
Inf. Process. Lett. 191 (2026) 106594

Available online 16 June 2025
0020-0190/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Information Processing Letters

journal homepage: www.elsevier.com/locate/ipl

Finding the cyclic covers of a string ✩

Roberto Grossi a, Costas S. Iliopoulos b, Jesper Jansson c, Zara Lim b, ,∗, Wing-Kin Sung d,e,
Wiktor Zuba f

a Dipartimento di Informatica, Università di Pisa, Italy
b Department of Informatics, King’s College London, UK
c Graduate School of Informatics, Kyoto University, Kyoto, Japan
d The Chinese University of Hong Kong, Hong Kong, China
e Hong Kong Genome Institute, Hong Kong Science Park, Hong Kong, China
f Centrum Wiskunde & Informatica, Amsterdam, the Netherlands

A R T I C L E I N F O A B S T R A C T

Keywords:

String
Cyclic string
Cover
Periodicity
Regularities

We introduce the concept of cyclic covers, which generalizes the classical notion of covers in strings. Given any
string 𝑋, a factor 𝑊 of 𝑋 is called a cyclic cover if each position of 𝑋 belongs to an occurrence of a cyclic shift of
𝑊 in 𝑋. Two cyclic covers are distinct if one is not a cyclic shift of the other. The cyclic covers problem asks for
all distinct cyclic covers of an input string 𝑋. We present an algorithm that solves the cyclic covers problem in
(𝑛 log𝑛) time, where 𝑛 is the length of 𝑋. It is based on finding a well-structured set of standard occurrences of
a constant number of factors of a cyclic cover candidate 𝑊 , computing the regions of 𝑋 covered by cyclic shifts
of 𝑊 , extending those factors, and taking the union of the results.

1. Introduction

Repetitions and periodicities in strings have been extensively stud-
ied across many fields including string combinatorics, pattern matching
and automata theory [29,30] due to their theoretical significance and
real-world applications. Detection algorithms and data structures for re-
peated patterns and regularities span across several fields of computer
science [14,21], such as computational biology, pattern matching, data
compression, and randomness testing.

String covers, a generalization of periodicity, stem from quasiperi-
odicity [5] and allow occurrences of a repeated factor in a string to
overlap. A factor 𝑊 of a string 𝑋 is called a cover of 𝑋 if each posi-
tion of 𝑋 belongs to an occurrence of 𝑊 . See Fig. 1 for an example.
By definition, a cover of 𝑋 must also be a border of 𝑋, i.e., it must ap-
pear as both a prefix and a suffix of 𝑋. Apostolico et al. [6] presented
the first linear-time algorithm for finding the shortest cover of a string.
Subsequently, Breslauer [9] developed a linear-time on-line algorithm
for the problem. Moore and Smyth [34] gave a linear-time algorithm

✩ A preliminary version of this article appeared in Proceedings of the Seventeenth International Conference and Workshops on Algorithms and Computation (WAL-
COM 2023), Lecture Notes in Computer Science, Vol. 13973, pp. 139–150, Springer, 2023.

* Corresponding author.
E-mail addresses: roberto.grossi@unipi.it (R. Grossi), costas.iliopoulos@kcl.ac.uk (C.S. Iliopoulos), jj@i.kyoto-u.ac.jp (J. Jansson), zara.lim@kcl.ac.uk (Z. Lim),

kwksung@cuhk.edu.hk (W.-K. Sung), w.zuba@mimuw.edu.pl, wiktor.zuba@cwi.nl (W. Zuba).

that computes all the covers of a string; this result was later extended
to a linear-time on-line algorithm by Li and Smyth [28]. Related string
factorization problems include antiperiods [2] and anticovers [1], in
addition to approximate [3] and partial [26] covers and seeds [25].
Other combinatorial covering problems consider applications to graphs
[12,35].

Cyclic strings have been studied throughout various computer sci-
ence and mathematical fields, in particular in the field of combinatorics.
A cyclic string is a string that does not have an initial or terminal po-
sition; instead, the two ends of the string are joined together, and the
string can be viewed as a necklace of letters. A cyclic string of length 𝑛
can be also viewed as a traditional linear string, which has the left- and
right-most letters wrapped around and stuck together. Under this no-
tion, the same cyclic string can be seen as 𝑛 linear strings, which would
all be considered equivalent.

One of the earliest studies of cyclic strings occurs in Booth’s linear-
time algorithm [8] for computing the lexicographically smallest cyclic
factor of a string. Other closely related works reference terms such as

https://doi.org/10.1016/j.ipl.2025.106594
Received 3 July 2024; Received in revised form 8 June 2025; Accepted 11 June 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://orcid.org/0000-0001-6528-6060
mailto:roberto.grossi@unipi.it
mailto:costas.iliopoulos@kcl.ac.uk
mailto:jj@i.kyoto-u.ac.jp
mailto:zara.lim@kcl.ac.uk
mailto:kwksung@cuhk.edu.hk
mailto:w.zuba@mimuw.edu.pl
mailto:wiktor.zuba@cwi.nl
https://doi.org/10.1016/j.ipl.2025.106594
https://doi.org/10.1016/j.ipl.2025.106594
http://creativecommons.org/licenses/by/4.0/

Information Processing Letters 191 (2026) 106594

2

R. Grossi, C.S. Iliopoulos, J. Jansson et al.

a
0

b
1

a
2

a
3

b
4

a

5

b
6

a

7

b
8

a
9

Fig. 1. The string 𝚊𝚋𝚊 is a cover of the string 𝚊𝚋𝚊𝚊𝚋𝚊𝚋𝚊𝚋𝚊.

a
0

a
1

b
2

b
3

a
4

a

5

b
6

a

7

a
8

b
9

a
10

a
11

b
12

a
13

a
14

b
15

a
0

a
1

b
2

b
3

a
4

a

5

b
6

a

7

a
8

b
9

a
10

a
11

b
12

a
13

a
14

b
15

Fig. 2. The string 𝑋 = 𝚊𝚊𝚋𝚋𝚊𝚊𝚋𝚊𝚊𝚋𝚊𝚊𝚋𝚊𝚊𝚋 has a cyclic cover of length 3 (shown
at the top) since 𝑋[0 . .2], 𝑋[3 . .5], 𝑋[4 . .6], 𝑋[5 . .7], 𝑋[6 . .8], 𝑋[7 . .9],
𝑋[8 . .10], 𝑋[9 . .11], 𝑋[10 . .12], 𝑋[11 . .13], 𝑋[12 . .14], 𝑋[13 . .15] are all
cyclic shifts of the same factor 𝚊𝚊𝚋, and cover all positions of 𝑋. In addition, 𝑋
has a cyclic cover of length 4 (shown at the bottom) as well as cyclic covers of
lengths 7, 10, 13, and 16 (not shown).

‘Lyndon factorization’ and ‘canonization’ [4,11,17,19,31,32,37]. Some
recent advances on cyclic strings can be found in [13]. Aside from com-
binatorics, cyclic strings have applications within bioinformatics [38,
39] or image processing [7,36].

This article introduces the concept of a cyclic cover of a string, which
generalizes the notion of a cover by incorporating cyclic shifts. A factor
𝑊 of 𝑋 is called a cyclic cover if each position of 𝑋 belongs to an
occurrence of a cyclic shift of 𝑊 in 𝑋. Our motivation for cyclic covers
originates from viral genomes, such as Escherichia coli (E. coli), which
can form circular sequences [40,38]. The study of cyclic covers in this
context generalizes traditional sequence alignment of viral genomes, a
crucial tool in bioinformatics for analyzing evolutionary relationships
[16].

Fig. 2 shows an example in which 𝑋 has several different cyclic cov-
ers. In the figure, the cyclic occurrences of a cyclic cover of length 3 as
well as the cyclic occurrences of one of length 4 are illustrated.

We can immediately note the following:

Lemma 1. If 𝑊 is a cyclic cover of length 𝓁 of a string 𝑋 then 𝑊 and the
prefix of 𝑋 of length 𝓁 are cyclic shifts of each other.

Proof. By the definition of a cyclic cover, the first position of 𝑋 belongs
to an occurrence of a cyclic shift of 𝑊 . Since 𝑊 has length 𝓁, the first
𝓁 positions of 𝑋 form a cyclic shift of 𝑊 . □

Two cyclic covers are called distinct if they are not cyclic shifts of
one another. By Lemma 1, any two factors 𝑊 and 𝑍 of 𝑋 of equal
length that both are cyclic covers of 𝑋 have to be cyclic shifts of the
same prefix of 𝑋, and hence by transitivity, cyclic shifts of each other.
For this reason, two cyclic covers of 𝑋 are distinct if and only if they
have different lengths.

Moreover, Lemma 1 implies that whenever a prefix 𝑃 of 𝑋 is a cyclic
cover, all the cyclic covers of 𝑋 of that length are cyclic shifts of 𝑃 . In
other words, for any positive integer 𝓁, all the length-𝓁 cyclic covers
of 𝑋 can be represented by the prefix of 𝑋 of length 𝓁. To obtain the
distinct cyclic covers of 𝑋, it is therefore sufficient to compute all 𝓁 for
which the length-𝓁 prefix of 𝑋 is a cyclic cover of 𝑋.

a a ⋯ a b a a ⋯ a
0 1 𝑘 − 1 𝑘 𝑘 + 1 𝑘 + 2 2𝑘

Fig. 3. Let 𝑋 = 𝚊𝑘𝚋𝚊𝑘 for some integer 𝑘 ≥ 1. Every factor of 𝑋 of the form
𝚊𝑖𝚋𝚊𝑗 , where 𝑖, 𝑗 ≥ 0 are integers such that 𝑖 + 𝑗 ≥ 𝑘, is a cyclic cover of 𝑋.
These Θ(𝑘2) cyclic covers are represented by the Θ(𝑘) prefixes of 𝑋 of length
𝑘+ 1, 𝑘+ 2, … , 2𝑘+ 1. Indicated in the figure is the cyclic cover given by the
prefix of length 𝑘+ 2.

1.1. Our contributions

We study the cyclic covers problem, which asks for all of the distinct
cyclic covers of a string: Given an input string 𝑋, output the lengths
of all prefixes of 𝑋 that are cyclic covers of 𝑋. As an example, for the
input shown in Fig. 2, the output of the cyclic covers problem should be
3,4,7,10,13,16.

The main result in the article is an algorithm that solves the cyclic
covers problem in (𝑛 log𝑛) time for any string of length 𝑛. We assume
that the input string is over a general ordered alphabet and that the
model of computation is the word RAM model with word size Θ(log𝑛);
both restrictions follow from the restrictions of cited and used data struc-
tures.

The rest of the article is organized as follows. Section 2 provides
the formal definitions, reviews some results from the literature, and de-
scribes a straightforward quadratic-time algorithm for the cyclic covers
problem. Section 3 presents our faster algorithm. Finally, we give some
concluding remarks in Section 4.

2. Preliminaries

2.1. Basic definitions

A string 𝑋 of length 𝑛 = |𝑋| is a sequence of 𝑛 characters over an
integer alphabet Σ = {0,… , 𝑛(1)}. For every 𝑖 ∈ {0,1,… , 𝑛 − 1}, the
character at position 𝑖 of the string is denoted by 𝑋[𝑖]. A positive integer
𝑝 < 𝑛 is called a period of 𝑋 if 𝑋[𝑖] =𝑋[𝑖+ 𝑝] for all 𝑖 = 0,… , 𝑛− 𝑝− 1.
By 𝑋[𝑖 . . 𝑗], we denote a factor of 𝑋 equal to 𝑋[𝑖]⋯𝑋[𝑗], whereby if
𝑖 > 𝑗, then it is the empty string. The factor 𝑋[𝑖 . . 𝑗] is a prefix of 𝑋 if
𝑖 = 0, and a suffix of 𝑋 if 𝑗 = 𝑛−1. If 𝑋[0 . . 𝑏−1] =𝑋[𝑛− 𝑏 . . 𝑛−1], the
factor 𝑋[0 . . 𝑏 − 1] is called a border of 𝑋. A factor 𝑊 is periodic if its
smallest period is at most |𝑊 |∕2, and 𝑊 is highly-periodic if its smallest
period is at most |𝑊 |∕4. An important property used throughout the
article is Fine and Wilf’s periodicity lemma:

Lemma 2 ([18]). If 𝑝, 𝑞 are periods of a string 𝑋 of length |𝑋| ≥ 𝑝 + 𝑞 −
𝑔𝑐𝑑(𝑝, 𝑞), then 𝑔𝑐𝑑(𝑝, 𝑞) is also a period of 𝑋.

Next, a factor 𝑈 is a cyclic shift of a factor 𝑊 if 𝑊 =𝐴𝐵 and 𝑈 = 𝐵𝐴

for some strings 𝐴 and 𝐵. When this condition holds, we say that 𝑈 is a
𝑑-cyclic shift of 𝑊 , where 𝑑 = |𝐴|. A factor 𝑊 is called a cyclic cover of 𝑋
if, for every position 𝑖 (0 ≤ 𝑖 < 𝑛), there exists a factor 𝑋[𝑗 . . 𝑗+ |𝑊 |−1]
that is a cyclic shift of 𝑊 and contains position 𝑖, i.e., 0 ≤ 𝑗 ≤ 𝑖 ≤ 𝑗 +|𝑊 | − 1 < 𝑛. (For some examples, refer to Figs. 2 and 3.) Two cyclic
covers are distinct if they are not cyclic shifts of one another. As observed
in the introduction, the distinct cyclic covers of 𝑋 can be represented
by the lengths of their corresponding prefixes of 𝑋. Consequently, the
cyclic covers problem is to output the lengths of all prefixes of an input
string 𝑋 that are cyclic covers of 𝑋.

Remark. Even though any string of length 𝑛 has at most 𝑛 distinct cyclic
covers, it could have Θ(𝑛2) distinct factors that are cyclic covers, as
demonstrated in Fig. 3. Thus, the number of distinct factors that are
cyclic covers can be much larger than the number of distinct cyclic cov-
ers.

Information Processing Letters 191 (2026) 106594

3

R. Grossi, C.S. Iliopoulos, J. Jansson et al.

We denote by 𝑙𝑐𝑝(𝑋[𝑖 . . 𝑗],𝑋[𝑘 . . 𝑙]) the length of the longest com-
mon prefix of the factors 𝑋[𝑖 . . 𝑗] and 𝑋[𝑘 . . 𝑙]. Also, we denote by
𝑙𝑐𝑝𝑟(𝑋[𝑖 . . 𝑗],𝑋[𝑘 . . 𝑙]) the length of the longest common suffix of
𝑋[𝑖 . . 𝑗] and 𝑋[𝑘 . . 𝑙]. After (𝑛) time preprocessing of 𝑋, 𝑙𝑐𝑝 and 𝑙𝑐𝑝𝑟
for any two specified factors of 𝑋 can be computed in (1) time [23].

2.2. The IPM data structure

A useful data structure called the Internal Pattern Matching (IPM) data
structure was introduced in [27]. It efficiently determines if a substring
𝑥 occurs within another substring 𝑦 of a given text in constant time,
provided that |𝑦| =𝑂(|𝑥|).

The following three lemmas summarize some of its properties. Let us
denote by 𝑜𝑐𝑐(𝑊 ,𝑍) the (possibly empty) list of positions 𝑗 such that
𝑊 =𝑍[𝑗 . . 𝑗 + |𝑊 |− 1].

Lemma 3 ([24,27]). Given a string 𝑋 of length 𝑛, the IPM data structure
for 𝑋 after (𝑛) time and space construction computes 𝑜𝑐𝑐(𝐴,𝐵) for any
factors 𝐴 and 𝐵 of 𝑋 where |𝐴| ≤ |𝐵| ≤ 2|𝐴|, in (1) time. Furthermore,
the list of positions is presented as an arithmetic progression.

Lemma 4 ([24,27]). Given a string 𝑋 of length 𝑛, the IPM data structure
for 𝑋 after (𝑛) time and space construction determines if 𝐴 is a cyclic shift
of 𝐵 in (1) time, for any two factors 𝐴 and 𝐵 of 𝑋.

Lemma 5 ([27]). Given a string 𝑋 of length 𝑛, the 2-Period data structure
of 𝑋 after (𝑛) time and space construction determines if 𝐴 is periodic, and
if that is the case, computes its shortest period in (1) time for any factor 𝐴
of 𝑋.

In [27], the data structures of Lemmas 3 and 4 were constructed
in (𝑛) expected time. These constructions were strengthened to (𝑛)
worst-case time in [24]. It was already shown in [27] how to construct
the data structure of Lemma 5 in (𝑛) worst-case time.

2.3. A quadratic-time algorithm for the cyclic covers problem

A straightforward approach based on repeated applications of
Lemma 4 leads to a quadratic-time algorithm for the cyclic covers prob-
lem.

More precisely, first construct the IPM data structure for 𝑋 in a pre-
processing step. Next, for each 𝓁 ∈ {1,2,… , 𝑛−1} independently of each
other, check if the length-𝓁 prefix of 𝑋 is a cyclic cover of 𝑋 as follows:
Initialize a variable covered to −1 that says which positions of 𝑋 have
been covered so far. Then, for each 𝑖 from 0 to 𝑛−𝓁, apply Lemma 4 to
test whether 𝑋[𝑖 . . 𝑖 + 𝓁 − 1] is a cyclic shift of 𝑋[0 . .𝓁 − 1]; if the an-
swer is yes then update covered to 𝑖+ 𝓁 − 1, but if the answer is no and
covered < 𝑖 then go on to the next 𝓁 since there is a position of 𝑋 that
cannot be covered by a cyclic shift of the current 𝑋[0 . .𝓁−1]. If covered
reaches 𝑛 − 1 then include the current value of 𝓁 in the output and go
to the next 𝓁.

The correctness of the method can be seen as follows. For any fixed
𝓁, if the output contains 𝓁 then every position of 𝑋 belongs to at least
one occurrence of a cyclic shift of 𝑋[0 . .𝓁 − 1], and so 𝑋[0 . .𝓁 − 1] is
a cyclic cover of 𝑋 by definition. On the other hand, if the output does
not contain 𝓁 then there is some position 𝑖 in 𝑋 for which covered could
never reach the value 𝑖; the only way that this can happen is if none of
𝑋[𝑖−𝓁 +1 . . 𝑖], 𝑋[𝑖−𝓁 +2 . . 𝑖+1], … , 𝑋[𝑖 . . 𝑖+𝓁 −1] are cyclic shifts
of 𝑋[0 . .𝓁 −1], which means that 𝑋[0 . .𝓁 −1] cannot be a cyclic cover
of 𝑋. Furthermore, in this case, Lemma 1 guarantees that 𝑋 does not
have any cyclic cover of length 𝓁.

According to Lemma 4, the preprocessing takes (𝑛) time and ver-
ifying each 𝓁 ∈ {1,… , 𝑛 − 1} in the main for-loop takes (𝑛 − 𝓁 + 1)
time. Thus, the total time complexity of the straightforward algorithm
is (𝑛2). The next section will present a faster solution.

b
0

a
1

b
2

b
3

b
4

a

5

b
6

a

7

b
8

b
9

a b b b
2 3 0 1

b a b b
1 2 3 0

𝓁1

𝓁2

Fig. 4. Given 𝑋 = 𝚋𝚊𝚋𝚋𝚋𝚊𝚋𝚊𝚋𝚋, 𝑊 = 𝚋𝚋𝚊𝚋, and the constraint that 𝑊 [1] aligns
to 𝑋[4], the region 𝑋[1 . .6] is cyclically covered by 𝑊 . The lengths 𝓁1 and 𝓁2
denote 𝑙𝑐𝑝(𝑊 [1 . .3]𝑊 [0],𝑋[4 . .9]) and 𝑙𝑐𝑝𝑟(𝑊 [2 . .3]𝑊 [0 . .1],𝑋[0 . .4]) − 1,
respectively.

3. A faster algorithm for cyclic covers

In order to improve the quadratic-time algorithm, we consider two
cases: (𝑖) if 𝑊 is a highly periodic factor and (𝑖𝑖) if 𝑊 is not a highly
periodic factor. This is because the number of occurrences of a highly
periodic factor 𝑊 in a string 𝑋 is much higher due to the repetitive
nature permitting an overlap between each period of 𝑊 ; this is not the
case if 𝑊 is non-highly periodic.

Below, we outline an improved approach for the cyclic covers prob-
lem.

1. Section 3.1 presents a function named 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋, 𝑖, 𝑗)
which returns a region in 𝑋 (if any) that is cyclically covered by
𝑊 under the constraint that 𝑊 [𝑖] aligns to 𝑋[𝑗].

2. Using the function 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋, 𝑖, 𝑗), Section 3.2 devel-
ops an (𝑛∕𝓁)-time algorithm for finding regions in 𝑋 covered by
𝑊 when 𝑊 is highly-periodic.

3. Again using 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋, 𝑖, 𝑗), Section 3.3 develops an
(𝑛∕𝓁)-time algorithm for finding regions in 𝑋 covered by 𝑊 when
𝑊 is not highly-periodic.

4. Finally, in Section 3.4, we present how to identify all cyclic covers
in (𝑛 log𝑛) time.

3.1. The function 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋, 𝑖, 𝑗)

Let 𝑋[0 . . 𝑛 − 1] be a string, 𝑊 [0 . .𝓁 − 1] a factor of 𝑋, and 𝑖 and
𝑗 nonnegative integers. For any 𝑗′ ∈ [𝑗 − 𝓁 + 1 . . 𝑗], a length-𝓁 factor
𝑋[𝑗′ . . 𝑗′ + 𝓁 − 1] of 𝑋 is called a cyclic shift of 𝑊 [0 . .𝓁 − 1] with 𝑊 [𝑖]
aligned to 𝑋[𝑗] if the 𝑖-cyclic shift of 𝑊 equals the (𝑗 − 𝑗′)-cyclic shift
of 𝑋[𝑗′ . . 𝑗′ + 𝓁 − 1]. For example, given the string 𝑋 = 𝚋𝚊𝚋𝚋𝚋𝚊𝚋𝚊𝚋𝚋,
the factor 𝑊 = 𝚋𝚋𝚊𝚋, and the constraint that 𝑊 [1] aligns to 𝑋[4], the
region 𝑋[1 . .6] is cyclically covered by 𝑊 . See Fig. 4.

The lemma below explains how to identify a region 𝑋[𝛼 . . 𝛽] in 𝑋
that is cyclically covered by 𝑊 under the constraint that 𝑊 [𝑖] aligns to
𝑋[𝑗], or determine that none exists.

Lemma 6. Consider a string 𝑋[0 . . 𝑛−1] and a length-𝓁 factor 𝑊 [0 . .𝓁 −
1] of 𝑋. Let 𝓁1 = 𝑙𝑐𝑝(𝑊 [𝑖 . .𝓁 − 1]𝑊 [0 . . 𝑖 − 1],𝑋[𝑗 . . 𝑛 − 1]) and 𝓁2 =
𝑙𝑐𝑝𝑟(𝑊 [𝑖+ 1 . .𝓁 − 1] 𝑊 [0 . . 𝑖],𝑋[0 . . 𝑗]) − 1. If 𝓁1 + 𝓁2 ≥ 𝓁 then 𝑋[𝑗 −
𝓁2 . . 𝑗 + 𝓁1 − 1] is cyclically covered by 𝑊 under the constraint that 𝑊 [𝑖]
aligns to 𝑋[𝑗]; otherwise, such a cyclic cover does not exist.

Proof. Let 𝑈 =𝑊 [𝑖 . .𝓁−1]𝑊 [0 . . 𝑖−1] and define 𝑈2 =𝑈𝑈 . From the
definitions of 𝓁1 and 𝓁2, we have 𝑋[𝑗−𝓁2 . . 𝑗+𝓁1−1] =𝑈2[𝓁−𝓁2 . .𝓁+
𝓁1 − 1]. Every factor of length 𝓁 (if any) of this string is a cyclic shift of
𝑈 , and hence also of 𝑊 . Thus, if 𝓁1 +𝓁2 ≥ 𝓁 then 𝑋[𝑗 −𝓁2 . . 𝑗 +𝓁1 −1]
is cyclically covered by 𝑊 under the constraint that 𝑈 [0] aligns to 𝑋[𝑗]
(i.e., 𝑊 [𝑖] aligns to 𝑋[𝑗]).

In contrast, if 𝓁1 + 𝓁2 < 𝓁 then the length of 𝑋[𝑗 − 𝓁2 . . 𝑗 + 𝓁1 − 1]
is (𝑗 + 𝓁1 − 1) − (𝑗 − 𝓁2) + 1 = 𝓁1 + 𝓁2 < 𝓁. Then |𝑈 | = 𝓁 implies that if
𝑋 contains a cyclic shift of 𝑈 with 𝑈 [0] aligned to 𝑋[𝑗] then at least

Information Processing Letters 191 (2026) 106594

4

R. Grossi, C.S. Iliopoulos, J. Jansson et al.

one of 𝑋[𝑗 − 𝓁2 − 1] and 𝑋[𝑗 + 𝓁1] must belong to it. However, this is
impossible because 𝑈 [𝓁−𝓁2 −1] ≠𝑋[𝑗−𝓁2 −1] and 𝑈 [𝓁1] ≠𝑋[𝑗+𝓁1]
by the definitions of 𝓁1 and 𝓁2. Therefore, 𝑋 cannot contain a cyclic
shift of 𝑊 under the constraint that 𝑊 [𝑖] aligns to 𝑋[𝑗]. □

Based on Lemma 6, we define a function 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋, 𝑖, 𝑗)
which returns a pair of indices (𝛼, 𝛽) with 𝛼 ≤ 𝑗 ≤ 𝛽 such that 𝑋[𝛼 . . 𝛽] is
cyclically covered by 𝑊 under the constraint that 𝑊 [𝑖] aligns to 𝑋[𝑗].
If no such cyclic cover exists, the function returns an empty region.

Lemma 7. After (𝑛) time preprocessing, 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋, 𝑖, 𝑗) for
any factor 𝑊 of 𝑋 and any nonnegative integers 𝑖 and 𝑗 can be computed
in (1) time.

Proof. In the preprocessing step, build the 𝑙𝑐𝑝 and 𝑙𝑐𝑝𝑟 data structures
[23] for 𝑋 in (𝑛) time. Then, for any call to 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋,
𝑖, 𝑗), use them to compute 𝓁1 and 𝓁2 defined in Lemma 6 in (1) time,
and check if 𝓁1 + 𝓁2 ≥ 𝓁. In accordance with Lemma 6, if the answer is
yes then return (𝑗 − 𝓁2, 𝑗 + 𝓁1 − 1); if the answer is no then return ∅.

Since 𝑊 [𝑖 . .𝓁−1]𝑊 [0 . . 𝑖−1] may occur as a factor in 𝑋, we cannot
always compute 𝓁1 with a single query to the 𝑙𝑐𝑝 data structure for
𝑋. Instead, we compute 𝓁1 using at most two 𝑙𝑐𝑝 queries as follows. If
𝑙𝑐𝑝(𝑊 [𝑖 . .𝓁−1],𝑋[𝑗 . . 𝑛−1]) < 𝓁− 𝑖 then it represents the sought value
of 𝓁1 and we are done. Otherwise, 𝑙𝑐𝑝(𝑊 [𝑖 . .𝓁−1],𝑋[𝑗 . . 𝑛−1]) = 𝓁− 𝑖

indicates a potential longer match involving the cyclic shift 𝑊 [0 . . 𝑖−1].
To determine the full extent of this match, we perform a second 𝑙𝑐𝑝
query between 𝑊 [0 . . 𝑖−1] and 𝑋[𝑗 +𝓁− 𝑖 . . 𝑛−1]. Thus the combined
length of the match, 𝓁1 = (𝓁− 𝑖)+ 𝑙𝑐𝑝(𝑊 [0 . . 𝑖−1],𝑋[𝑗 +𝓁− 𝑖 . . 𝑛−1]).
Note that 𝓁1 ≤ 𝓁, where 𝓁1 = 𝓁 corresponds to a complete occurrence of
the cyclic shift 𝑊 [𝑖 . .𝓁 − 1]𝑊 [0 . . 𝑖− 1] aligning with 𝑋[𝑗 . . 𝑗 + 𝓁 − 1].
The value of 𝓁2 is computed analogously. □

3.2. Finding regions in 𝑋 that are cyclically covered by a highly-periodic
factor 𝑊

Lemma 9 below describes how to find regions that are cyclically cov-
ered by 𝑊 [0 . .𝓁 − 1] if 𝑊 is of period 𝑞 where 𝑞 ≤ 𝓁∕4. To prove it,
we make use of a lemma by Miyazaki et al. from [33] (see also [10,20])
to represent occurrences in a convenient way. Let (𝑗1, 𝑞,𝑚) denote the
arithmetic progression 𝑗1, 𝑗2,… , 𝑗𝑚 with 𝑗𝑠+1 = 𝑗𝑠 + 𝑞, where 1 ≤ 𝑠 < 𝑚.

Lemma 8 ([33], Lemma 3.1). Suppose the minimum period of 𝑊 [0 . .𝓁−1]
is 𝑞. For a length-2𝓁 factor 𝑌 , 𝑜𝑐𝑐(𝑊 ,𝑌) equals a single arithmetic progres-

sion (𝑗1, 𝑞′,𝑚′). If 𝑚′ ≥ 3, then 𝑞′ = 𝑞.

Lemma 9. Suppose the smallest period of 𝑊 [0 . .𝓁−1] is 𝑞 ≤ 𝓁∕4. We can
find which parts of 𝑋[𝑖 . . 𝑖 + 𝓁 − 1] are cyclically covered by 𝑊 in (1)
time.

Proof. Any cyclic shift of 𝑊 that covers any position of 𝑋[𝑖 . . 𝑖+𝓁−1]
must be fully contained inside 𝑋[𝑖−𝓁 . . 𝑖+2𝓁 −1], hence we are going
to restrict our search to that region.

Let 𝑌 =𝑊 [0 . . ⌊𝓁∕2𝑞⌋𝑞 − 1], which is 𝑊 [0 . . 𝑞 − 1]⌊𝓁∕2𝑞⌋. Note that
𝓁∕3 < |𝑌 | ≤ 𝓁∕2, and also |𝑌 | ≥ 2𝑞, hence 𝑞 is its smallest period (a
smaller period would imply a smaller period of 𝑋 by Lemma 2). To
see why 𝓁∕3 < |𝑌 |, observe that 𝓁 = 2𝑞𝑘 + 𝑖, where 𝑘 ∈ ℤ+, 𝑘 ≥ 2 and
𝑖 ∈ [0,2𝑞−1]. Here, we consider the edge case when 𝑖 = 2𝑞−1. It follows
that

|𝑌 | = ⌊
2𝑞𝑘+ 2𝑞 − 1

2𝑞

⌋
𝑞

= 2𝑞𝑘
2𝑞

𝑞 = 𝑘𝑞

>
1
3
(2𝑞𝑘+ 2𝑞 − 1) (when 𝑘 ≥ 2)

Fig. 5. If 𝛼𝑠+1 < 𝛼𝑠 ≤ 𝑗𝑠 for 𝑠 ≥ 1, then 𝑋[𝑗𝑠 . . 𝑗𝑠+1] is a prefix of 𝑊 occurring at
𝑗𝑠, and is a suffix of 𝐿𝐶𝑃 𝑟(𝑊 ,𝑋[0 . . 𝑗𝑠+1]) − 1.

= 𝓁
3

as required.
Any cyclic shift of 𝑊 must contain 𝑌 as a factor.
We first find the occurrences of 𝑌 in 𝑋[𝑖 − 𝓁 . . 𝑖 + 2𝓁 − 1]. By

Lemma 3, these occurrences can be found in (1) time by computing
𝑜𝑐𝑐(𝑌 ,𝑋[𝑖′ . . 𝑖′ + 2|𝑌 |]) for 𝑖′ ∈ {𝑖−𝓁+ℎ|𝑌 | ∣ ℎ = 0,1,2,… ,⌊3𝓁∕|𝑌 |⌋}.
Since 3𝓁∕|𝑌 | < 9 we have at most 9 arithmetic progressions with period
𝑞 (by Lemma 8) plus up to 18 standalone occurrences (i.e., occurrences
which are not part of an arithmetic progression).

For each standalone occurrence starting at position 𝑗 we can simply
run 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋,0, 𝑗) separately. Processing of the arith-
metic progressions is a little more complex, however. To see how to
do it efficiently, we first prove a crucial claim.

For an arithmetic progression (𝑗1, 𝑞,𝑚) and 1≤ 𝑠 ≤𝑚, let 𝑋[𝛼𝑠 . . 𝛽𝑠] =
𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋,0, 𝑗𝑠). We claim that the following inequal-
ities hold: 𝛽𝑠 ≤ 𝛽𝑠+1 and 𝛼𝑠 ≤ 𝛼𝑠+1. The former inequality 𝛽𝑠 = 𝑗𝑠 +
𝑙𝑐𝑝(𝑊 ,𝑋[𝑗𝑠 . . 𝑛− 1]) − 1 ≤ 𝑗𝑠 + 𝑙𝑐𝑝(𝑊 [0 . . 𝑞 − 1]𝑊 ,𝑋[𝑗𝑠 . . 𝑛− 1]) − 1 =
𝑗𝑠 + 𝑞 + 𝑙𝑐𝑝(𝑊 ,𝑋[𝑗𝑠+1 . . 𝑛 − 1]) − 1 = 𝛽𝑠+1 is simple to see as 𝑊 is a
prefix of 𝑊 [0 . . 𝑞 −1]𝑊 . For the latter inequality 𝛼𝑠 ≤ 𝛼𝑠+1, notice that
if |𝑊 | is a multiple of 𝑞, then we can apply a proof symmetric to the
one for 𝛽 ’s. Otherwise 𝛼𝑠+1 < 𝛼𝑠 ≤ 𝑗𝑠 for 𝑠 ≥ 1 would imply a non-trivial
border of 𝑊 of length 𝑞 (see Fig. 5), which in turn would imply that |𝑊 |− 𝑞 is a period of 𝑊 . By Lemma 2, we have 𝑔𝑐𝑑(𝑞, |𝑊 |− 𝑞) < 𝑞 is
a period of 𝑊 , which is a contradiction. This completes the proof of the
claim.

From the claim, it follows that the region obtained for this sequence
is 𝑋[𝛼1 . . 𝛽𝑚], and only two calls to 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟 are needed. □

In conclusion, as factors 𝑋[𝑘𝓁 . . (𝑘+1)𝓁−1] for 𝑘 ∈ [0,⌊ 𝑛
𝓁
⌋−1] and

𝑋[𝑛− 𝓁 . . 𝑛− 1] contain all positions of 𝑋, Lemma 9 has the following
corollary.

Corollary 1. After an (𝑛)-time preprocessing of the string 𝑋[0 . . 𝑛−1],
for any highly-periodic factor 𝑊 [0 . .𝓁−1], we can compute the regions
in 𝑋 which are cyclically covered by 𝑊 in (𝑛∕𝓁) time.

3.3. Finding regions in 𝑋 that are cyclically covered by a
non-highly-periodic factor 𝑊

The next lemma states that factors of a string 𝑋 that are not highly-
periodic do not occur frequently in 𝑋.

Lemma 10. Let 𝑋 be a string of length 𝑛 and 𝑊 a length-𝓁 non-highly-

periodic factor of 𝑋. Then 𝑊 has (𝑛∕𝓁) occurrences in 𝑋.

Proof. By the definition of highly-periodic, all periods of 𝑊 have to be
greater than 𝓁∕4. Then any two occurrences of 𝑊 in 𝑋 are at distance
greater than 𝓁∕4, so 𝑊 must have fewer than 𝑛∕𝓁 occurrences in 𝑋. □

Let 𝑊 be a factor of 𝑋 and let 𝑊 ′ be a factor of 𝑊 . If a cyclic shift
of 𝑊 contains 𝑊 ′, we call it a 𝑊 ′-containing cyclic shift of 𝑊 .

Consider 𝑊 [0 . .𝓁 − 1] = 𝑊𝑙𝑊𝑟 where |𝑊𝑙| = ⌊𝓁∕2⌋. Lemma 11
shows how to find all regions in 𝑋 covered by cyclic shifts of 𝑊 .

Information Processing Letters 191 (2026) 106594

5

R. Grossi, C.S. Iliopoulos, J. Jansson et al.

Lemma 11. Consider 𝑊 [0 . .𝓁 − 1] = 𝑊𝑙𝑊𝑟 where |𝑊𝑙| = ⌊𝓁∕2⌋. For a
string 𝑋, let 𝐴 be the set of all regions in 𝑋 covered by 𝑊𝑙-containing cyclic
shifts of 𝑊𝑙𝑊𝑟, and let 𝐵 be the set of all regions in 𝑋 covered by 𝑊𝑟-

containing cyclic shifts of 𝑊𝑟𝑊𝑙 . Then 𝐴 ∪𝐵 forms the set of all regions in
𝑋 that are cyclically covered by 𝑊 .

Proof. Every cyclic shift of 𝑊 must contain either 𝑊𝑙 or 𝑊𝑟. Hence,
the lemma follows. □

Next, we describe an algorithm that finds all regions in 𝑋 covered
by 𝑊𝑙-containing cyclic shifts of 𝑊𝑙𝑊𝑟. All regions in 𝑋 covered by
𝑊𝑟-containing cyclic shifts of 𝑊𝑟𝑊𝑙 can be found by an analogous al-
gorithm.

To find all regions in 𝑋 covered by 𝑊𝑙-containing cyclic shifts of
𝑊𝑙𝑊𝑟, we consider two cases: 𝑊𝑙 is highly-periodic or not.

If 𝑊𝑙 is not highly-periodic then it has (𝑛∕𝓁) occurrences in
𝑋[0 . . 𝑛 − 1] by Lemma 10. Thus, we can find all these occurrences
in (𝑛∕𝓁) time given the IPM data structure from Lemma 4. Then, by
calling the function 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟 from Section 3.1, the regions in
𝑋 covered by these 𝑊𝑙-containing cyclic shifts of 𝑊 can be found in
(𝑛∕𝓁) time.

For a highly periodic 𝑊𝑙 , let 𝑞𝑙 ≤ 𝓁∕8 be its shortest period and let
𝑑𝑙 be the length of the longest prefix of 𝑊 which is 𝑞𝑙-periodic. Let
us also denote 𝑊𝑙′ = 𝑊 [0 . . 𝑑𝑙 − 1] and 𝑊𝑟′ = 𝑊 [𝑑𝑙 . .𝓁 − 1]. Notice
that if 𝑊𝑟′𝑊𝑙′ is highly-periodic, we can simply reduce our problem
to the case with a highly-periodic 𝑊 as any cyclic shift of 𝑊 is also
a cyclic shift of 𝑊𝑟′𝑊𝑙′ . Furthermore, a 𝑊𝑙-containing cyclic shift of
𝑊 (𝑑-cyclic shift of 𝑊 for 𝑑 = 0 or 𝑑 ≥ |𝑊𝑙|) is always a 𝑊𝑙′𝑊 [𝑑𝑙]-
containing factor of 𝑊 (for 𝑑 = 0 or 𝑑 > 𝑑𝑙) or a 𝑊𝑟′𝑊𝑙-containing
factor of 𝑊 (for |𝑊𝑙| ≤ 𝑑 ≤ 𝑑𝑙).

It remains to show that for a highly-periodic 𝑊𝑙 , when 𝑊 and
𝑊𝑟′𝑊𝑙′ are not highly-periodic then 𝑊𝑙′𝑊 [𝑑𝑙] and 𝑊𝑟′𝑊𝑙 are not
highly-periodic as well. The next two lemmas handle this last case.

Lemma 12. 𝑊𝑙′𝑊 [𝑑𝑙] is non-periodic (hence also non-highly-periodic).

Proof. For the purpose of obtaining a contradiction, suppose that
𝑊 [0 . . 𝑑𝑙] =𝑊𝑙′𝑊 [𝑑𝑙] has period 𝑞′ ≤ (𝑑𝑙 + 1)∕2. This means that 𝑊𝑙′

has both periods 𝑞𝑙 and 𝑞′. Since 𝑞𝑙 +𝑞′ ≤ 𝓁∕8+(𝑑𝑙 +1)∕2 ≤ 𝑑𝑙 , we have
that 𝑔𝑐𝑑(𝑞𝑙, 𝑞′) is also a period of 𝑊𝑙′ by Lemma 2.

We observe that 𝑞′ cannot be a multiple of 𝑞𝑙 as in this case 𝑊 [𝑑𝑙] =
𝑊 [𝑑𝑙 − 𝑞′] =𝑊 [𝑑𝑙 − 𝑞𝑙], which contradicts the definition of 𝑑𝑙 . Hence
we get 𝑔𝑐𝑑(𝑞𝑙, 𝑞′) < 𝑞𝑙 , which in turn contradicts the fact that 𝑞𝑙 is the
shortest period of 𝑊𝑙′ . □

Lemma 13. 𝑊𝑟′𝑊𝑙 is not highly-periodic.

Proof. Suppose, on the contrary, that 𝑊𝑟′𝑊𝑙 has period 𝑞′ ≤ |𝑊𝑟′𝑊𝑙|∕4
≤ 𝓁∕4. This means that 𝑊𝑙 has both periods 𝑞𝑙 and 𝑞′. Since 𝑞𝑙+𝑞′ ≤ 𝓁∕2
by Lemma 2 𝑔𝑐𝑑(𝑞𝑙, 𝑞′) is also a period of 𝑊𝑙 .

If 𝑞′ is a multiple of 𝑞𝑙 , then 𝑊𝑟′𝑊𝑙′ is also 𝑞′ ≤ 𝓁∕4 periodic contrary
to the assumptions, otherwise 𝑔𝑐𝑑(𝑞𝑙, 𝑞′) < 𝑞𝑙 which contradicts that 𝑞𝑙
is the shortest period of 𝑊𝑙 . □

3.4. The cyclic covers problem

Now, we are ready to define a function 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑙,𝑊𝑟,𝑋,
𝓁) that returns all regions in 𝑋 that are covered by 𝑊𝑙-containing cyclic
shifts of a length 𝓁 factor 𝑊 . This function is described in Algorithm 1.

Lemma 14 summarizes the time complexity of 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑙,
𝑊𝑟,𝑋,𝓁).

Lemma 14. Given the 𝑙𝑐𝑝, IPM and 2-Period data structures for 𝑋, we can
compute 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑙,𝑊𝑟,𝑋,𝓁) (and 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑟,
𝑊𝑙,𝑋,𝓁)) in (𝑛∕𝓁) time.

Algorithm 1 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑙,𝑊𝑟,𝑋,𝓁).
Output: Regions in 𝑋 covered by 𝑊𝑙-containing cyclic shifts of 𝑊

1: Calculate shortest period 𝑞𝑙 of 𝑊𝑙

2: 𝑊𝑙′ =𝑊 [0 . . 𝑑𝑙 − 1] and 𝑊𝑟′ =𝑊 [𝑑𝑙 . .𝓁 − 1].
3: If 𝑊 =𝑊𝑙𝑊𝑟 or 𝑊𝑟′𝑊𝑙′ is of period ≤ 𝓁∕4, apply Corollary 1 to find the

regions of 𝑋 covered by 𝑊 and return the answer.
4: 𝐴𝑛𝑠 = ∅
5: if 𝑊𝑙 is not highly-periodic then

6: Find 𝑚𝑙 = 𝑗1,… , 𝑗𝑚 such that 𝑋[𝑗𝑠 . . 𝑗𝑠 + |𝑊𝑙|− 1] =𝑊𝑙

7: For each 𝑗𝑠, 𝐴𝑛𝑠=𝐴𝑛𝑠 ∪ 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋,0, 𝑗𝑠)
8: else

9: Find 𝑚𝑙 = 𝑗1,… , 𝑗𝑚 such that 𝑋[𝑗𝑠 . . 𝑗𝑠 + 𝑑𝑙] =𝑊𝑙′𝑊 [𝑑𝑙]
10: For each 𝑗𝑠, 𝐴𝑛𝑠=𝐴𝑛𝑠 ∪ 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋,0, 𝑗𝑠)
11: Find 𝑚𝑙 = 𝑗1,… , 𝑗𝑚 such that 𝑋[𝑗𝑠 . . 𝑗𝑠 + |𝑊𝑟′𝑊𝑙|− 1] =𝑊𝑟′𝑊𝑙

12: For each 𝑗𝑠, 𝐴𝑛𝑠=𝐴𝑛𝑠 ∪ 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋,𝑑𝑙, 𝑗𝑠)
13: end if

14: Return 𝐴𝑛𝑠

Proof. Let us first assume that we know an occurrence in 𝑋 of any given
string. To check whether 𝑊 and 𝑊𝑙 are (highly-)periodic, it is enough
to query the 2-Period data structure from Lemma 5. Later, with the use
of a single 𝑙𝑐𝑝 query (𝑙𝑐𝑝(𝑋,𝑋[𝑞𝑙 . . 𝑛−1]) in this case), one can compute
𝑑𝑙 . 𝑊𝑟′𝑊𝑙′ can only be highly periodic if 𝑊𝑙 is periodic with the same
period, hence a check of whether it is highly periodic only requires a
comparison between parts of 𝑊𝑙 and 𝑊𝑟 which takes (1) time in total.
After determining which method to use, the algorithm performs (𝑛∕𝓁)
calls to 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟, which results in a total time complexity of
(𝑛∕𝓁).

In general, we do not know the occurrences of some of the strings
(for example 𝑊𝑟𝑊𝑙), or even if they occur in 𝑋 at all. To address this
issue and be able to use the internal data structures we make some ad-
justments.

For the cyclic shifts of 𝑊 , namely, 𝑊𝑟𝑊𝑙,𝑊𝑟′𝑊𝑙′ and its counter-
part used by 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑟,𝑊𝑙,𝑋,𝓁), we only need to check
whether they are highly-periodic and employ the 𝑙𝑐𝑝 (or 𝑙𝑐𝑝𝑟) with an-
other string. To address the first point, it is sufficient to check whether
their longest factor which appears in 𝑊 is periodic, and whether the pe-
riod can be extended to the whole string (with 𝑙𝑐𝑝 queries). This factor
must be of length at least 𝓁∕2; hence, it must be periodic if the whole
string is highly-periodic. Its shortest period is the only candidate for the
shortest period (of length at most 𝓁∕4) of the whole string. As for the
second point, 𝑙𝑐𝑝, this is only used by Lemma 7, where this problem has
already been solved.

Another string which does not need to appear in 𝑋 is 𝑊𝑟′𝑊𝑙 (sym-
metrically (𝑊𝑟𝑊𝑙)[0 . . 𝑑𝑟] used by 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑟,𝑊𝑙,𝑋,𝓁)). We
make use of this string only if 𝑊𝑙 is highly periodic. Using the 𝑙𝑐𝑝𝑟 query,
we can find how far this period extends to the left in 𝑊𝑟′𝑊𝑙 . Now, in-
stead of looking for the whole 𝑊𝑟′𝑊𝑙 in the parts of 𝑋, we simply look
for 𝑊𝑙 . If a whole arithmetic sequence (𝑗1, 𝑞𝑙,𝑚) of occurrences is found,
then we know that only one of those occurrences can be extended to the
whole 𝑊𝑟′𝑊𝑙 (with 𝑗𝑘+1, where 𝑘 is equal to the number of periods of
𝑊𝑙 at the end of 𝑊𝑟′). This way, we can process the whole 𝑋 in (𝑛∕𝓁)
time. □

We now present our main result in Theorem 1.

Theorem 1 (Cyclic covers problem). Given a string 𝑋 of length 𝑛 over an
integer alphabet, we can find all integers 𝓁 > 0 such that the prefix 𝑋[0 . .𝓁−
1] is a cyclic cover of 𝑋 in (𝑛 log𝑛) total time.

Proof. We will now describe how we extend the algorithms
𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑙,𝑊𝑟,𝑋,𝓁) and 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑟,𝑊𝑙,𝑋,𝓁) to
verify if every position in 𝑋 is covered by the regions returned in (𝑛∕𝓁)
time.

In the preprocessing step, we construct the Internal Data Struc-
ture answering 𝑙𝑐𝑝, IPM, and 2-Period queries in (𝑛) time (Lem-

Information Processing Letters 191 (2026) 106594

6

R. Grossi, C.S. Iliopoulos, J. Jansson et al.

mas 3 and 5). For any fixed 𝓁, let 𝑊𝑙 = 𝑋[0 . . ⌊𝓁∕2⌋ − 1] and 𝑊𝑟 =
𝑋[⌊𝓁∕2⌋ . .𝓁 − 1].

For a given 𝓁, we will identify occurrences of 𝑊𝑙-containing cyclic
shifts of 𝑊𝑙𝑊𝑟 and 𝑊𝑟-containing cyclic shifts of 𝑊𝑟𝑊𝑙 (Lemma 11).
We have the following three cases: If 𝑊 is highly periodic, if 𝑊𝑙 is
highly periodic and if 𝑊𝑙 is not highly periodic. This only requires a
comparison between parts of 𝑊𝑙 and 𝑊𝑟 which takes (1) time in total.
If 𝑊 is highly periodic, then we use Corollary 1 to identify occurrences
of 𝑊 in (𝑛∕𝓁) time. Else, if 𝑊𝑙 is not highly periodic, then we identify
all occurrences of 𝑋[𝑗𝑠 . . 𝑗𝑠 + |𝑊𝑙|− 1] =𝑊𝑙 and store it in an array 𝐴𝑙

using (𝑛∕𝓁) time (Lemma 10).
Otherwise if 𝑊𝑙 is highly periodic, we compute its shortest period,

𝑞𝑙 and the length of the longest prefix of 𝑊 which is 𝑞𝑙-periodic (𝑑𝑙). If
𝑊𝑟′𝑊𝑙′ (= 𝑊 [𝑑𝑙 . .𝓁 − 1]𝑊 [0 . . 𝑑𝑙 − 1]) is highly periodic, then we cal-
culate occurrences in (𝑛∕𝓁) time using Corollary 1.

Otherwise if 𝑊𝑟′𝑊𝑙′ is not highly periodic, then we identify all oc-
currences of 𝑋[𝑗𝑠 . . 𝑗𝑠 + 𝑑𝑙] =𝑊𝑙′𝑊 [𝑑𝑙] (Lemma 12) and store it in an
array 𝐴𝑙1. We also identify all occurrences of 𝑋[𝑗𝑠 . . 𝑗𝑠 + |𝑊𝑟′𝑊𝑙|−1] =
𝑊𝑟′𝑊𝑙 (Lemmas 13 and 14) and store it in an array 𝐴𝑙2. As each sub-
string is not highly periodic, there are at most 𝑛∕𝓁 occurrences in 𝑋
and we can use Lemma 3 to identify all occurrences in (𝑛∕𝓁) time.
The same method is repeated to identify 𝑊𝑟-containing cyclic shifts and
also takes (𝑛∕𝓁) time.

For each of the arrays 𝐴𝑙 (if 𝑊𝑙 is not highly periodic) or 𝐴𝑙1 and 𝐴𝑙2
(if 𝑊𝑙 is highly periodic), and similarly 𝐴𝑟1

and 𝐴𝑟2 or 𝐴𝑟 (depending on
if 𝑊𝑟 is highly periodic or not), we initialize variables first𝑙 , first𝑙1, first𝑙2,
first𝑟1, first𝑟2 and first𝑟, and set them to the first element of each array, in
(1) time. Each of these variables is used to keep track of the 𝑊𝑙 or 𝑊𝑟-
containing regions we have computed. Next, we compare first𝑙 (or first𝑙1
and first𝑙2) with first𝑟 (or first𝑟1 and first𝑟2), to identify the next occurrence
of 𝑊𝑙 or 𝑊𝑟 in 𝑋, and perform an instance of 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(). The
value of first𝑙∕first𝑙1∕first𝑙2∕first𝑟∕first𝑟1∕first𝑟2 is updated to next position
in its array. We must also check that the leftmost position of the region
returned by 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟() is left to the rightmost position of the
string that has been covered so far, which takes (1) time to check. If
at any point, we find a region that does not overlap with the covered
region, then we return that 𝑋 does not have a cyclic cover of length 𝓁.
This part of checking and traversing arrays is repeated until we have ex-
amined and performed 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟() for all occurrences in each
array. It will take (𝑛∕𝓁) time to traverse each array, as there are at
most 4 arrays to traverse, where each array contains at most 𝑛∕𝓁 occur-
rences by Lemmas 12 and 13. It will also take (𝑛∕𝓁) time to compute
𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟() for all occurrences in each array.

The total time to test all 𝓁 = 1,… , 𝑛 is upper-bounded by (
∑𝑛

𝓁=1
𝑛
𝓁
)

= (𝑛 log𝑛), using the asymptotic formula for the 𝑛th harmonic num-
ber. □

4. Concluding remarks

In this article, we introduced the problem of finding all the distinct
cyclic covers of a string of length 𝑛 and gave an algorithm for solving it
in (𝑛 log𝑛) time (Theorem 1). We conclude the article by defining two
other closely related problems that can be solved even more efficiently.

4.1. Cyclic borders

A prefix of the form 𝑋[0 . .𝓁 − 1] of a string 𝑋 is a cyclic border of
𝑋 if it is a cyclic shift of the suffix 𝑋[𝑛 − 𝓁 . . 𝑛 − 1]. See Fig. 6 for an
illustration.

The cyclic borders problem is to output the lengths of all prefixes of an
input string 𝑋 that are cyclic borders of 𝑋. The cyclic borders problem is
solvable in (𝑛) time, where 𝑛 = |𝑋|, by using Lemma 4: First construct
the IPM data structure for 𝑋 in (𝑛) time, and then just check for each
𝓁 = 1,… , 𝑛 in (1) time if the prefix 𝑋[0 . .𝓁 − 1] is a cyclic shift of the
corresponding suffix 𝑋[𝑛− 𝓁 . . 𝑛− 1].

a
0

b
1

b
2

a
3

b
4

b

5

b
6

b

7

a
8

b
9

a
10

b
11

Fig. 6. The string 𝑋 = 𝚊𝚋𝚋𝚊𝚋𝚋𝚋𝚋𝚊𝚋𝚊𝚋 has cyclic borders of lengths 2, 3, 5,
and 12 because 𝑋[10 . .11] = 𝚊𝚋 = 𝑋[0 . .1], 𝑋[9 . .11] = 𝚋𝚊𝚋 is a cyclic shift
of 𝑋[0 . .2] = 𝚊𝚋𝚋, 𝑋[7 . .11] = 𝚋𝚊𝚋𝚊𝚋 is a cyclic shift of 𝑋[0 . .4] = 𝚊𝚋𝚋𝚊𝚋, and
the whole string 𝑋 is a cyclic border of itself.

a
0

b
1

b
2

b
3

a
4

b

5

b
6

b

7

a
8

b
9

a
10

b
11

Fig. 7. The string 𝑋 = 𝚊𝚋𝚋𝚋𝚊𝚋𝚋𝚋𝚊𝚋𝚊𝚋 has cyclic periods 3, 6, and 12. Here, 𝑋
is 3-cyclic periodic because it can be divided into four consecutive substrings
that are cyclic shifts of the factor 𝚊𝚋𝚋. 𝑋 is also 6-cyclic periodic since it can be
broken into two consecutive substrings that are both circular factors of 𝚊𝚋𝚋𝚋𝚊𝚋,
and trivially 12-cyclic periodic.

Theorem 2 (Cyclic borders problem). Given a string 𝑋 of length 𝑛 over an
integer alphabet, we can find all integers 𝓁 > 0 such that the prefix 𝑋[0 . .𝓁−
1] is a cyclic border of 𝑋 in (𝑛) total time.

4.2. Cyclic factorization

A cyclic factorization of a string 𝑋 is a partition of 𝑋 into factors of
equal length such that each resulting factor is a cyclic shift of all the
others. If there exists a cyclic factorization of 𝑋 in which the factors
have length 𝓁 then 𝓁 is called a cyclic period of 𝑋 and 𝑋 is called 𝓁-

cyclic periodic. For an example, see Fig. 7.
The cyclic factorization problem takes as input a string 𝑋 and asks for

all of the cyclic periods of 𝑋. It can be solved as follows. Construct the
IPM data structure for 𝑋 in (𝑛) time in a preprocessing step, and then,
for every 𝓁 that divides 𝑛 (written as 𝓁 | 𝑛) if all of the 𝑛

𝓁
consecutive

nonoverlapping length-𝓁 factors of 𝑋 are cyclic shifts of 𝑋[0 . .𝓁 − 1],
include 𝓁 in the output. By Lemma 4, the preprocessing takes (𝑛) time,
after which checking if any pair of factors are cyclic shifts of each other
takes (1) time. In total, the time complexity is (𝑛) +(

∑
𝓁 | 𝑛 𝑛

𝓁
⋅ 1) =

(𝑛 log log𝑛), due to the bound
∑

𝓁 | 𝑛 𝑛
𝓁
=(𝑛 log log𝑛) from [15, Equa-

tion (13)].

Theorem 3 (Cyclic factorization problem). Given a string 𝑋 of length 𝑛 over
an integer alphabet, we can find all integers 𝓁 > 0 such that 𝑋 is 𝓁-cyclic
periodic in (𝑛 log log𝑛) total time.

CRediT authorship contribution statement

Roberto Grossi: Writing – review & editing, Writing – original draft,
Supervision, Formal analysis, Conceptualization. Costas S. Iliopoulos:
Writing – review & editing, Writing – original draft, Supervision, For-
mal analysis, Conceptualization. Jesper Jansson: Writing – review &
editing, Writing – original draft, Supervision, Formal analysis, Concep-
tualization. Zara Lim: Writing – review & editing, Writing – original
draft, Formal analysis. Wing-Kin Sung: Writing – review & editing,
Writing – original draft, Supervision, Formal analysis, Conceptualiza-
tion. Wiktor Zuba: Writing – review & editing, Writing – original draft,
Supervision, Formal analysis.

Addendum

After the completion of the work in this article, a faster solution
to the cyclic covers problem was discovered by Iliopoulos et al. [22].
They developed a new, non-trivial data structure for efficiently answer-
ing internal circular pattern matching queries which generalizes the IPM

Information Processing Letters 191 (2026) 106594

7

R. Grossi, C.S. Iliopoulos, J. Jansson et al.

data structure from [27] and that can be used to solve the cyclic cov-
ers problem in optimal (𝑛) time. Although their algorithm requires
strengthened versions of our Lemmas 6, 7, and 14, its fundamental strat-
egy is quite different from the one used here, as it relies on computing
families of important short substrings and applying the algorithm re-
cursively. In addition, Iliopoulos et al. [22] gave a faster algorithm for
the cyclic factorization problem that runs in (𝑛) time. Their refined
method still checks if 𝓁 is a cyclic period for each 𝓁 that divides 𝑛 like
the method in Theorem 3 above, but it tests candidate covers of short
lengths more efficiently via deterministic substring hashing and count-
ing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] M. Alzamel, A. Conte, S. Denzumi, R. Grossi, C. Iliopoulos, K. Kurita, K. Wasa, Find-
ing the anticover of a string, in: 31st Annual Symposium on Combinatorial Pattern
Matching (CPM 2020), vol. 161, 2020.

[2] M. Alzamel, A. Conte, D. Greco, V. Guerrini, C. Iliopoulos, N. Pisanti, N. Prezza,
G. Punzi, G. Rosone, Online algorithms on antipowers and antiperiods, in: Interna-
tional Symposium on String Processing and Information Retrieval, Springer, 2019,
pp. 175–188.

[3] A. Amir, A. Levy, R. Lubin, E. Porat, Approximate cover of strings, Theor. Comput.
Sci. 793 (2019) 59–69, https://doi.org/10.1016/j.tcs.2019.05.020.

[4] A. Apostolico, M. Crochemore, Fast parallel Lyndon factorization with applications,
Math. Syst. Theory 28 (2) (1995) 89–108.

[5] A. Apostolico, A. Ehrenfeucht, Efficient detection of quasiperiodicities in strings,
Theor. Comput. Sci. 119 (2) (1993) 247–265.

[6] A. Apostolico, M. Farach, C.S. Iliopoulos, Optimal superprimitivity testing for strings,
Inf. Process. Lett. 39 (1) (1991) 17–20.

[7] L.A. Ayad, C. Barton, S.P. Pissis, A faster and more accurate heuristic for cyclic edit
distance computation, Pattern Recognit. Lett. 88 (2017) 81–87.

[8] K.S. Booth, Lexicographically least circular substrings, Inf. Process. Lett. 10 (4–5)
(1980) 240–242.

[9] D. Breslauer, An on-line string superprimitivity test, Inf. Process. Lett. 44 (6) (1992)
345–347.

[10] D. Breslauer, Z. Galil, Real-time streaming string-matching, ACM Trans. Algorithms
10 (4) (August 2014), https://doi.org/10.1145/2635814.

[11] A. Černỳ, Lyndon factorization of generalized words of Thue, Discret. Math. Theor.
Comput. Sci. 5 (2002) 17–46.

[12] A. Conte, R. Grossi, A. Marino, Large-scale clique cover of real-world networks, Inf.
Comput. 270 (2020) 104464.

[13] M. Crochemore, C.S. Iliopoulos, J. Radoszewski, W. Rytter, J. Straszyński, T. Waleń,
W. Zuba, Shortest covers of all cyclic shifts of a string, Theor. Comput. Sci. 866
(2021) 70–81.

[14] M. Crochemore, W. Rytter, Jewels of Stringology: Text Algorithms, World Scientific,
Singapore, 2002.

[15] R.L. Duncan, Some estimates for 𝜎(𝑛), Am. Math. Mon. 74 (6) (1967) 713–715.

[16] K.A. Dunne, R.R. Chaudhuri, A.E. Rossiter, I. Beriotto, D.F. Browning, D. Squire, A.F.
Cunningham, J.A. Cole, N. Loman, I.R. Henderson, Sequencing a piece of history:
complete genome sequence of the original Escherichia coli strain, Microb. Genom.
3 (3) (2017) mgen000106.

[17] J.P. Duval, Factorizing words over an ordered alphabet, J. Algorithms 4 (4) (1983)
363–381.

[18] N.J. Fine, H.S. Wilf, Uniqueness theorems for periodic functions, Proc. Am. Math.
Soc. 16 (1) (1965) 109–114, https://doi.org/10.2307/2034009.

[19] H. Fredricksen, J. Maiorana, Necklaces of beads in 𝑘 colors and 𝑘-ary de Bruijn
sequences, Discrete Math. 23 (3) (1978) 207–210.

[20] Z. Galil, Optimal parallel algorithms for string matching, Inf. Control 67 (1–3) (1985)
144–157, https://doi.org/10.1016/S0019-9958(85)80031-0.

[21] D. Gusfield, Algorithms on strings, trees, and sequences: computer science and com-
putational biology, ACM SIGACT News 28 (4) (1997) 41–60.

[22] C. Iliopoulos, T. Kociumaka, J. Radoszewski, W. Rytter, T. Waleń, W. Zuba, Linear-
time computation of cyclic roots and cyclic covers of a string, in: 34th Annual
Symposium on Combinatorial Pattern Matching (CPM 2023), in: Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 259, 2023, 15.

[23] J. Kärkkäinen, P. Sanders, Simple linear work suffix array construction, in: J.C.M.
Baeten, J.K. Lenstra, J. Parrow, G.J. Woeginger (Eds.), Automata, Languages and
Programming, 30th International Colloquium, ICALP 2003, Proceedings, Eindhoven,
the Netherlands, June 30 – July 4, 2003, in: Lecture Notes in Computer Science,
vol. 2719, Springer, 2003, pp. 943–955.

[24] T. Kociumaka, Efficient data structures for internal queries in texts, Ph.D. thesis, Uni-
versity of Warsaw, Poland, 2018, https://www.mimuw.edu.pl/~kociumaka/files/
phd.pdf.

[25] T. Kociumaka, M. Kubica, J. Radoszewski, W. Rytter, T. Waleń, A linear time algo-
rithm for seeds computation, in: Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2012), SIAM, 2012, pp. 1095–1112.

[26] T. Kociumaka, S.P. Pissis, J. Radoszewski, W. Rytter, T. Walen, Fast algorithm for
partial covers in words, Algorithmica 73 (1) (2015) 217–233, https://doi.org/10.
1007/s00453-014-9915-3.

[27] T. Kociumaka, J. Radoszewski, W. Rytter, T. Waleń, Internal pattern matching
queries in a text and applications, in: Proceedings of the Twenty-Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2015), SIAM, 2015, pp. 532–551.

[28] Y. Li, W.F. Smyth, Computing the cover array in linear time, Algorithmica 32 (1)
(2002) 95–106.

[29] M. Lothaire, Applied Combinatorics on Words, Encyclopedia of Mathematics and Its
Applications, Cambridge University Press, 2005.

[30] M. Lothaire, Algebraic Combinatorics on Words, vol. 90, Cambridge University Press,
New York, 2002.

[31] G. Melançon, Lyndon factorization of infinite words, in: Annual Symposium on The-
oretical Aspects of Computer Science, Springer, 1996, pp. 147–154.

[32] G. Melançon, Lyndon factorization of Sturmian words, Discrete Math. 210 (1–3)
(2000) 137–149.

[33] M. Miyazaki, A. Shinohara, M. Takeda, An improved pattern matching algorithm for
strings in terms of straight-line programs, in: Annual Symposium on Combinatorial
Pattern Matching, Springer, 1997, pp. 1–11.

[34] D. Moore, W.F. Smyth, An optimal algorithm to compute all the covers of a string,
Inf. Process. Lett. 50 (5) (1994) 239–246.

[35] R.Z. Norman, M.O. Rabin, An algorithm for a minimum cover of a graph, Proc. Am.
Math. Soc. 10 (2) (1959) 315–319.

[36] V. Palazón-González, A. Marzal, On the dynamic time warping of cyclic sequences
for shape retrieval, Image Vis. Comput. 30 (12) (2012) 978–990.

[37] Y. Shiloach, Fast canonization of circular strings, J. Algorithms 2 (2) (1981)
107–121.

[38] M.J. Tisza, D.V. Pastrana, N.L. Welch, B. Stewart, A. Peretti, G.J. Starrett, Y.Y.S.
Pang, S.R. Krishnamurthy, P.A. Pesavento, D.H. McDermott, et al., Discovery of sev-
eral thousand highly diverse circular DNA viruses, eLife 9 (2020).

[39] E.K. Wagner, M.J. Hewlett, D.C. Bloom, D. Camerini, Basic Virology, vol. 3, Blackwell
Science Malden, MA, 1999.

[40] D.J. Wurpel, S.A. Beatson, M. Totsika, N.K. Petty, M.A. Schembri, Chaperone-usher
fimbriae of Escherichia coli, PLoS ONE 8 (1) (2013) e52835.

http://refhub.elsevier.com/S0020-0190(25)00038-9/bib97C3BA59A50A9D8C1C36DE50F2D4E6EDs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib97C3BA59A50A9D8C1C36DE50F2D4E6EDs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib97C3BA59A50A9D8C1C36DE50F2D4E6EDs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib43FC29C67BC03E3E96E56A5FFDC45F44s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib43FC29C67BC03E3E96E56A5FFDC45F44s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib43FC29C67BC03E3E96E56A5FFDC45F44s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib43FC29C67BC03E3E96E56A5FFDC45F44s1
https://doi.org/10.1016/j.tcs.2019.05.020
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibEF3B8916108DB39353B4AC2941FEC849s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibEF3B8916108DB39353B4AC2941FEC849s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib1E862EA0E9BF5EDDC3581A97A2259EB1s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib1E862EA0E9BF5EDDC3581A97A2259EB1s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibA35633E6A39439B51A38278334AFFEA5s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibA35633E6A39439B51A38278334AFFEA5s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib03DDD1D51C232715D1A58D7D36738735s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib03DDD1D51C232715D1A58D7D36738735s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib189AF1427B999997C2684E1340E8679Bs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib189AF1427B999997C2684E1340E8679Bs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib42BC8490D1E3FF23391422E0FD8325BFs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib42BC8490D1E3FF23391422E0FD8325BFs1
https://doi.org/10.1145/2635814
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib59B7477870F934B7CED1FCDB15993362s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib59B7477870F934B7CED1FCDB15993362s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib20C09714CF6E94FEB806888000E53294s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib20C09714CF6E94FEB806888000E53294s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib53C881BA75262E25447FCC05D631BDA8s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib53C881BA75262E25447FCC05D631BDA8s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib53C881BA75262E25447FCC05D631BDA8s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibFB28E72474A26FA0EDFABA27E54A221Bs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibFB28E72474A26FA0EDFABA27E54A221Bs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib4E321438558549248E9FFC0195B8F4EFs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib89151B534B2B7AE9A48951493613A8ACs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib89151B534B2B7AE9A48951493613A8ACs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib89151B534B2B7AE9A48951493613A8ACs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib89151B534B2B7AE9A48951493613A8ACs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibBBD4D88C098B65F226305370A198392Bs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibBBD4D88C098B65F226305370A198392Bs1
https://doi.org/10.2307/2034009
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib0B3283F876C4D30D5CDB17819473C316s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib0B3283F876C4D30D5CDB17819473C316s1
https://doi.org/10.1016/S0019-9958(85)80031-0
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib814774DA2EF6AD6A5D66A21F22D2C6C9s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib814774DA2EF6AD6A5D66A21F22D2C6C9s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib1B362D8C311F86AECE4FB1EDE5F01FACs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib1B362D8C311F86AECE4FB1EDE5F01FACs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib1B362D8C311F86AECE4FB1EDE5F01FACs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib1B362D8C311F86AECE4FB1EDE5F01FACs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib9494C9D63923144973DB43887D8E4E0Cs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib9494C9D63923144973DB43887D8E4E0Cs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib9494C9D63923144973DB43887D8E4E0Cs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib9494C9D63923144973DB43887D8E4E0Cs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib9494C9D63923144973DB43887D8E4E0Cs1
https://www.mimuw.edu.pl/~kociumaka/files/phd.pdf
https://www.mimuw.edu.pl/~kociumaka/files/phd.pdf
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib5CAE59C49B635A313144A26C0F1C660Es1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib5CAE59C49B635A313144A26C0F1C660Es1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib5CAE59C49B635A313144A26C0F1C660Es1
https://doi.org/10.1007/s00453-014-9915-3
https://doi.org/10.1007/s00453-014-9915-3
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib6F80FCF208753F52956746DB801FAAAEs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib6F80FCF208753F52956746DB801FAAAEs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib6F80FCF208753F52956746DB801FAAAEs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib397F2EDB1794AC5F73557BC925BE0E6As1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib397F2EDB1794AC5F73557BC925BE0E6As1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibFECE47A9DF5261D27A2488439D9C076Ds1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibFECE47A9DF5261D27A2488439D9C076Ds1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibFC01675750C58B1ABA38F449B0515903s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibFC01675750C58B1ABA38F449B0515903s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibC1448A3F425B460654EAB97DAA5B2CFBs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibC1448A3F425B460654EAB97DAA5B2CFBs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib1B2302C1FBC12854C4794DDDEDCF8C77s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib1B2302C1FBC12854C4794DDDEDCF8C77s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib07A3E5FCA6CDE3DEF7F8F9F5E7C75477s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib07A3E5FCA6CDE3DEF7F8F9F5E7C75477s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib07A3E5FCA6CDE3DEF7F8F9F5E7C75477s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib7BDFA9F7724FFCA3264A58EA1022418As1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib7BDFA9F7724FFCA3264A58EA1022418As1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibC4CB72F91D69510DB1555C18D70FFFECs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibC4CB72F91D69510DB1555C18D70FFFECs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib27A3A87448E469B507B0AE51C7CB1CECs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib27A3A87448E469B507B0AE51C7CB1CECs1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibAEC874676CCED503E51A31C30CA13827s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibAEC874676CCED503E51A31C30CA13827s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib943E9B033F08EA1BD6793C4184A7C0A9s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib943E9B033F08EA1BD6793C4184A7C0A9s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib943E9B033F08EA1BD6793C4184A7C0A9s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibF9664CC011D75484DAEAE0B8E08C182Es1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bibF9664CC011D75484DAEAE0B8E08C182Es1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib85B3FCAECE640D16E1C2A9A5E2F16991s1
http://refhub.elsevier.com/S0020-0190(25)00038-9/bib85B3FCAECE640D16E1C2A9A5E2F16991s1

	Finding the cyclic covers of a string
	1 Introduction
	1.1 Our contributions

	2 Preliminaries
	2.1 Basic definitions
	2.2 The IPM data structure
	2.3 A quadratic-time algorithm for the cyclic covers problem

	3 A faster algorithm for cyclic covers
	3.1 The function FindFixedCover(W,X,i,j)
	3.2 Finding regions in X that are cyclically covered by a highly-periodic factor W
	3.3 Finding regions in X that are cyclically covered by a non-highly-periodic factor W
	3.4 The cyclic covers problem

	4 Concluding remarks
	4.1 Cyclic borders
	4.2 Cyclic factorization

	CRediT authorship contribution statement
	Addendum
	Declaration of competing interest
	Data availability
	References

