of two phylogenetic trees
a constant number of times. The new algorithm has been implemented, and applying it to
pairs of randomly generated galled trees with up to 500‚000 leaves confirms that it is fast in
practice.

Keywords: algorithm, computational complexity, galled tree, implementation, phylogenetic network

comparison, rooted triplet.

1. INTRODUCTION

Measuring the similarity between phylogenetic trees is essential for evaluating the accuracy of

methods for phylogenetic reconstruction (Kuhner and Felsenstein, 1994). The rooted triplet distance

(Dobson, 1975) between two rooted phylogenetic trees having the same leaf label sets is given by the number

of phylogenetic trees of size three that are embedded subtrees in either one of the input trees, but not the other.

Since two phylogenetic trees with a lot of branching structure in common will typically share many such

subtrees, the rooted triplet distance provides a natural measure of how dissimilar the two trees are.

A naive algorithm can compute the rooted triplet distance between two input rooted phylogenetic trees in

O(n3) time, where n is the cardinality of the leaf label set, by directly checking each of the
�

n

3

�
different

cardinality-3 subsets of the leaf label set in O(1) time after some linear-time preprocessing (see, e.g.,

Jansson and Lingas, 2014). More efficient algorithms have been developed (Bansal et al., 2011; Brodal

et al., 2013; Critchlow et al., 1996; Jansson and Rajaby, 2017), and the asymptotically fastest one (Brodal

et al., 2013) solves the problem in O(n log n) time.
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Gambette and Huber (2012) extended the rooted triplet distance from the phylogenetic tree setting to the

phylogenetic network setting. In a phylogenetic network (Huson et al., 2010; Morrison, 2011), internal

nodes are allowed to have more than one parent. Phylogenetic networks enable scientists to represent more

complex evolutionary relationships than phylogenetic trees, for example, involving horizontal gene transfer

events, or to visualize conflicting branching structure among a collection of two or more phylogenetic trees.

The special case of a phylogenetic network in which all underlying cycles are vertex-disjoint is called a

galled tree (Gusfield et al., 2004; Huson et al., 2010; Wang et al., 2000). Galled trees may be sufficient in

cases where a phylogenetic tree is not good enough but it is known that only a few reticulation events have

happened; see figure 9.22 in Huson et al. (2010) for a biological example. For a summary of other distances

for comparing two galled trees such as the Robinson–Foulds distance, the tripartitions distance, the l-

distance, and the split nodal distance, see Cardona et al. (2011).

The fastest known algorithm for computing the rooted triplet distance between two galled trees relies on

triangle counting and runs in O(n2:687) time ( Jansson and Lingas, 2014). More precisely, its time com-

plexity is O(n(3 + x)=2), where x is the exponent in the running time of the fastest existing method for matrix

multiplication. Since x < 2 is impossible, the running time for computing the rooted triplet distance

between two galled trees using the algorithm from Jansson and Lingas (2014) will never be better than

O(n2:5). In this article, we present an algorithm for the case of galled trees that does not use triangle

counting but instead transforms the input to an appropriately defined set of phylogenetic trees to which the

O(n log n)-time algorithm of Brodal et al. (2013) is applied a constant number of times. Basically, in any

galled tree, removing one of the two edges leading to an indegree-2 vertex in every cycle yields a tree that

still contains most of the branching information, and we show how to compensate for what is lost by doing

so while avoiding double counting. The resulting time complexity of our new algorithm is O(n log n).

The article is organized as follows. Section 2 defines the problem formally. Next, Section 3 presents the

new algorithm and its analysis. An implementation of the algorithm along with experimental results is

presented in Section 4. Finally, Section 5 contains some concluding remarks.

2. PROBLEM DEFINITIONS

We recall the following definitions from Jansson and Lingas (2014).

A rooted phylogenetic tree (from here on simply referred to as a phylogenetic tree) is an unordered rooted

tree in which every internal node has at least two children and all leaves are distinctly labeled. A phylogenetic

network is a directed acyclic graph with a single root vertex and a set of distinctly labeled leaves, and no

vertices having both indegree 1 and outdegree 1. A reticulation vertex in a phylogenetic network is any vertex

of indegree >1. For any phylogenetic network N, define its underlying undirected graph as the undirected

graph obtained by replacing every directed edge in N by an undirected edge. A cycle C in a phylogenetic

network is any subgraph with at least three edges whose corresponding subgraph in the underlying undirected

graph is a cycle, and a vertex of C that is an ancestor of all vertices on C is called a root of C. A phylogenetic

network is called a galled tree if all of its cycles are vertex-disjoint (Gusfield et al., 2004; Huson et al., 2010;

Wang et al., 2000). For example, in Figure 1, N1 is a galled tree and N2 is a phylogenetic tree. Note that every

reticulation vertex in a galled tree must have indegree 2. Every cycle C in a galled tree (also called a gall) has

exactly one root (also referred to as its split vertex) and one reticulation vertex, and C consists of two directed

internally disjoint paths from its split vertex to its reticulation vertex.

A phylogenetic tree with exactly three leaves is called a rooted triplet. A rooted triplet leaf-labeled by

fa‚ b‚ cg with one internal node is called a fan triplet and is denoted by ajbjc, whereas a rooted triplet leaf-

labeled by fa‚ b‚ cg with two internal nodes is called a resolved triplet; in the latter case, there are three

possibilities, denoted by abjc, acjb, and bcja, corresponding to when the lowest common ancestor of the

two leaves labeled by a and b, or a and c, or b and c, respectively, is a proper descendant of the root. Let

a‚ b‚ c be three leaf labels in a phylogenetic network N. The fan triplet ajbjc is consistent with N if and only

if N contains a vertex v and three directed paths from v to a, from v to b, and from v to c that are vertex-

disjoint except for in the common start vertex v. Similarly, the resolved triplet abjc is consistent with N if

and only if N contains two vertices v and w (v 6¼ w) such that there are four directed paths of nonzero length

from v to a, from v to b, from w to v, and from w to c that are vertex-disjoint except for in the vertices v and

w, and furthermore, the path from w to c does not pass through v. For any phylogenetic network N, t(N)

denotes the set of all rooted triplets (i.e., fan triplets as well as resolved triplets) that are consistent with N.
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Definition 1. (Adapted from Gambette and Huber, 2012) Let N1, N2 be two phylogenetic networks

on the same leaf label set L. The rooted triplet distance between N1 and N2, denoted by drt(N1‚ N2), is

the number of fan triplets and resolved triplets with leaf labels from L that are consistent with exactly one

of N1 and N2.

See also Section 3.2 in Jansson and Lingas (2014) for a discussion of the aforementioned definition.

Refer to Figure 1 for an example.

Define fcount(N1‚ N2) as the number of fan triplets consistent with both N1 and N2, rcount(N1‚ N2) as the

number of resolved triplets consistent with both N1 and N2, and count(N1‚ N2) = fcount(N1‚ N2) +
rcount(N1‚ N2). Note that for i 2 f1‚ 2g, we have jt(Ni)j = count(Ni‚ Ni). Then one can compute drt(N1‚ N2)

by the formula

drt(N1‚ N2) = count(N1‚ N1) + count(N2‚ N2) - 2 � count(N1‚ N2)

The following result was shown in Brodal et al. (2013):

Theorem 1. (Brodal et al., 2013) If T1, T2 are two phylogenetic trees on the same leaf label set L then

fcount(T1‚ T2) and rcount(T1‚ T2) (and hence, drt(T1‚ T2)) can be computed in O(n log n) time, where n = jLj.
From now on, we assume that the input consists of two galled trees N1 and N2 over a leaf label set L and

that the objective is to compute drt(N1‚ N2). We define n = jLj. It is known that drt(N1‚ N2) can be computed

in O(n2:687) time ( Jansson and Lingas, 2014). We will show below how to do it faster by using Theorem 1,

which yields our main result:

Theorem 2. If N1, N2 are two galled trees on the same leaf label set L then fcount(N1‚ N2) and

rcount(N1‚ N2) (and hence, drt(N1‚ N2)) can be computed in O(n log n) time, where n = jLj.

3. THE NEW ALGORITHM

Section 3.1 describes how to compute rcount(N1‚ N2) efficiently, whereas Section 3.2 is focused on

fcount(N1‚ N2). (Both subsections rely on Theorem 1.) In addition to the definitions provided in Section 2,

the following notation and terminology will be needed.

FIG. 1. An example. The galled tree N1 on the left and the phylogenetic tree N2 on the right have the same leaf label

set fa‚ b‚ c‚ dg. (In this figure and in the figures that will follow, all directed edges are assumed to be oriented in the

downward direction.) N1 is consistent with the fan triplets ajbjc, ajbjd, and ajcjd, and the resolved triplets bcja, cdja,

bcjd, and cdjb. N2 is consistent with the fan triplets ajbjc and ajbjd and the resolved triplets cdja and cdjb. The arrows

indicate rooted triplets that appear in only one of N1 and N2. According to the definitions, fcount(N1‚ N2) = 2,

rcount(N1‚ N2) = 2, count(N1‚ N2) = 4, and drt(N1‚ N2) = 3.
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Suppose that N is a galled tree. For each internal vertex in N, fix an arbitrary left-to-right ordering of its

children. Also, arbitrarily designate one of the two parents of each reticulation vertex as its left parent and

the other one as its right parent. Then N& is the phylogenetic tree obtained by removing the right parent

edge of every reticulation vertex in N and contracting every edge (if any) leading to a vertex with exactly

one child. Similarly, N. is the phylogenetic tree formed by removing the left parent edge of every

reticulation vertex in N and contracting all edges leading to degree-1 vertices. Let NY be the phylogenetic

tree formed by removing both the left and right parent edges of the reticulation vertex h in each gall,

inserting a new edge between the gall’s split vertex and h, and contracting all edges leading to degree-1

vertices. See Figure 2 for an illustration.

Let r(N) denote the root of N and let gall(N) be the set of all galls in N. For each Q 2 gall(N), let r(Q) be

the root of Q and hQ the reticulation vertex of Q. Let QL and QR be the left and right paths of Q, obtained by

removing r(Q), hQ, and all edges incident to r(Q) and hQ.

Suppose that fx‚ y‚ zg is a cardinality-3 subset of the leaf label set of N. Then fx‚ y‚ zg is called an

ambiguous triplet if N contains a gall Q such that (i) x‚ y‚ z are in three different subtrees attached to Q or

r(Q); (ii) exactly one of x‚ y‚ z is in the subtree attached to hQ; and (iii) at least one of x‚ y‚ z is in a subtree

attached to QL or QR. The ambiguous triplets are partitioned into type-A, type-B, and type-C triplets,

defined as follows (see Fig. 3 for an illustration).

� fx‚ y‚ zg is a type-A triplet of N if there exists a gall Q in N such that two leaves in fx‚ y‚ zg appear in

two different subtrees attached to the same Qd (d = L or R), whereas the remaining leaf appears in the

subtree rooted at hQ. Furthermore, if fx‚ y‚ zg is a type-A triplet of N and fx‚ y‚ zg are attached to a gall

Q in N with z appearing in the subtree rooted at hQ then fx‚ y‚ zg is called a type-A triplet of N with

reticulation leaf z.

a b

c d

FIG. 2. The galled tree N in (a) is transformed into three phylogenetic trees: (b) N&, (c) N., and (d) NY.
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� fx‚ y‚ zg is a type-B triplet of N if there exists a gall Q in N such that, among the three leaves in

fx‚ y‚ zg, one leaf is attached to r(Q) but is not in Q, another leaf appears in a subtree attached to QL (or

QR), and the last leaf appears in the subtree rooted at hQ.
� fx‚ y‚ zg is a type-C triplet of N if there exists a gall Q in N such that, among the three leaves in

fx‚ y‚ zg, one leaf appears in a subtree attached to QL, another leaf appears in a subtree attached to QR,

and the last leaf appears in the subtree rooted at hQ.

Lemma 1. An ambiguous triplet must belong to exactly one among the type-A, type-B, and type-C

categories.

Proof. By definition, each ambiguous triplet has one leaf in the subtree rooted at hQ and one leaf in a

subtree attached to Qd, where d 2 fL‚ Rg. Depending on the third leaf:

� If it is attached to a subtree in Qd, then the triplet is of type-A.
� If it is attached to a subtree in Qc, c 6¼ d, then the triplet is of type-C.
� If it is not attached to a subtree in Q but attached to a subtree of r(Q), then the triplet is of type-B.

Since the three options are mutually exclusive and exhaustive, the lemma follows. ,

3.1. Counting common resolved triplets in N1 and N2

The main idea of our algorithm for computing rcount(N1‚ N2) is to count the common resolved triplets

between N1 and each of the three trees N
.
2 , N

&
2 , and NY

2 and then combine the results appropriately.

However, there is one type of triplet, which we miss by doing so, depending on the position of its leaves

within the gall containing its lowest common ancestor. This case corresponds to the type-A ambiguous

triplets and we count these triplets separately with an extra function rcountA (see Lemma 3). The problem

of counting the common resolved triplets between N1 and a tree is similarly reduced to three instances of

counting the common resolved triplets between two phylogenetic trees (covered by Theorem 1) and

adjusting the result by using rcountA.

We now present the details. Define rcountA(N1‚ N2) as the number of resolved triplets xyjz in both N1 and

N2 such that fx‚ y‚ zg is a type-A triplet of N2 with reticulation leaf z. Similarly, define rcount�A(N1‚ N2) as the

number of resolved triplets xyjz in both N1 and N2 such that fx‚ y‚ zg is a type-A triplet of both N1 and N2 with

reticulation leaf z. Observe that in general, rcountA(N1‚ N2) 6¼ rcountA(N2‚ N1), but rcount�A(N1‚ N2) = rcount�A
(N2‚ N1) always holds.

The following lemmas express the relationships between rcount(N1‚ N2), rcountA(N1‚ N2), and rcount�A
(N1‚ N2).

Lemma 2. Suppose that xyjz is a resolved triplet such that x‚ y‚ z are in the leaf label set. Then

rcount(xyjz‚ N2) = rcount(xyjz‚ N
.
2 ) + rcount(xyjz‚ N

&
2 ) - rcount(xyjz‚ NY

2 ) + rcountA(xyjz‚ N2).

a b c

FIG. 3. (a–c) Illustrates the definitions of type-A, type-B, and type-C triplets, respectively.
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Proof. Any resolved triplet xyjz either appears or does not appear in t(N2). Also, any ambiguous triplet is

of type-A, type-B, or type-C. Hence, the following cases are possible:

- (1) xyjz =2 t(N2)

- (2) xyjz 2 t(N2):
� (2.1) xyjz 2 t(N2) and fx‚ y‚ zg is not ambiguous.
� (2.2) xyjz 2 t(N2) and fx‚ y‚ zg is a type-A triplet with reticulation leaf z in N2.
� (2.3) xyjz 2 t(N2) and fx‚ y‚ zg is a type-A triplet with reticulation leaf x or y in N2.
� (2.4) xyjz 2 t(N2) and fx‚ y‚ zg is a type-B or type-C triplet.

In case (1), xyjz =2 t(N
.
2 )‚ t(N

&
2 )‚ t(NY

2 ). Also, rcountA(xyjz‚ N2) = 0 since fx‚ y‚ zg cannot be a type-A

triplet. Hence, rcount(xyjz‚ N
.
2 ) + rcount(xyjz‚ N

&
2 ) - rcount(xyjz‚ NY

2 ) + rcountA(xyjz‚ N2) = 0.

In case (2.1), since xyjz 2 t(N2) and fx‚ y‚ zg is not ambiguous, it follows that xyjz 2 t(N
.
2 )‚ t(N

&
2 )‚

t(NY
2 ). Also, rcountA(xyjz‚ N2) = 0. Hence, we have rcount(xyjz‚ N

.
2 ) + rcount(xyjz‚ N

&
2 ) - rcount(xyjz‚ NY

2 )

+ rcountA(xyjz‚ N2) = 1.

In case (2.2), xyjz appears in either N
.
2 or N

&
2 , but not both, and in NY

2 . Because rcountA(xyjz‚ N2) = 1 by

definition, we see that rcount(xyjz‚ N
.
2 ) + rcount(xyjz‚ N

&
2 ) - rcount(xyjz‚ NY

2 ) + rcountA(xyjz‚ N2) = 1.

Finally, in cases (2.3) and (2.4), xyjz appears in either N
.
2 or N

&
2 , but not both, and xyjz does not

appear in NY
2 . Also, rcountA(xyjz‚ N2) = 0 by definition. Thus, rcount(xyjz‚ N

.
2 ) + rcount(xyjz‚ N

&
2 ) -

rcount(xyjz‚ NY
2 ) = 1. ,

Lemma 3. rcount(N1‚ N2) = rcount(N1‚ N
.
2 ) + rcount(N1‚ N

&
2 ) - rcount(N1‚ NY

2 ) + rcountA(N1‚ N2).

Proof. Write rcount(N1‚ N2) =
P

xyjz2N1
rcount(xyjz‚ N2). For xyjz 2 t(N1), by Lemma 2, we have

rcount(xyjz‚ N2) = rcount(xyjz‚ N
.
2 ) + rcount(xyjz‚ N

&
2 ) - rcount(xyjz‚ NY

2 ) + rcountA(xyjz‚ N2). ,
The next lemma describes the formula for rcountA(N1‚ N2).

Lemma 4. rcountA(N1‚ N2) = rcountA(N
.
1 ‚ N2) + rcountA(N

&
1 ‚ N2) - rcountA(NY

1 ‚ N2) + rcount�A(N1‚ N2).

Proof. For xyjz 2 t(N1), by an argument identical to the one in the proof of Lemma 2, we have rcount

(N1‚ xyjz) = rcount(N
.
1 ‚ xyjz) + rcount(N

&
1 ‚ xyjz) - rcount(NY

1 ‚ xyjz) + rcount0A(N1‚ xyjz), where rcount0A
(N1‚ xyjz) = 1 if fx‚ y‚ zg is a type-A triplet of N1 with reticulation leaf z, and rcount0A(N1‚ xyjz) = 0 other-

wise.

Define W = fxyjz : fx‚ y‚ zg is a type-A triplet of N2 with reticulation leaf zg. Then rcountA(N1‚ N2) =P
xyjz2W rcount(N1‚ xyjz) =

P
xyjz2W (rcount(N

.
1 ‚ xyjz) + rcount(N

&
1 ‚ xyjz) - rcount(NY

1 ‚ xyjz) + rcount0A(N1‚

xyjz)) = rcountA(N
.
1 ‚ N2) + rcountA(N

&
1 ‚ N2) - rcountA(NY

1 ‚ N2) + rcount�A(N1‚ N2): ,

Next, we discuss the computation of rcountA(T1‚ N2) and rcount�A(N1‚ N2), where N1 and N2 are galled

trees and T1 is a phylogenetic tree. (The case of rcountA(N1‚ T2) where N1 is a galled tree and T2 is a tree,

needed in Lemma 3, is symmetric.) For d 2 fL‚ Rg, denote by sd the tree formed by attaching all subtrees

attached to Qd to a common root. For any galled tree N, let NL be a tree formed from N& by contracting all

edges on QL for every gall Q (observe that the edges (r(Q)‚ r(sL)) and (r(sL)‚ hQ) are in NL). Define NLL to

be a tree formed from NY by replacing all the trees attached to QL with sL, inserting a new vertex mQ

between r(Q) and hQ, and replacing the edge (r(Q)‚ r(sL)) with (mQ‚ r(sL)). See Figure 4 for an example.

NR and NRR are defined analogously.

Lemma 5. For d 2 fL‚ Rg, the following two properties hold.

� All resolved triplets in Nd are in Ndd.
� All additional resolved triplets xyjz in Ndd, that is, those not in Nd, are type-A triplets of N with

reticulation leaf z.

Proof. Consider any three leaves fx‚ y‚ zg. If zero, one, or all three of them belong to sd then

Ndjfx‚ y‚ zg = Nddjfx‚ y‚ zg, where NjW is the galled subtree of N formed by retaining only leaves in W.

Otherwise, when two of fx‚ y‚ zg belong to sd, let c be the lowest common ancestor of x‚ y‚ z in Ndd. There

are two cases:

1. If c is a proper ancestor of mQ, then Ndjfx‚ y‚ zg = Nddjfx‚ y‚ zg = xyjz.

2. Otherwise, c = mQ and then Ndjfx‚ y‚ zg = xjyjz while Nddjfx‚ y‚ zg = xyjz.
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Hence, all resolved triplets in Nd are in Ndd.

Finally, xyjz is a type-A triplet of N with reticulation leaf z if and only if c = mQ. This shows that the

second property also holds. ,

Lemma 6. rcountA(T1‚ N2) =
P

d2fL‚ Rg
rcount(T1‚ Ndd

2 ) - rcount(T1‚ Nd
2 )

� �
.

Proof. By Lemma 5, all type-A triplets in N2 appear in Ndd
2 but not in Nd

2 for some d 2 fL‚ Rg. The

lemma follows. ,

Lemma 7. rcount�A(N1‚ N2) =
P

d2fL‚ Rg
rcountA(Ndd

1 ‚ N2) - rcountA(Nd
1 ‚ N2)

� �
.

Proof. (Similar to the proof of Lemma 6.) By Lemma 5, all type-A triplets in N1 appear in Ndd
1 but not in

Nd
1 for some d 2 fL‚ Rg. ,

The algorithm in Figure 5 computes rcount(N1‚ N2) using Lemmas 3, 4, 6, and 7.

Lemma 8. The algorithm rcount(N1‚ N2) in Figure 5 makes a total of 49 calls to rcount(T1‚ T2), where T1

and T2 are phylogenetic trees.

Proof. First observe that rcountA(T1‚ N2) is obtained by making four calls to rcount(T1‚ T2), and

rcount�A(N1‚ N2) by four calls to rcountA(T1‚ N2). Next, rcountA(N1‚ N2) is obtained by three calls to

rcountA(T1‚ N2) and one call to rcount�A(N1‚ N2). In total, rcountA(N1‚ N2) uses 3 � 4 + 1 � 4 � 4 = 28 calls to

rcount(T1‚ T2).

a

b c

FIG. 4. (a) shows a galled tree N, (b) shows NL, and (c) shows NLL.
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Similarly, rcount(N1‚ T2) is obtained by making three calls to rcount(T1‚ T2) and one call to

rcountA(T2‚ N1). In total, rcount(N1‚ T2) is computed by 3 + 1 � 4 = 7 calls to rcount(T1‚ T2).

Finally, rcount(N1‚ N2) is obtained by making three calls to rcount(N1‚ T2) and one call to

rcountA(N1‚ N2). In total, rcount(N1‚ N2) makes 3 � 7 + 1 � 28 = 49 calls to rcount(T1‚ T2). ,

By Theorem 1, rcount(T1‚ T2) can be computed in O(n log n) time for any two trees T1‚ T2. Lemma 8

shows that the algorithm in Figure 5 makes a constant number of calls to rcount(T1‚ T2). Lastly, con-

structing each of the constant number of trees used as arguments to rcount(T1‚ T2) (N
.
1 , NY

1 , etc.) takes O(n)

time. Thus, the total running time to obtain rcount(N1‚ N2) is O(n log n).

3.2. Counting common fan triplets in N1 and N2

To compute fcount(N1‚ N2), we modify the technique from the previous subsection. The main difference

is that we count type-B and type-C triplets separately.

Define fcountBC(N1‚ N2) as the number of triplets fx‚ y‚ zg such that xjyjz is a fan triplet in N1 and

fx‚ y‚ zg is a type-B or type-C triplet in N2. Also, define fcount�BC(N1‚ N2) as the number of type-B and type-

C triplets fx‚ y‚ zg that appear in both N1 and N2. Similar to what was done in Section 3.1 where

rcount(N1‚ N2) was expressed using rcountA(N1‚ N2) and rcount�A(N1‚ N2), we express fcount(N1‚ N2) using

fcountBC(N1‚ N2) and fcount�BC(N1‚ N2).

Lemma 9. Let xjyjz be a fan triplet. Then fcount(xjyjz‚ N2) = fcount(xjyjz‚ N
.
2 ) + fcount(xjyjz‚ N

&
2 ) -

fcount(xjyjz‚ NY
2 ) + fcountBC(xjyjz‚ N2).

Proof. There are five cases:

1. xjyjz =2 t(N2) and fx‚ y‚ zg is not a type-C triplet in N2,

2. xjyjz =2 t(N2) and fx‚ y‚ zg is a type-C triplet in N2,

3. xjyjz 2 t(N2) and fx‚ y‚ zg is not ambiguous,

4. xjyjz 2 t(N2) and fx‚ y‚ zg is a type-B triplet in N2,

5. xjyjz 2 t(N2) and fx‚ y‚ zg is ambiguous, but it is not a type-B triplet in N2.

In case 1, xjyjz =2 t(N
.
2 )‚ t(N

&
2 )‚ t(NY

2 ). Also, fcountBC(xjyjz‚ N2) = 0 as it cannot be a type-B (since

xjyjz =2 t(N2)) or type-C (by hypothesis) triplet. Hence, fcount(xjyjz‚ N
.
2 ) + fcount(xjyjz‚ N

&
2 ) -

fcount(xjyjz‚ NY
2 ) + fcountBC(xjyjz‚ N2) = 0.

FIG. 5. The algorithm for computing rcount(N1‚ N2).
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In case 2, xjyjz =2 t(N
.
2 )‚ t(N

&
2 ) and xjyjz 2 t(NY

2 ). Also, fcountBC(xjyjz‚ N2) = 1 since it is a type-C triplet.

It follows that fcount(xjyjz‚ N
.
2 ) + fcount(xjyjz‚ N

&
2 ) - fcount(xjyjz‚ NY

2 ) + fcountBC(xjyjz‚ N2) = 0.

In case 3, since xjyjz 2 t(N2) and fx‚ y‚ zg is not ambiguous, we have xjyjz 2 t(N
.
2 )‚ t(N

&
2 )‚ t(NY

2 ). Also,

fcountBC(xjyjz‚ N2) = 0. Thus, fcount(xjyjz‚ N
.
2 ) + fcount(xjyjz‚ N

&
2 ) - fcount(xjyjz‚ NY

2 ) + fcountBC(xjyjz‚

N2) = 1.

In case 4, xjyjz appears in either N
.
2 or N

&
2 , but not both. xjyjz also appears in NY

2 . Furthermore,

fcountBC(xjyjz‚ N2) = 1. Hence, fcount(xjyjz‚ N
.
2 ) + fcount(xjyjz‚ N

&
2 ) - fcount(xjyjz‚ NY

2 ) + fcountBC(xjyjz‚

N2) = 1.

In case 5, since xjyjz 2 t(N2) and fx‚ y‚ zg is not a type-B triplet, fcountBC(xjyjz‚ N2) = 0 (note that

fx‚ y‚ zg cannot be a type-C triplet since xjyjz 2 t(N2) by hypothesis). In this case, two of fx‚ y‚ zg are

attached to the same vertex on Qd and the remaining leaf is a descendant of hQ. Then, xjyjz appears in either

N
.
2 or N

&
2 , but not both. xjyjz does not appear in NY

2 . Hence, fcount(xjyjz‚ N
.
2 ) + fcount(xjyjz‚ N

&
2 ) -

fcount(xjyjz‚ NY
2 ) + fcountBC(xjyjz‚ N2) = 1. ,

Lemma 10. fcount(N1‚ N2) = fcount(N1‚ N
.
2 ) + fcount(N1‚ N

&
2 ) - fcount(N1‚ NY

2 ) + fcountBC(N1‚ N2).

Proof. Note that fcount(N1‚ N2) =
P

xjyjz2N1
fcount(xjyjz‚ N2). For xjyjz 2 t(N1), Lemma 9 implies

fcount(xjyjz‚ N2) = fcount(xjyjz‚ N
.
2 ) + fcount(xjyjz‚ N

&
2 ) - fcount(xjyjz‚ NY

2 ) + fcountBC(xjyjz‚ N2). ,

Lemma 11. fcountBC(N1‚ N2) = fcountBC(N
.
1 ‚ N2) + fcountBC(N

&
1 ‚ N2) - fcountBC(NY

1 ‚ N2) + fcount�BC

(N1‚ N2).

Proof. For xjyjz 2 t(N1), by arguing as in the proof of Lemma 9, we obtain fcount(N1‚ xjyjz) =
fcount(N

.
1 ‚ xjyjz) + fcount(N

&
1 ‚xjyjz) - fcount(NY

1 ‚ xjyjz) + fcount0BC(N1‚ xjyjz), where fcount0BC(N1‚ xjyjz)

equals the number of fx‚ y‚ zg that are type-B or type-C triplets in N1.

Next, let W = fxjyjz : fx‚ y‚ zg is a type - B or type - C triplet of N2g. Then it follows that fcountBC

(N1‚ N2) =
P

xjyjz2W fcount(N1‚ xjyjz) =
P

xjyjz2W (fcount(N
.
1 ‚ xjyjz) + fcount(N

&
1 ‚ xjyjz) - fcount(NY

1 ‚ xjyjz) +
fcount0BC(N1‚ xjyjz)) = fcountBC(N

.
1 ‚ N2) + fcountBC(N

&
1 ‚ N2) - fcountBC(NY

1 ‚ N2) + fcount�BC(N1‚ N2): ,

The rest of this subsection explains how to compute fcountBC(T1‚ N2) and fcount�BC(N1‚ N2) efficiently.

A caterpillar tree is a binary phylogenetic tree in which every internal node has at least one leaf child.

We define the length of a caterpillar tree as the number of edges on any longest path starting at the root and

ending at a leaf. Hence a length-k caterpillar tree has k internal nodes and k + 1 leaves. Given a galled tree

N, we define NB as the tree formed by performing the following steps on a copy of N (see Fig. 6 for an

example of the construction):

� First replace every degree-k vertex v with k > 2, which is not a split vertex in N by a length-(k - 1)

caterpillar tree P, and then replace the k leaves of P by the k children of v (in any arbitrary order).
� For every gall Q, if the split vertex r(Q) is of degree k > 2, first create a length-(k - 3) caterpillar

tree P, then replace the k - 2 leaves of P by the k - 2 children of r(Q) that are not on the gall (in

any arbitrary order), and finally replace the edges between r(Q) and these k - 2 children by a sin-

gle edge from r(Q) to r(P). Next, create a new child u of r(Q) and let r(QL) and r(QR) become

children of u. Finally, remove the reticulation vertex hQ’s two parent edges, attach the subnetwork of

N rooted at hQ as a child of r(Q), and contract every edge (if any) leading to a vertex with exactly

one child.

Next, we define NC as the tree obtained in exactly the same way as NB except that for each gall Q, the

subnetwork of N rooted at hQ is attached as a sibling of r(QL) and r(QR) instead of as a child of r(Q) (again,

see Fig. 6 for an example of the construction).

The next lemma states how N, NB, and NC are related.

Lemma 12. (1) fx‚ y‚ zg is a type-B triplet of N if and only if xjyjz is a fan triplet in NB; (2) fx‚ y‚ zg is a

type-C triplet of N if and only if xjyjz is a fan triplet in NC.

Proof. By construction, every vertex in NB and NC has two or three children. Any vertex in NB and NC

with three children corresponds to a split vertex of a gall in N.
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For (1): (!) If fx‚ y‚ zg is a type-B triplet of N, there exists a gall Q in N such that x‚ y‚ z are in three

different subtrees attached to Q where one leaf (say x) is in a subtree attached to QL or QR, another leaf

(say y) is in a subtree attached to r(Q), and the remaining leaf (say z) is in a subtree attached to hQ. Then, by

construction, xjyjz is a fan triplet in NB.

()) If xjyjz is a fan triplet in NB, let u be the lowest common ancestor of x‚ y‚ z in NB. u is of degree-3

and corresponds to a gall Q. This implies that x‚ y‚ z are in a subtree attached to r(Q), a subtree attached to

hQ, and a subtree attached to QL or QR. Hence, fx‚ y‚ zg is a type-B triplet of N.

For (2): (!) If fx‚ y‚ zg is a type-C triplet of N, there exists a gall Q in N such that x‚ y‚ z are in three

different subtrees attached to Q, where one leaf (say x) is in a subtree attached to QL, another leaf (say y) is

in a subtree attached to QR, and the remaining leaf (say z) is in a subtree attached to hQ. Then, by

construction, xjyjz is a fan triplet in NC.

()) If xjyjz is a fan triplet in NC, let u be the lowest common ancestor of x‚ y‚ z in NC. u is of degree-3

and corresponds to a gall Q. This implies that x‚ y‚ z are in a subtree attached to QL, a subtree attached to

QR, and a subtree attached to hQ. Hence, fx‚ y‚ zg is a type-C triplet of N. ,
As a consequence, we have the following two lemmas.

a

b c

FIG. 6. (a) shows a galled tree N, (b) shows NB, and (c) shows NC.
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Lemma 13. fcountBC(T1‚ N2) = fcount(T1‚ NB
2 ) + fcount(T1‚ NC

2 ).

Proof. By Lemma 12 (1), fx‚ y‚ zg is a type-B triplet of N2 if and only if xjyjz is a fan triplet in NB
2 .

Hence, fcount(T1‚ NB
2 ) is the number of fan triplets xjyjz in T1 that also are type-B triplets of N2. Similarly,

by Lemma 12 (2), fcount(T1‚ NC
2 ) is the number of fan triplets xjyjz in T1 that are also type-C triplets

of N2. ,

Lemma 14. fcount�BC(N1‚ N2) = fcount(NB
1 ‚ NB

2 ) + fcount(NB
1 ‚ NC

2 ) + fcount(NC
1 ‚ NB

2 ) + fcount(NC
1 ‚ NC

2 ).

Proof. Following Lemma 12:

� fcount(NB
1 ‚ NB

2 ) counts the number of triplets that are of type-B in both N1 and N2.
� fcount(NB

1 ‚ NC
2 ) counts the number of triplets that are of type-B in N1 and type-C in N2.

� fcount(NC
1 ‚ NB

2 ) counts the number of triplets that are of type-C in N1 and type-B in N2.
� fcount(NC

1 ‚ NC
2 ) counts the number of triplets that are of type-C in both N1 and N2.

Since fcount�BC(N1‚ N2) equals the number of triplets that are type B or C in N1 and type B or C in N2, the

lemma follows. ,
The algorithm in Figure 7 computes fcount(N1‚ N2) by combining Lemmas 10, 11, 13, and 14.

Lemma 15. The algorithm fcount(N1‚ N2) in Figure 7 makes a total of 25 calls to fcount(T1‚ T2), where

T1 and T2 are phylogenetic trees.

Proof. Note that fcountBC(T1‚ N2) makes two calls to fcount(T1‚ T2), and fcount�BC(N1‚ N2) makes four

calls to fcount(T1‚ T2). Also, fcountBC(N1‚ N2) makes three calls to fcountBC(T1‚ N2) and one call to

fcount�BC(N1‚ N2), so in total, fcountBC(N1‚ N2) uses 3 � 2 + 1 � 4 = 10 calls to fcount(T1‚ T2).

Moreover, fcount(N1‚ T2) makes three calls to fcount(T1‚ T2) and one call to fcountBC(T2‚ N1). In total,

fcount(N1‚ T2) is obtained from 3 + 1 � 2 = 5 calls to fcount(T1‚ T2).

Finally, fcount(N1‚ N2) makes three calls to fcount(N1‚ T2) and one call to fcountBC(N1‚ N2). In total,

fcount(N1‚ N2) makes 3 � 5 + 1 � 10 = 25 calls to fcount(T1‚ T2). ,

Since fcount(T1‚ T2) can be computed in O(n log n) time for any two trees T1‚ T2 by Theorem 1, fcount(T1‚ T2)

is called a constant number of times according to Lemma 15, and constructing each of the constant number of

trees used as arguments to fcount(T1‚ T2) takes O(n) time, the algorithm in Figure 7 runs in O(n log n) time.

FIG. 7. The algorithm for computing fcount(N1‚ N2).
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4. IMPLEMENTATION AND EXPERIMENTS

We have implemented our new algorithm and conducted a series of experiments to evaluate its running

time. The details of the implementation and the experimental results are presented below.

4.1. Implementation

The implementation is available at (https://github.com/Mesh89/Galled-CPDT-dist), along with in-

structions for how to run it. It uses CPDT-dist ( Jansson and Rajaby, 2017) as the subroutine for com-

puting the rooted triplet distance between two input phylogenetic trees. The implementation consists of

three parts:

(i) A C++ executable that transforms a galled network N into the set of phylogenetic trees defined in

Section 3, namely N&, N., NY, NL, NLL, NR, NRR, NB, and NC;

(ii) CPDT-dist from Jansson and Rajaby (2017) modified so that, given a pair T1‚ T2 of phylogenetic

trees with identical leaf label sets, it outputs fcount(T1‚ T2) and rcount(T1‚ T2);

(iii) A Bash script that first uses (i) to construct two sets of trees from the given N1 and N2, then calls (ii)

for pairs of trees according to the description of the algorithm in Section 3 and combines the results,

and finally outputs the rooted triplet distance between N1 and N2.

The implementation is straightforward, but a few details are worth mentioning. First, the accepted input

format for N1 and N2 is the Extended Newick Format, described in Cardona et al. (2008). Second, as

described in Section 2, the rooted triplet distance between N1 and N2 is given by the formula

count(N1‚ N1) + count(N2‚ N2) - 2 � count(N1‚ N2), where count(Ni‚ Ni) is the total number of rooted triplets

(i.e., fan triplets and resolved triplets) in Ni for i 2 f1‚ 2g. Instead of computing count(Ni‚ Ni) by running

the algorithm, it is faster in practice to compute it by taking
n

3

� �
plus the number of ambiguous triplets in

Ni (which can be counted directly in linear time). Third, the theoretical time complexity of the implemented

algorithm is O(n log3 n) rather than O(n log n). The reason is that the time complexity of the subroutine

CPDT-dist is O(n log3 n) and not O(n log n); however, it was shown experimentally in Jansson and Rajaby

(2017) that CPDT-dist is faster for n � 4‚ 000‚ 000 than the software package tqDist (Sand et al., 2014) that

implements the algorithm from Brodal et al. (2013).

4.2. Experimental setup

The experiments were performed on a server running Ubuntu 16.04 with four Intel(R) Xeon(R) CPU

X5680 processors clocked at 3.33 GHz and 135 GB of RAM. As a C++ compiler, g++ version 5.4 was used.

Running times were measured using the command ‘‘time.’’

4.3. Generating the input

To generate random galled trees for the input, we used a two-step procedure that first generates a random

nonbinary phylogenetic tree and then modifies it into a galled tree.

The first step is the same as the one described in Jansson and Rajaby (2017), that is, first generate a

binary phylogenetic tree in the uniform model (McKenzie and Steel, 2000) and then for each nonroot,

internal node, contract it (thus making its children become children of its parent instead) with probability

0.2, to obtain a nonbinary phylogenetic tree.

The second step takes a phylogenetic tree with n leaves and tries to create º log nß galls in it. To generate

a gall, the procedure does the following:

1. Choose an internal node h uniformly at random as the reticulation vertex of the new gall.

2. Choose an ancestor of h, s, to be the split vertex.

3. Ensure that the path s! h does not touch any existing gall.

4. Insert a new edge from s to h.

5. Move q% of the side trees from the original path to the new one, where q is chosen at random between

0 and 100 and is different for each gall.

To choose s, the procedure first draws a number p between 0.0 and 0.4; then, starting from h, it moves up

the tree, stopping with probability p at each step and lets s be the final node. The procedure fails if the path
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between and s and h touches a gall. In this case, it tries again by picking another pair of s and h; however, if

it fails too many times, the procedure stops and outputs a galled tree with fewer than º log nß galls.

4.4. Naive algorithm

We also implemented a naive algorithm for the rooted triplet distance between two galled trees in

order to verify the correctness of our implementation and to assess its achieved speed-up. The naive

algorithm explicitly computes the two sets of O(n3) rooted triplets consistent with each of the networks,

sorts them, and computes their intersection, using a total of O(n3 log n) time. (By using radix sort in the

sorting step, the time complexity would become O(n3), but the algorithm would become slower in

practice.)

The O(n2:687)-time algorithm from Jansson and Lingas (2014) was not included in the experiments. We

expect that for small values of n, any implementation of it would be much slower than the naive algorithm

due to the huge constants involved in the state-of-the-art algorithms for matrix multiplication that it

depends on. On the other hand, for large values of n, our new method will be a lot faster since its time

complexity is asymptotically much better than O(n2:687).

4.5. Experimental results

Figure 8 shows the running times of the naive algorithm and the new algorithm. The benefits of using the

latter are evident: the new algorithm is able to compare two galled trees with 500,000 leaves in less time

than the naive algorithm can compare two galled trees with 1000 leaves. More importantly, the im-

plementation of the fast algorithm is currently the only program available for measuring the similarity

between two large galled trees.

As for the memory usage, only one instance of CPDT-dist is run at a time. The memory needed to

compare two phylogenetic trees with 500,000 leaves is around 1 GB; an extensive analysis of the memory

used by CPDT-dist for various input sizes can be found in Jansson and Rajaby (2017).

5. CONCLUDING REMARKS

The presented algorithm requires a subroutine for computing the rooted triplet distance between two

phylogenetic trees. If a faster algorithm for the case of trees than the one referred to in Theorem 1 is

discovered (e.g., running in O(n log log n) time), this would immediately imply a faster algorithm for the

case of galled trees as well.

FIG. 8. Running times of the naive algorithm and our new algorithm for increasing values of n.
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Note that even though the number of calls to the subroutine is constant, the constant is quite large

(49 + 25 = 74). Is it possible to reduce this number? Doing so might improve the practical running time. The

running time could also potentially be reduced by parallelizing the algorithm to handle many calls to the

subroutine at the same time. In this case, memory will become an issue for large inputs, and the interested

reader is referred to the experimental results reported in Jansson and Rajaby (2017) showing how much

memory is consumed by the CPDT-dist subroutine for inputs with up to four million leaves.

An open problem is to determine whether the techniques used here can be extended to compute the

rooted triplet distance between more general phylogenetic networks than galled trees. For example, even

for the slight generalization of a galled tree in which cycles are allowed to share vertices and only required

to be edge-disjoint (as opposed to vertex-disjoint), the current algorithm fails. The problem lies in the

construction of NB and NC (Section 3.2); intuitively, they are constructed so that three leaves induce a fan in

NB (resp. NC) if and only if they induce a type-B (resp. type-C) triplet in the original galled tree N.

However, in the current construction, when different galls share the same root, leaves in different galls in N

may induce fans in NB and NC. Finally, can the techniques be adapted to compute the quartet distance

between two unrooted phylogenetic networks efficiently, for example, by making use of the known

O(dn log n)-time algorithm from Brodal et al. (2013) for the quartet distance between two unrooted phy-

logenetic trees with n leaves each and maximum degree d?
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