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Abstract. The Network Construction problem, studied by Angluin
et al., Hodosa et al., and others, asks for a minimum-cost network satisfy-
ing a set of connectivity constraints which specify subsets of the vertices
in the network that have to form connected subgraphs. More formally,
given a set V of vertices, construction costs for all possible edges between
pairs of vertices from V , and a sequence S1, S2, . . . ⊆ V of connectivity
constraints, the objective is to find a set E of edges such that each Si

induces a connected subgraph of the graph (V, E) and the total cost of E
is minimized. First, we study the online version where every constraint
must be satisfied immediately after its arrival and edges that have already
been added can never be removed. We give an O(B2 log n)-competitive
and O((B + log r) log n)-competitive polynomial-time algorithms along
with an Ω(B)-competitive lower bound, where B is an upper bound on
the size of constraints, while r, n denote the number of constraints and
the number of vertices, respectively. In the cost-uniform case, we pro-
vide an Ω(

√
B)-competitive lower bound and an O(

√
n(log n + log r))-

competitive upper bound with high probability, when constraints are
unbounded. All our randomized competitive bounds are against an adap-
tive adversary, except for the last one which is against an oblivious adver-
sary. Next, we discuss a hybrid approximation method for the (offline)
Network Construction problem combining an approximation algorithm of
Hosoda et al. with one of Angluin et al. and an application of the hybrid
method to bioinformatics. Finally, we consider a natural strengthening
of the connectivity requirements in the Network Construction problem,
where each constraint is supposed to induce a subgraph (of the con-
structed graph) of diameter at most d. Among other things, we provide
a polynomial-time (

(
B
2

) − B + 2)
(
B
2

)
-approximation algorithm for the

Network Construction problem with the d-diameter requirements.
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1 Introduction

Korach and Stern introduced the problem of interconnecting possibly overlap-
ping groups of users by a network such that the users in the same group do not
need to use connections outside the group [9]. The optimization objective is to
minimize the total cost of the pairwise connections. Angluin et al. and Chockler
et al. studied this problem in [2] and [5], respectively.

Angluin et al. showed in [2] that if P �= NP and n is the number of vertices
in the network then the problem cannot be approximated within a factor that
is sublogarithmic in n, even in the uniform edge cost case. On the other hand,
they proved that a greedy heuristic can approximate the optimal solution within
a factor of O(log r), where r is the number of constraints. As observed in [2], the
lower bound matches the upper bound in case r is polynomial in n.

Angluin et al. also studied the online version of this problem where each con-
straint has to be satisfied directly after its arrival [2]. Their motivation for this
problem variant was to help infer the structure of a social network describing
the spread of diseases in a community and to decide where to allocate resources
to fight an epidemic efficiently. They assumed that the individuals affected by
each outbreak of a disease are specified by a connectivity constraint, that the
outbreaks occur over time, and that resources that have been committed cannot
be released. They provided an O(n log n)-competitive online algorithm for the
online version along with an Ω(n)-competitive lower bound. They also consid-
ered the uniform cost case of this online version, providing an O(n2/3 log2/3 n)-
competitive algorithm against an oblivious adversary and an Ω(

√
n)-competitive

lower bound against an adaptive adversary.
Hosoda et al. studied a B-constraint-bounded variant of the Network Con-

struction problem, where the cardinality of each connectivity constraint Si does
not exceed B [8]. This corresponds to constructing a minimum overlay network
for a topic-based peer-to-peer pub/sub system where users (represented by ver-
tices) who are interested in a common topic (represented by connectivity con-
straints) form connected subgraphs, and moreover, the number of users following
each topic is bounded by a constant due to the publisher of that topic having a
limited number of available slots for users. Hosoda et al. provided a polynomial-
time approximation algorithm for this variant and proved its APX-completeness
in [8].

A natural generalization of the Network Construction problem, where some
pairwise connections are given a priori has applications in bioinformatics [11].
The purpose is to infer protein-protein interactions that are missing from a
database based on a collection of known, overlapping protein complexes (see
Sect. 4.1 for details).

1.1 The Structure of the Paper and Our New Results

The next section defines the Network Construction problem and its B-constraint-
bounded variant, where each constraint includes at most B vertices. We also
recall the Minimum Weight Set Cover problem and some facts about its
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approximability. In Sect. 3, we study the online version of the B-constraint-
bounded Network Construction problem. We present O(B2 log n)-competitive
and O((B + log r) log n)-competitive polynomial-time algorithms for the online
B-constraint-bounded Network Construction problem, where r, n stand for
the number of constraints and the number of vertices in the network, respec-
tively. In the cost-uniform case when constraints are unbounded, we provide an
O(

√
n(log n+log r))-competitive upper bound with high probability. All our ran-

domized competitive bounds are against an adaptive adversary but for the last
one which is against an oblivious adversary. We also provide a (B−1)-competitive
lower bound in case of arbitrary edge costs and a

√
B-competitive lower bound

in case of uniform edge costs. In Sect. 4, we study approximation algorithms for
the offline Network Construction problem and its extensions. First, we discuss a
hybrid approximation method combining the approximation algorithm of Hosoda
et al. from [8] with that of Angluin et al. from [2] in the context of the application
to bioinformatics. Next, we consider a natural strengthening of the connectivity
requirements in the Network Construction problem. Each constraint is supposed
to induce a subgraph (of the constructed graph) of diameter at most d, where d
is given a priori. We provide a polynomial-time (

(
B
2

)−B +2)
(
B
2

)
-approximation

algorithm for the aforementioned problems with the d-diameter requirements,
when each constraint has at most B vertices. Also, we present a polynomial-
time algorithm achieving a non-trivial approximation ratio in the general case of
the d-diameter variant, where the size of constraints is unbounded. We conclude
with final remarks.

Our approximate or online solutions to the aforementioned variants with
bounded constraints can be used to solve approximately or online the corre-
sponding variants with unbounded constraints by splitting the constraints into
small and large ones (Sects. 3, 4).

2 Preliminaries

For a positive integer r, the term [r] will denote {1, ..., r}, and for sets S, V , |S|
will stand for the cardinality of S while V 2 for {{v, u}|v, u ∈ V }.

A subgraph of a graph (V,E) is a graph (V ′, E′) such that V ′ ⊆ V and
E′ ⊆ E. The subgraph of a graph (V,E) induced by a subset S of V is the graph
(S,E∩S2). A perfect cut of a graph (V,E) is a partition of V into subsets V ′ and
V ′′ such that E ∩{{v, u}|v ∈ V ′ & u ∈ V ′′} = ∅. The diameter of a graph (V,E)
is the minimum number � such that any pair of vertices in V can be connected
by a path composed of at most � edges in E. If the graph is disconnected, its
diameter is undefined.

The Network Construction problem is as follows [2]. We are given a set V of
vertices and for each possible edge e = {vi, vj}, the cost c(e) of its construction.
We are also given a collection of connectivity constraints S = {S1, ..., Sr}, where
each Si is a subset of V. The objective is to construct a set E of edges in V 2 such
that for i = 1, ..., r, the subgraph of the graph (V,E) induced by Si is connected
and the total cost of the edges in E is minimal. In the uniform-cost case of the
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problem, we have c(e) = 1 for all edges in V 2. We can naturally generalize the
problem to include the Network Extension problem, where some subset E′ of
edges is already given (constructed) a priori. Note that when zero construction
costs of edges are allowed the Network Construction problem is equivalent to
that of Network Extension. Simply it is sufficient to set the construction costs
of the edges given a priori to zero in order to obtain an equivalent version of the
Network Construction problem. In order to avoid duplications in our statements,
in the aforementioned situation we shall mention only the Network Construction
problem.

Among other things, the following fact was established by Angluin et al.
in [2].

Fact 1 (Theorem 2 in [2]). There is a polynomial-time O(log r)-approximation
algorithm for the Network Construction problem on r constraints.

We shall also consider a B-constraint-bounded variant of the Network Con-
struction problem, where the cardinality of each connectivity constraint Si does
not exceed B. It was studied by Hosoda et al. in [8]. They provided a polynomial-
time approximation algorithm for this variant and showed its APX-completeness.

Fact 2 (Theorem 4 in [8]). There is a polynomial-time �B/2	
B/2�-
approximation (i.e., ≈ B2/4-approximation) algorithm for the B-constraint-
bounded Network Construction problem.

In the context of the Network Construction and Extension problems, we refer
to two types of edges: those already constructed and the remaining ones that
potentially could be constructed. For instance, when referring to a perfect cut,
we consider the edges of the first type while when we refer to edges crossing a
perfect cut we mean the edges of the second type.

Recall the definition of Minimum Weight Set Cover problem. The input to
this problem is a universal set U on n elements and a family F of m subsets of U.
Each subset in F is assigned a non-negative weight. A set cover is a sub-family
of F whose union is equal to U. The objective is to find a set cover of minimum
total weight. The decision version of this optimization problem is already NP-
hard in the uniform-weight case [6]. The so-called Minimum Weight Hitting Set
problem is an equivalent formulation of the Minimum Weight Set Cover problem
with the roles of elements and subsets exchanged. Here, the input is a finite set
S of weighted elements and a family C of subsets of S. The objective is to find
a minimum weight subset of S that hits all the subsets in C, i.e., that has a
non-empty intersection with each of the subsets in C. This problem is known to
be equivalent to Minimum Weight Set Cover [3]. Consequently, approximation
algorithms and inapproximability results for each of them carry over to the other
one.

Hochbaum [7] used a relaxation of an integer linear programming formulation
to obtain an approximation of the Minimum Weight Set Cover in cubic time.
The same approximation ratio was obtained by Bar-Yehuda and Even [4] with
a more direct, linear-time method. We summarize their results as follows.
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Fact 3. The Minimum Weight Set Cover problem (U,F ), where each element of
the universal set U occurs in at most B subsets of U in F , can be approximated
within multiplicative factor B in linear time. Consequently, the Minimum Weight
Hitting set problem, where each subset in the given family has cardinality at most
B, can be approximated within B in linear time.

3 Online B-Constraint-Bounded Network Construction

In this section, we consider the online version of the Network Construction prob-
lem studied in [2]. It arises naturally in the situation when the knowledge about
the relationships between the entities represented by vertices changes over time.
In the online version, the collection of connectivity constraints is given one at
a time. When a constraint Si is presented, the online algorithm is in round i.
The algorithm is now supposed to satisfy this constraint during this round by
constructing, if necessary, additional edges before the start of the next round
(no previously constructed edges may be removed). The next constraint is then
presented in round i+1. To study the worst-case performance of our online algo-
rithms, we shall use an adaptive adversary that can wait with setting the next
constraint until the online algorithm satisfied the previous one. We shall use com-
petitive analysis of our online algorithms. An online algorithm is c-competitive
if the cost of its solution does not exceed c times the cost of an optimal offline
solution.

3.1 Upper Bounds

First consider the following online Fractional Network Construction problem: For
a set V of vertices and edge costs c(e) for e ∈ V 2, and sequence of connectivity
constraints S1, ..., Sr, assign fractional capacities w(e) to the edges e such that
for each i ∈ [r], for each pair of vertices in Si, the maximum flow between them
is at least 1. The optimization objective is to minimize

∑
e w(e)c(e).

Fact 4 (Lemma 2 in [2]). There is an O(log n)-competitive polynomial-time
algorithm for the online Fractional Network Construction problem on n vertices.

By using this fact, we obtain the following theorem.

Theorem 1. There is an O(B2 log n)-competitive polynomial-time algorithm for
the online B-constraint-bounded Network Construction problem on n vertices.

Proof. Run the online O(log n)-competitive algorithm for the online Fractional
Network Construction problem from Fact 4. Disregard all edges that are assigned
capacity smaller than B−2 by the online solution to the fractional problem and
construct all the remaining edges. Note that after the edges of capacity smaller
than B−2 are removed, for any pair of vertices in any B bounded constraint the
maximum flow is still at least 1− (

B
2

)
B−2 ≥ 1

2 . Hence, there is a path composed
of the constructed edges between such a pair. The cost of the constructed edges
is at most B2 times larger than the cost of the fractional solution, i.e., the sum
of products of edge cost and edge capacity over all edges. ��
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To derive another competitive upper bound for the online B-constraint-
bounded Network Construction problem, we shall consider the online version
of the Minimum Weight Set Cover problem. In this version, a family of subsets
of the universal set is given a priori while the elements of a subset of the universal
are presented online one at a time [1]. A new element has to be covered before
the arrival of the next one. Analogously, in the online version of the equivalent
Minimum Weight Hitting set problem, the set of hitting elements is given a pri-
ori, and the sets to be hit arrive online one at a time. A new set has to be hit
before the arrival of the next one. Alon et al. established the following fact in
[1].

Fact 5. There is an O(log n log r)-competitive polynomial-time algorithm for the
online Minimum Weight Set Cover problem, where n is the cardinality of the uni-
versal set and r is the cardinality of the given family of subsets of the universal
set. Consequently, there is an O(log n log r)-competitive polynomial-time algo-
rithm for the online Minimum Weight Hitting set, where n is the cardinality of
the family of sets to hit and r is the cardinality of the set of all possible hitting
elements.

By combining Fact 5 with the reduction of the Network Construction problem
to the Minimum Weight Set Cover problem given by Angluin et al. in [2], we
obtain another competitive upper bound for the online B-constraint-bounded
Network Construction problem.

Theorem 2. There is an O((B+log r) log n)-competitive polynomial-time algo-
rithms for the online B-constraint-bounded Network Construction problem with
n vertices and r constraints.

Proof. We shall reduce the online Network Construction problem to the online
Minimum Weight Hitting Set problem, following the reduction of the former
problem to the online Minimum Weight Set Cover problem from [2]. The set of
the possible hitting elements given a priori is just the set of all possible edges.
Each edge has weight equal to the cost of its construction. Next, each constraint
upon its arrival online, for each perfect cut of the subgraph induced by the
constraint, yields the set of all (additional potential) edges crossing the perfect
cut, i.e., having endpoints in the two different parts of the bipartition. Note that
the constraint is satisfied if and only if each perfect cut in the subgraph induced
by it is crossed by some edge accounted to the online formed hitting set. It follows
that the cost of an optimal solution to the resulting online Minimum Hitting Set
problem is the same as that to the original Network Construction problem. Now
it is sufficient to observe that the former problem has O(n2) possible hitting
elements and at most r2B sets to hit, and then to apply Fact 5. ��

We can use Theorem 2 to derive a competitive upper bound for the uniform-
cost variant of the Network Construction problem with unbounded constraints.
Angluin et al. considered also the uniform cost variant of the Network Construc-
tion problem in [2], providing an O(n2/3 log2/3 n)-competitive algorithm against
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an oblivious adversary and an Ω(
√

n)-competitive lower bound against an adap-
tive adversary. Our upper bound in the uniform case is as that of Angluin et al.
against an oblivious adversary, i.e., an adversary not knowing the randomized
results of the algorithm. The key idea is to split the constraints into small and
large ones, and use Theorem 2 to process the former ones.

Theorem 3. The uniform cost online Network Construction problem on n ver-
tices and r constraints admit an O(kn0.5(log n + log r))-competitive polynomial-
time solution, for every positive k, with probability at least 1 − O((nr)−1) − 1

k
provided that r is known in advance and the adversary is oblivious.

Proof. Split the set of constraints into two sets, one consisting of all constraints of
size ≤ n0.5 and one consisting of the rest. We can apply the O((B + log r) log n)
competitive algorithm from Theorem2 to the small constraints obtaining an
O((n0.5 + log r) log n) competitive solution. To satisfy the large constraints with
more than n0.5 vertices we proceed as follows.

Let Q be the set of vertices involved in the large constraints, and let q stand
for the cardinality of Q. We initialize an empty vertex set S. Upon an arrival
of a new large constraint, each vertex v in the constraint that is outside of S
is added to S with probability q−0.5(ln n + 2 ln r). We may assume w.l.o.g. that
ln n+2 ln r < q0.5. Furthermore, if v is added to S then all missing edges incident
to v are constructed. It follows that the expected total number, and hence, the
expected total cost of the so constructed edges amounts to q0.5(q−1)(ln n+2 ln r).
Thus, the total cost is at most kq0.5(q −1)(ln n+2 ln r) with probability at least
1 − 1

k by Markov’s inequality. For each large constraint, the probability that it
does not contain any vertex from S is at most

(1 − q0.5(ln n + 2 ln r)
q

)n
0.5 ≤ (1 − 1

n0.5
)n

0.5(lnn+2 ln r) ≤ O(
1

nr2
)

Since there are at most r large constraints, the cost of an optimal solution is at
least q − 1 and q ≤ n, we obtain an kn0.5(ln n + 2 ln r) competitive upper bound
for the large constraints with probability at least 1 − O((nr)−1) − 1

k . ��

3.2 Lower Bounds

We present two lower bounds on the competitiveness of algorithms for the online
B-constraint-bounded Network Construction problem.

When the edge costs can be arbitrary, it is not possible to achieve a compet-
itive ratio smaller than B − 1.

Theorem 4. For any c < 1, there is no c(B− 1)-competitive algorithm for the
online B constraint-bounded Network Construction problem.

Proof. We modify the proof of Theorem 6 in [2] for the competitive ratio in
the general case of online Network Construction, in our case the optimal offline
solution is not necessarily a path. Following [2], we set the cost of edges among
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the first n−1 vertices to zero, and the cost of all edges incident to the last vertex
to 1. The adversary divides the first n − 1 vertices into blocks of B − 1 vertices.
Assume first that n − 1 is divisible by B − 1. Then for i = 1, ..., (n − 1)/(B − 1),
the adversary repetitively picks an l-tuple of vertices, l ∈ [2, B], that includes
the last vertex and all vertices from the i-th block that are not endpoints of
already constructed edges incident to the last vertex. In this way, the algorithm
is forced to construct all B − 1 edges connecting the vertices in the i-th block
with the last vertex while in the optimal offline solution only such a last edge
is needed while the vertices in the i-th block are connected in the order of their
removal by a constructed path. Thus, the algorithm constructs (B − 1) × n−1

B−1

edges of cost 1 while the optimal offline solution uses only n−1
B−1 edges of cost 1.

It follows that the algorithm cannot be c(B − 1) competitive.
If n − 1 is not divisible by B − 1 then the algorithm constructs at least

(B − 1) × � n−1
B−1	 + 1 edges of cost 1 while the optimal offline solution uses

only 
 n−1
B−1� edges of cost 1. Hence, for enough large n, the algorithm cannot be

c(B − 1)-competitive. ��
For the uniform cost case, we can present a weaker lower bound. The proof

of the following theorem can be found in the full version of this paper.

Theorem 5. The online uniform cost B constraint-bounded Network Construc-
tion problem has an Ω(

√
B) competitive lower bound.

4 Offline Approximation Algorithms

In this section, we discuss first a hybrid approximation method for the offline
Network Construction problem and its application to bioinformatics. It combines
the approximation algorithm of Hosoda et al. from [8] with that of Angluin et al.
from [2]. Next, we present approximation algorithms for a strengthened version of
the Network Construction problem, where each constraint is supposed to induce
a subgraph (of the constructed graph) of diameter at most d for a d given a
priori.

4.1 A Hybrid Method with Biological Applications

An application of the Network Extension problem to bioinformatics was given
in [11]. There, the goal was to infer protein-protein interactions (PPIs) that
were missing from a database based on a collection of known, overlapping pro-
tein complexes. More precisely, the vertices V in the input graph were used to
represent proteins, the set E′ of a priori given edges represented PPIs already in
the database, and each input connectivity constraint Si consisted of the proteins
belonging to a single protein complex. Using the assumption that each protein
complex must induce a connected subgraph, solving instances of the Network
Extension problem gave lower bounds on the number of missing PPIs in vari-
ous widely used PPI databases. The overwhelming majority of complexes in the
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existing PPI databases seem to be of small size, containing at most 10 proteins
each, but a few larger ones with up to 100 proteins also occur (for details, see
Table A3 in the Supporting Information file for [11]).

The aforementioned statistics suggest a hybrid method consisting of applying
the approximation algorithm of Hosoda et al. from [8] to the constraints corre-
sponding to small complexes and that of Angluin et al. from [2] to the constraints
corresponding to larger complexes. We can express it in terms of the Network
Construction problem by the equivalence observed in Sect. 2. The output is the
union of the output of each of the two algorithms applied separately. Hence, by
combining Fact 1 with Fact 2, we obtain the following theorem.

Theorem 6. Consider an instance of the Network Construction problem. For
B ∈ [n]\{1}, let rB be the number of constraints with more than B vertices in
the instance. A solution to the instance (for the respective problem) of total cost
not exceeding minB∈[n]\{1}�B/2	
B/2� + O(log rB) times the minimum can be
found in polynomial time.

The hybrid method will be useful when there is a relatively small B ∈ [n]\{1}
such that the number rB of large constraints including more than B vertices,
i.e., the number of large complexes in the biological application, is small. More
details about the hybrid method can be found in the full version of this paper.

4.2 Bounded Diameter Requirements

One can naturally strengthen the connectivity requirements in the Network
Construction or Extension problems by demanding that each constraint should
induce a subgraph of the constructed network of diameter at most d, where
d ∈ [n − 1] is given a priori (cf. [5]).

For instance, Chockler et al. studied the Network Construction problem in
[5] using a different terminology. They considered the problem of constructing
an optimal overlay (network) that for each topic (constraint) includes a dissem-
ination tree composed of nodes interested in the topic (i.e., belonging to the
constraint). One of the measures of the quality of such an overlay suggested on
p. 116 of [5] is the diameter. Intuitively, having a low diameter is good because
it means that two users interested in the same topic do not need to rely on many
intermediate parties, which leads to more efficient communication and better
performance.

We shall term the strengthened version of the Network Construction problem
as the d-diameter Network Construction problem. In fact, the latter problem
restricted to instances with a single constraint is already hard. The restriction
can be simply rephrased as follows: given a vertex set V , edge costs c(e) for
potential edges in V 2, find a cheapest graph spanning V with diameter not
exceeding d.

The d-diameter Network Construction problem restricted to single constraint
instances is known to be NP-hard already for d = 2 [10]. In contrast, when
restricted to instances with uniform edge costs, this problem variant becomes
trivial as any spanning star graph provides an optimal solution.
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Analogously to the preceding sections, we can consider the d-diameter Net-
work Construction problem with constraints of cardinality not exceeding B. By
using an auxiliary problem, we can obtain a (

(
B
2

) − B + 2)
(
B
2

)
approximation in

polynomial time for the B-constraint-bounded d-diameter Network Construction
problem. The auxiliary problem is as follows.

For an instance of the B-constraint-bounded d-diameter Network Construc-
tion problem with a vertex set V, edge construction costs c(e), a set E′ of edges
e with c(e) = 0, and connectivity constraints S1, ...., Sr find a minimum cost
edge set E′′ ⊆ V 2\E′ such that for i = 1, ..., r, if the diameter of the subgraph
of G′ = (V,E) induced by Si is larger than d then E′′ ∩ S2

i �= ∅.
The following lemma provides an approximation algorithm for the auxiliary

problem.

Lemma 1. The auxiliary problem can be approximated within
(
B
2

)
in polynomial

time.

Proof. Consider an instance of the auxiliary problem with a vertex set V, edge
construction costs c(e), a set E′ of edges with zero construction cost, and con-
nectivity constraints S1, ..., Sr. We may assume w.l.o.g. that for i = 1, ..., r, the
diameter of the subgraph of the graph G′ = (V,E′) induced by Si is larger than
d since otherwise the constraint Si can be disregarded. To solve the auxiliary
problem, for i = 1, ..., r, form the set Ei of all edges in S2

i \E′. The auxiliary prob-
lem is equivalent to finding a minimum weight subset of the set of all potential
edges that hits all the sets E1, ..., Er, where the weights of the edges are equal
to their construction costs. By our assumptions, for i = 1, ..., r, |Ei| ≤ (

B
2

)
hold.

Now it is sufficient to apply Fact 3 in order to obtain a
(
B
2

)
approximation for

the auxiliary problem in time linear in the total size of the family {E1, ..., Er}
and |V |2. The latter size is in turn polynomial in the size of the input instance
of the auxiliary problem. ��

Now, in order to provide an approximate solution to an instance of the B-
constraint-bounded d-diameter Network Construction problem, we iterate the
method of Lemma 1 as shown in Fig. 1.

Theorem 7. The B-constraint-bounded d-diameter Network Construction prob-
lem can be approximated within (

(
B
2

) − B + 2)
(
B
2

)
in polynomial time.

Proof. We shall analyze the iterative method based on Lemma 1. Since for i =
1, ..., r, |Si| ≤ B, the subgraph of the original graph G′ = (V,E′) induced by Si

can be completed by at most
(
B
2

)
edges. Hence, at most

(
B
2

)
iterations of the while

block are sufficient. In fact, already
(
B
2

)−B+2 iterations are sufficient since in a
graph with B vertices and at least

(
B
2

)− (B −2) edges each pair of non-adjacent
vertices has a common neighbor. Note that the cost of an optimal solution to any
of the at most

(
B
2

)−B+2 auxiliary problems approximately solved in consecutive
iterations of the while block cannot be greater than that of an optimal solution
to the original B-constraint-bounded d-diameter Network Construction problem.
Hence, the upper bound (

(
B
2

) − B + 2)
(
B
2

)
on the approximation factor of the

iterative method follows from Lemma1. ��
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Fig. 1. The (
(
B
2

) − B + 2)
(
B
2

)
approximation algorithm for the B-constraint-bounded-

diameter Network Construction problem.

In the general case with unbounded constraints, straightforward greedy
approaches do not seem to work. However, if the edge costs are uniform, we can
obtain a large but still a nontrivial approximation factor in polynomial time by
splitting the constraints into small and large ones, and using Lemma1 to obtain
an approximation for the former. The proof is analogous to that of Theorem3.
It can be found in the full version of this paper.

Theorem 8. The uniform cost d-diameter Network Construction problem with
n vertices and r constraints admits an O(n0.8(ln n + ln r)) approximation with
probability at least 1 − (nr)−1 in polynomial time.

5 Final Remarks

It would be useful to tighten the upper and lower competitiveness bounds on
the online version of the B-constraint-bounded Network Construction problem.
It would be especially interesting to know if the factor that is logarithmic in n
can be removed from the upper bounds.

As mentioned in Sect. 4.2, straightforward greedy approaches do not seem to
work for the d-diameter Network Construction problem with unbounded con-
straints. One reason for this is that natural candidates for potential functions
in greedy methods seem to lack the submodularity property. It is an interesting
question if it is possible to achieve a reasonable approximation factor for this
problem in the general case, at least when edge costs are uniform.
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