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The Network Construction problem, studied by Angluin et al., Hosoda et al., and others,
asks for a minimum-cost network satisfying a set of connectivity constraints which spec-

ify subsets of the vertices in the network that have to form connected subgraphs. More

formally, given a set V of vertices, construction costs for all possible edges between pairs
of vertices from V , and a sequence S1, S2, . . . , Sr ⊆ V of connectivity constraints, the

objective is to find a set E of edges such that each Si induces a connected subgraph of

the graph (V,E) and the total cost of E is minimized. First, we study the online version
where every constraint must be satisfied immediately after its arrival and edges that

have already been added can never be removed. We give an O(B2 logn)-competitive and

O((B+log r) logn)-competitive polynomial-time algorithms, where B is an upper bound
on the size of constraints, while r, n denote the number of constraints and the number

of vertices, respectively. On the other hand, we observe that an Ω(B)-competitive lower
bound as well as an Ω(

√
B)-competitive lower bound in the cost-uniform case are implied

by the known lower bounds for unbounded constraints. For the cost-uniform case with
unbounded constraints, we provide an O(

√
n(logn + log r))-competitive upper bound

with high probability. The latter bound is against an oblivious adversary while our other

randomized competitive bounds are against an adaptive adversary. Next, we discuss a

hybrid approximation method for the (offline) Network Construction problem combining
an approximation algorithm of Hosoda et al. with one of Angluin et al. and an applica-

tion of the hybrid method to bioinformatics. Finally, we consider a natural strengthening
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of the connectivity requirements in the Network Construction problem, where each con-
straint has to induce a subgraph (of the constructed graph) of diameter at most d. Among

other things, we provide a polynomial-time (
(B
2

)
− B + 2)

(B
2

)
-approximation algorithm

for the Network Construction problem with the d-diameter requirements, when each
constraint has at most B vertices, and show the APX-completeness of this variant.

Keywords: Network optimization; induced subgraph; connectivity; approximation

algorithm; online algorithm.

1. Introduction

Korach and Stern introduced the problem of interconnecting possibly overlapping

groups of users by a network such that the users in the same group do not need to

use connections outside the group [13]. The optimization objective is to minimize

the total cost of the pairwise connections. Angluin et al. and Chockler et al. studied

this problem in [2] and [6], respectively.

Angluin et al. showed in [2] that if P 6= NP and n is the number of vertices

in the network then the problem cannot be approximated within a factor that is

sublogarithmic in n, even in the uniform edge cost case. On the other hand, they

proved that a greedy heuristic can approximate the optimal solution within a factor

of O(log r), where r is the number of constraints. As observed in [2], the lower bound

matches the upper bound in case r is polynomial in n.

Angluin et al. also studied the online version of this problem where each con-

straint has to be satisfied directly after its arrival and edges that have already been

added can never be removed [2]. Their motivation for this problem variant was

to help infer the structure of a social network describing the spread of diseases in

a community and to decide where to allocate resources to fight an epidemic effi-

ciently. They assumed that the individuals affected by each outbreak of a disease

are specified by a connectivity constraint, that the outbreaks occur over time, and

that resources that have been committed cannot be released. They provided an

O(n log n)-competitive online algorithm for the online version along with an Ω(n)-

competitive lower bound. They also considered the uniform cost case of this online

version, providing an O(n2/3 log2/3 n)-competitive algorithm against an oblivious

adversary and an Ω(
√
n)-competitive lower bound against an adaptive adversary.

Hosoda et al. studied a B-constraint-bounded variant of the Network Construc-

tion problem, where the cardinality of each connectivity constraint Si does not

exceed B [10]. This corresponds to constructing a minimum overlay network for a

topic-based peer-to-peer pub/sub system where users (represented by vertices) who

are interested in a common topic (represented by connectivity constraints) form

connected subgraphs, and moreover, the number of users following each topic is

bounded by a constant due to the publisher of that topic having a limited number

of available slots for users. Hosoda et al. provided a polynomial-time (bB/2cdB/2e)-
approximation algorithm for this variant and proved its APX-completeness in [10].

A natural generalization of the Network Construction problem, where some

pairwise connections are given a priori has applications in bioinformatics [15]. The
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purpose is to infer protein-protein interactions that are missing from a database

based on a collection of known, overlapping protein complexes (see Sec. 4.1 for

details).

1.1. Article outline and contributions

The next section defines the Network Construction problem and its B-constraint-

bounded variant, where each constraint includes at most B vertices. We also review

the Minimum Weight Set Cover problem and some facts about its approximabil-

ity. In Sec. 3, we study the online version of the B-constraint-bounded Network

Construction problem. We present O(B2 log n)-competitive and O((B+log r) log n)-

competitive polynomial-time algorithms for the online B-constraint-bounded Net-

work Construction problem, where r, n stand for the number of constraints and

the number of vertices in the network, respectively. In the cost-uniform case when

constraints are unbounded, we provide an O(
√
n(log n + log r))-competitive upper

bound with high probability. The latter bound is against an oblivious adversary

while our other randomized competitive bounds are against an adaptive adver-

sary. We also observe that a (B − 1)-competitive lower bound in case of arbitrary

edge costs and a
√
B-competitive lower bound in case of uniform edge costs are

implied by the aforementioned lower bounds of Angluin et al. for unbounded con-

straints [2]. In Sec. 5, we study approximation algorithms for the offline Network

Construction problem and its extensions. First, we discuss a hybrid approximation

method combining the approximation algorithm of Hosoda et al. from [10] with

that of Angluin et al. from [2] in the context of the application to bioinformatics.

Next, we consider a natural strengthening of the connectivity requirements in the

Network Construction problem. Each constraint has to induce a subgraph (of the

constructed graph) of diameter at most d, where d is given a priori. We provide a

polynomial-time (
(
B
2

)
−B+ 2)

(
B
2

)
-approximation algorithm for the aforementioned

problem with the d-diameter requirements, when each constraint has at most B

vertices. Also, we show the restricted variant to be APX-complete. Furthermore, we

present a polynomial-time algorithm achieving a non-trivial approximation ratio in

the general case of the d-diameter variant, where the cardinality of constraints is

unbounded. We conclude with final remarks.

Our approximate or online solutions to the aforementioned variants with

bounded constraints can be used to solve approximately or online the correspond-

ing variants with unbounded constraints by splitting the constraints into small and

large ones (Secs. 4 and 5).

2. Preliminaries

For a positive integer r, the term [r] will denote {1, . . . , r}, and for sets S and V ,

|S| will stand for the cardinality of S while V 2 for {{v, u}|v, u ∈ V }.
We shall consider simple graphs (i.e., graphs without loops and multiple edges).

A subgraph of a graph (V,E) is a graph (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. The
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Fig. 1. An instance of the Network Construction problem with V = {a, b, c, d}, S =
{{a, b, d}, {a, c, d}, {b, c}}, and edge costs as indicated on the left. The optimal solution (total

cost: 7) is shown on the right. Note that the optimal solution does not induce a locally optimal

solution for each connectivity constraint, e.g., {(a, b), (a, d)} is not an optimal solution for {a, b, d}.
Also note that in this example, the optimal solution is not a tree.

subgraph of a graph (V,E) induced by a subset S of V is the graph (S,E ∩ S2). A

perfect cut of a graph (V,E) is a partition of V into subsets V ′ and V ′′ such that

E ∩ {{v, u}|v ∈ V ′ & u ∈ V ′′} = ∅. The diameter of a graph (V,E) is the minimum

number ` such that any pair of vertices in V can be connected by a path composed

of at most ` edges in E. If the graph is disconnected, its diameter is undefined.

The Network Construction problem is as follows [2]. We are given a set V of

vertices and for each possible edge e = {vi, vj}, the nonnegative real cost c(e) of

its construction. We are also given a collection of connectivity constraints S =

{S1, . . . , Sr}, where each Si is a subset of V. The objective is to construct a set E

of edges in V 2 such that for i = 1, . . . , r, the subgraph of the graph (V,E) induced

by Si is connected and the total cost of the edges in E is minimized. See Fig. 1

for an example. In the uniform-cost case of the problem, we have c(e) = 1 for

all edges in V 2. We can naturally generalize the problem to include the Network

Extension problem, where some subset E′ of edges is already given (constructed)

a priori. Note that when zero construction costs of edges are allowed the Network

Construction problem is equivalent to the Network Extension problem. Simply it is

sufficient to set the construction costs of the edges given a priori to zero in order to

obtain an equivalent version of the Network Construction problem. In order to avoid

duplications in our statements, in the aforementioned situation we shall mention

only the Network Construction problem.

Among other things, the following fact was established by Angluin et al. in [2].

Fact 1 ([2, Theorem 2]). There is a polynomial-time O(log r)-approximation

algorithm for the Network Construction problem on r constraints.

We shall also consider a B-constraint-bounded variant of the Network Construc-

tion problem, where the cardinality of each connectivity constraint Si does not

exceed B. It was studied by Hosoda et al. in [10]. They provided a polynomial-time

approximation algorithm for this variant and showed its APX-completeness.
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Fact 2 ([10, Theorem 4]). The B-constraint-bounded Network Construction

problem admits a polynomial-time bB/2cdB/2e-approximation (i.e., ≈ B2/4-

approximation) algorithm.

In the context of the Network Construction and Extension problems, we refer to

two types of edges: those already constructed and the remaining ones that poten-

tially could be constructed. For instance, when referring to a perfect cut, we consider

the edges of the first type while when we refer to edges crossing a perfect cut we

mean the edges of the second type.

Recall the definition of Minimum Weight Set Cover problem. The input to this

problem is a universal set U on n elements and a family F of m subsets of U. Each

subset in F is assigned a non-negative weight. A set cover is a sub-family of F whose

union is equal to U. The objective is to find a set cover of minimum total weight. The

decision version of this optimization problem is already NP-hard in the uniform-

weight case [8]. The so-called Minimum Weight Hitting Set problem is an equivalent

formulation of the Minimum Weight Set Cover problem with the roles of elements

and subsets exchanged. Here, the input is a finite set S of weighted elements and

a family C of subsets of S. The objective is to find a minimum weight subset of S

that hits all the subsets in C, i.e., that has a non-empty intersection with each of

the subsets in C. This problem is known to be equivalent to Minimum Weight Set

Cover [3]. Consequently, approximation algorithms and inapproximability results

for each of them carry over to the other one.

Hochbaum [9] used a relaxation of an integer linear programming formulation

to obtain an approximation of the Minimum Weight Set Cover in cubic time. The

same approximation ratio was obtained by Bar-Yehuda and Even [4] with a more

direct, linear-time method. We summarize their results as follows.

Fact 3. The Minimum Weight Set Cover problem (U,F ), where each element of the

universal set U occurs in at most B subsets of U in F, can be approximated within the

multiplicative factor B in linear time. Consequently, the Minimum Weight Hitting

set problem, where each subset in the given family has cardinality at most B, can

be approximated within B in linear time.

A decade later, Papadimitriou and Yannakakis showed the following fact [16].

Fact 4. The Minimum Weight Set Cover problem (U,F ), where each element of

the universal set U occurs in at most B ≥ 2 subsets of U in F , is APX-complete

(already in the uniform weight case). Consequently, the Minimum Weight Hitting

Set problem, where each subset in the given family has cardinality at most B, is

APX-complete (already in the uniform weight case).

The Minimum Weight Hitting Set problem, where each subset in the given

family has cardinality at most B, is easily seen to be equivalent to Vertex Cover

in B-uniform hypergraph. More recently, the latter problem has been shown to be

NP-hard to approximate beyond (B − 1) factor by Dinur et al. [7] and UGC-hard
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to approximate beyond B factor by Khot and Regev [12]. (For the Unique Games

Conjecture and the related concept of UGC-hardness see [11]). Hence, we have the

following fact.

Fact 5. The Minimum Weight Hitting Set problem, where each subset in the given

family has cardinality at most B, is NP-hard to approximate beyond (B − 1) factor

[7] and UGC-hard to approximate beyond B [12].

3. Online B-Constraint-Bounded Network Construction

In this section, we consider the online version of the Network Construction problem

studied in [2]. It arises naturally in the situation when the knowledge about the

relationships between the entities represented by vertices changes over time. In the

online version, the vertices, potential edges and their costs are given beforehand and

the collection of connectivity constraints is given one at a time. When a constraint Si

is presented, the online algorithm is in round i. The algorithm now has to satisfy this

constraint during this round by constructing, if necessary, additional edges before

the start of the next round (no previously constructed edges may be removed). The

next constraint is then presented in round i+1. To study the worst-case performance

of our online algorithms, we shall use an adaptive adversary that can wait with

setting the next constraint until the online algorithm satisfied the previous one. We

shall use competitive analysis of our online algorithms. The idea is to compare an

online algorithm ALG to an optimal offline algorithm OPT that knows the entire

request sequence in advance. For a request sequence δ, let ALG(δ) and OPT (δ)

denote the costs incurred by ALG and OPT, respectively. Algorithm ALG is called

c-competitive if there exists a constant b such that ALG(δ) ≤ cOPT (δ) + b, for all

sequences δ. c is called the competitive ratio of algorithm ALG.

3.1. Upper bounds

First consider the following online Fractional Network Construction problem: for

a set V of vertices and edge costs c(e) for e ∈ V 2, and sequence of connectivity

constraints S1, . . . , Sr, assign fractional capacities w(e) to the edges e such that for

each i ∈ [r], for each pair of vertices in Si, the maximum flow between them is at

least 1. More precisely, after designating one of the vertices as source and the other

as sink by flow we mean here an assignment of fractional flow values to the edges

e in S2
i that do not exceed w(e) and obey the flow preservation rule, i.e., the total

incoming flow is equal to the total outgoing flow. The optimization objective is to

minimize
∑

e w(e)c(e).

Fact 6 ([2, Lemma 2]). There is an O(log n)-competitive polynomial-time algo-

rithm for the online Fractional Network Construction problem on n vertices.

By using this fact, we obtain the following theorem.



August 1, 2023 11:18 112-IJFCS 2250026

Online and Approximate Network Construction 459

Theorem 1. There is an O(B2 log n)-competitive polynomial-time algorithm for

the online B-constraint-bounded Network Construction problem on n vertices.

Proof. Run the online O(log n)-competitive algorithm for the online Fractional

Network Construction problem from Fact 6. Disregard all edges that are assigned

capacity smaller than B−2 by the online solution to the fractional problem and

construct all the remaining edges. Note that after the edges of capacity smaller

than B−2 have been removed, the maximum flow between each pair of vertices in

any B-bounded constraint is still at least 1 −
(
B
2

)
B−2 ≥ 1

2 . Hence, there is a path

composed of the constructed edges between such a pair. The cost of the constructed

edges is at most B2 times larger than the cost of the fractional solution, i.e., the

sum of products of edge cost and edge capacity over all edges.

To derive another competitive upper bound for the online B-constraint-bounded

Network Construction problem, we shall consider the online version of the Minimum

Weight Set Cover problem. In this version, a family of subsets of the universal set is

given beforehand (and hence we know the elements forming the subsets) but then

the elements of a subset of the universal set are presented online one at a time [1].

A new element has to be covered before the arrival of the next one. Analogously, in

the online version of the equivalent Minimum Weight Hitting set problem, the set of

hitting elements is given a priori, and the sets to be hit arrive online one at a time.

A new set has to be hit before the arrival of the next one. Alon et al. established

the following fact in [1].

Fact 7. There is an O(log n log r)-competitive polynomial-time algorithm for the

online Minimum Weight Set Cover problem, where n is the cardinality of the uni-

versal set and r is the cardinality of the given family of subsets of the universal set.

Consequently, there is an O(log n log r)-competitive polynomial-time algorithm for

the online Minimum Weight Hitting set, where n is the cardinality of the family of

sets to hit and r is the cardinality of the set of all possible hitting elements.

By combining Fact 7 with the reduction of the Network Construction problem

to the Minimum Weight Set Cover problem given by Angluin et al. in [2], we obtain

another competitive upper bound for the online B-constraint-bounded Network

Construction problem.

Theorem 2. There is an O((B + log r) log n)-competitive polynomial-time algo-

rithm for the online B-constraint-bounded Network Construction problem with n

vertices and r constraints.

Proof. We shall reduce the online Network Construction problem to the online

Minimum Weight Hitting Set problem, following the reduction of the former prob-

lem to the online Minimum Weight Set Cover problem from [2]. The set of the

possible hitting elements given a priori is just the set of all possible edges. Each
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edge has weight equal to the cost of its construction. For a constraint Si, let PC(Si)

be the set of perfect cuts induced by the constraint upon its arrival online. Next,

for each perfect cut C ∈ PC(Si), let AE(C) be the set of all (additional poten-

tial) edges crossing the perfect cut, i.e., having endpoints in the two different parts

of the bipartition. Note that the constraint Si is satisfied if for each perfect cut

C ∈ PC(Si) there is an edge in AE(C) accounted to the online formed hitting set.

It follows that the cost of an optimal solution to the resulting online Minimum Hit-

ting Set problem is the same as that to the original Network Construction problem.

Now it is sufficient to observe that the former problem has O(n2) possible hitting

elements and at most r2B sets to hit, and then to apply Fact 7.

We can use Theorem 2 to derive a competitive upper bound for the uniform-cost

variant of the Network Construction problem with unbounded constraints. Angluin

et al. considered also the uniform cost variant of the Network Construction prob-

lem in [2], providing an O(n2/3 log2/3 n)-competitive algorithm against an oblivious

adversary and an Ω(
√
n)-competitive lower bound against an adaptive adversary.

Our upper bound in the uniform case is as that of Angluin et al. against an oblivious

adversary, i.e., an adversary not knowing the randomized results of the algorithm.

The key idea is to split the constraints into small and large ones, and use Theorem 2

to process the former ones.

Theorem 3. The uniform cost online Network Construction problem on n ver-

tices and r constraints admits an O(kn0.5(log n+log r))-competitive polynomial-time

algorithm, for every positive integer k, with probability at least 1 − O((nr)−1) − 1
k

provided that n, r are known in advance and lnn+2 ln r < n0.5, any feasible solution

is connected, and the adversary is oblivious.

Proof. Split the set of constraints into two sets, one consisting of all constraints

of size ≤ n0.5 and one consisting of the rest. We can apply the O((B + log r) log n)

competitive algorithm from Theorem 2 to the small constraints obtaining an

O((n0.5 + log r) log n) competitive solution. To satisfy the large constraints with

more than n0.5 vertices we proceed as follows.

We initialize an empty vertex set W. Upon the arrival of a new large constraint,

each vertex v in the constraint that for the first time occurs in a large constraint is

added to W with probability n−0.5(lnn+ 2 ln r). We have lnn+ 2 ln r < n0.5 by the

theorem assumptions. Furthermore, if v is added to W then all missing (i.e., not yet

constructed) edges incident to v are constructed. It follows that the expected total

number, and hence, the expected total cost of the so constructed edges amounts

to at most n0.5(n − 1)(lnn + 2 ln r). Thus, for a positive integer parameter k, the

total cost is at most kn0.5(n − 1)(lnn + 2 ln r) with probability at least 1 − 1
k by

Markov’s inequality. Since the adversary is oblivious, for each large constraint the

probability that it does not contain any vertex from W (before the next constraint
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arrival, if any; otherwise, at the end of the execution) is at most(
1− lnn+ 2 ln r

n0.5

)n0.5

≤ e− lnn−2 ln r ∈ O
(

1

nr2

)
.

Since there are at most r large constraints and the cost of an optimal solution is at

least n− 1, we obtain an kn0.5(lnn+ 2 ln r) competitive upper bound for the large

constraints with probability at least 1−O((nr)−1)− 1
k .

The choice of the threshold n0.5 in order to split the constraints into small and

large ones in the proof of Theorem 3 seems to be asymptotically optimal as long as

r is not substantially larger than n. Otherwise, multiplying n0.5 by a slowly growing

function of r yields a better upper bound on the competitive ratio, e.g., n0.5
√

log r

yields O(kn0.5
√

log r log n) by r ≤ 2n.

3.2. Lower bounds

We present two lower bounds on the competitiveness of algorithms for the online

B-constraint-bounded Network Construction problem implied by the corresponding

general lower bounds established in [2].

When the edge costs can be arbitrary, we can use the following fact due to

Angluin et al. [2].

Fact 8. There is no (cn)-competitive algorithm for c < 1 for the online Network

Construction problem on n vertices, even when the underlying graph is a path.

By setting n = B, we obtain immediately the following corollary from Fact 8.

Corollary 4. For any c < 1, there is no cB-competitive algorithm for the online

B-constraint-bounded Network Construction problem.

For the uniform cost case, we can use the following fact due to Angluin et al. [2].

Fact 9. The online uniform cost Network Construction problem on n vertices has

an Ω(
√
n)-competitive lower bound.

Again, by setting n = B, we obtain immediately the following corollary from

Fact 9.

Corollary 5. The online uniform cost B-constraint-bounded Network Construction

problem has an Ω(
√
B) competitive lower bound.

4. Offline Approximation Algorithms

In this section, we first discuss a hybrid approximation method for the offline Net-

work Construction problem and its application to bioinformatics. It combines the

approximation algorithm of Hosoda et al. from [10] with that of Angluin et al.
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from [2]. Next, we present approximation algorithms for a strengthened version of

the Network Construction problem, where each constraint has to induce a subgraph

(of the constructed graph) of diameter at most d for d given a priori.

4.1. A hybrid method with biological applications

An application of the Network Extension problem to bioinformatics was given

in [15]. There, the goal was to infer protein-protein interactions (PPIs) that were

missing from a database based on a collection of known, overlapping protein com-

plexes. More precisely, the vertices V in the input graph were used to represent

proteins, the set E′ of a priori given edges represented PPIs already in the database,

and each input connectivity constraint Si consisted of the proteins belonging to

a single protein complex. Using the assumption that each protein complex must

induce a connected subgraph, solving instances of the Network Extension prob-

lem gave lower bounds on the number of missing PPIs in various widely used PPI

databases. The overwhelming majority of complexes in the existing PPI databases

seem to be of small size, containing at most 10 proteins each, but a few larger ones

with up to 100 proteins also occur (for details, see Table A3 in the Supporting

Information file for [15]).

The aforementioned statistics suggest a hybrid method consisting of applying

the approximation algorithm of Hosoda et al. from [10] to the constraints corre-

sponding to small complexes and that of Angluin et al. from [2] to the constraints

corresponding to larger complexes. We can express it in terms of the Network Con-

struction problem by the equivalence observed in Sec. 2. The output is the union of

the output of each of the two algorithms applied separately. Hence, by combining

Fact 1 with Fact 2, we obtain the following theorem.

Theorem 6. Consider an instance of the Network Construction problem. For

B ∈ [n]\{1}, let rB be the number of constraints with more than B vertices in the

instance. A solution to the instance (for the respective problem) of total cost not

exceeding minB∈[n]\{1}bB/2cdB/2e+O(log rB) times the minimum can be found in

polynomial time.

The hybrid method will be useful when there is a relatively small B ∈ [n]\{1}
such that the number rB of large constraints including more than B vertices, i.e.,

the number of large complexes in the biological application, is small.

Once B is chosen, one can refine the hybrid approximation method as follows. In

the first phase, we run the approximation algorithm of Hosoda et al. and then that

of Angluin et al. taking into account the edges already constructed by our algorithm.

In the second phase, starting from scratch, we can run the two approximation

methods in the reverse order analogously. Finally, we output the smallest of the

union outputs produced in the two phases. See Fig. 2. Although this refinement may

not always lead to a substantially better approximation compared to the hybrid

method (see Theorem 6), it may be useful in practice.
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Require: a vertex set V, edge construction costs c(e), a set E′ of edges e

with c(e) = 0, and a set S connectivity constraints S1, ...., Sr.

Ensure: A set of edges yielding an approximate solution to the Network

Construction problem for the input instance.

1: S≤B ← the set of all constraints in S with at most B vertices

2: S>B ← the set of all constraints in S with more than B vertices

3: Use the method of Hosoda et al.from Fact 2 to solve the Network Con-

struction problem with the set E′ of edges having zero construction

cost and the constraint set S≤B by an edge set E′1 ⊆ V 2

4: Set the construction costs of the edges in E′1 to zero and use the method

of Angluin et al. from Fact 1 to solve the Network Construction problem

with the set E′ ∪ E′1 of edges having zero cost, and the constraint set

S>B , by an edge set E′′1 ⊆ V 2

5: Use the method of Angluin et al. from Fact 1 to solve the Network

Construction problem with the set E′ of edges having zero cost, and

the constraint set S>B , by an edge set E′2 ⊆ V 2

6: Set the construction costs of the edges in E′2 to zero and use the method

of Hosoda et al. from 2 with the set E′ ∪ E′2 of edges having zero

construction cost, and the constraint set S≤B , by an edge set E′′2 ⊆ V 2

7: return the set in {E′′1 , E′′2 } of minimum total cost.

Fig. 2. The refined hybrid approximation algorithm for the Network Construction problem.

4.2. Bounded diameter requirements

One can naturally strengthen the connectivity requirements in the Network Con-

struction or Extension problems by demanding that each constraint should induce

a subgraph of the constructed network of diameter at most d, where d ∈ [n− 1] is

given a priori (cf. [6]).

For instance, Chockler et al. studied the Network Construction problem in [6]

using a different terminology. They considered the problem of constructing an opti-

mal overlay (network) that for each topic (constraint) includes a dissemination tree

composed of nodes interested in the topic (i.e., belonging to the constraint). One

of the measures of the quality of such an overlay suggested on p. 116 of [6] is the

diameter. Intuitively, having a low diameter is good because it means that two users

interested in the same topic do not need to rely on many intermediate parties, which

leads to more efficient communication and better performance.

We shall term the strengthened version of the Network Construction problem as

the d-diameter Network Construction problem. In fact, the latter problem restricted

to instances with a single constraint is already hard. The restriction can be simply

rephrased as follows: given a vertex set V , edge costs c(e) for potential edges in V 2,

find a cheapest graph spanning V with diameter not exceeding d.
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The d-diameter Network Construction problem restricted to single-constraint

instances is known to be NP-hard already for d = 2 [14] (given an instance (V,E)

of the minimum-cardinality-bounded-diameter edge addition problem with D = 2,

studied and shown to be NP-hard in [14], set the cost of edges in E to zero and

the cost of all other potential edges to 1 to obtain an equivalent instance of the

2-diameter Network Construction problem with single constraints). In contrast,

when restricted to instances with uniform edge costs, this problem variant becomes

trivial as any spanning star graph provides an optimal solution. In [5], Bilò et al.

improved the approximation ratio for the related minimum-cardinality-bounded-

diameter problem to O(log n), closing the asymptotic gap between lower and upper

bounds on the approximability of this problem.

Analogously to the preceding sections, we can consider the d-diameter Network

Construction problem with constraints of cardinality not exceeding B. By using an

auxiliary problem, we can obtain a (
(
B
2

)
−B + 2)

(
B
2

)
approximation in polynomial

time for the B-constraint-bounded d-diameter Network Construction problem. The

auxiliary problem is as follows.

For an instance of the B-constraint-bounded d-diameter Network Construction

problem with a vertex set V, edge construction costs c(e), a set E′ of edges e with

c(e) = 0, and connectivity constraints S1, . . . , Sr find a minimum cost edge set

E′′ ⊆ V 2\E′ such that for i = 1, . . . , r, if the diameter of the subgraph ofG′ = (V,E)

induced by Si is larger than d then E′′ ∩ S2
i 6= ∅.

The following lemma provides an approximation algorithm for the auxiliary

problem.

Lemma 7. The auxiliary problem can be approximated within
(
B
2

)
in polynomial

time.

Proof. Consider an instance of the auxiliary problem with a vertex set V, edge

construction costs c(e), a set E′ of edges with zero construction cost, and con-

nectivity constraints S1, . . . , Sr. We may assume w.l.o.g. that for i = 1, . . . , r, the

diameter of the subgraph of the graph G′ = (V,E′) induced by Si is larger than d

since otherwise the constraint Si can be disregarded. To solve the auxiliary prob-

lem, for i = 1, . . . , r, form the set Ei of all edges in S2
i \E′. The auxiliary problem

is equivalent to finding a minimum weight subset of the set of all potential edges

that hits all the sets E1, . . . , Er, where the weights of the edges are equal to their

construction costs. By our assumptions, for i = 1, . . . , r, |Ei| ≤
(
B
2

)
hold. Now it is

sufficient to apply Fact 3 in order to obtain a
(
B
2

)
approximation for the auxiliary

problem in time linear in the total size of the family {E1, . . . , Er} and |V |2. The

latter size is in turn polynomial in the size of the input instance of the auxiliary

problem.

Now, in order to provide an approximate solution to an instance of the

B-constraint-bounded d-diameter Network Construction problem, we iterate the

method of Lemma 7 as shown in Fig. 3.
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Require: a vertex set V, edge construction costs c(e), a set E′ of edges e

with c(e) = 0, and d-diameter constraints S1, ...., Sr of cardinality ≤ B.

Ensure: A set of edges yielding an (
(
B
2

)
−B+ 2)

(
B
2

)
approximation to the

d-diameter Network Construction problem for the input instance.

1: E′′ ← E′

2: while there is a not yet satisfied constraint Si do

3: Use the method of Lemma 7 to find an approximate solution E′′′ ⊆
V 2 \ E′′ to the auxiliary problem.

4: E′′ ← E′′∪E′′′ (E′′ can be interpreted as the set of already constructed

edges)

5: Remove all connectivity constraints Si such that the subgraph of G′ =

(V,E′′) induced by Si has diameter ≤ d.

6: Set the construction costs of the edges in E′′′ to zero.

7: end while

8: return E′′ \ E′

Fig. 3. The (
(B
2

)
−B + 2)

(B
2

)
approximation algorithm for the B-constraint-bounded d-diameter

Network Construction problem.

Theorem 8. The B-constraint-bounded d-diameter Network Construction problem

can be approximated within (
(
B
2

)
−B + 2)

(
B
2

)
in polynomial time.

Proof. We shall analyze the iterative method based on Lemma 7. Since for i =

1, . . . , r, |Si| ≤ B, the subgraph of the original graph G′ = (V,E′) induced by Si can

be completed by at most
(
B
2

)
edges. Hence, at most

(
B
2

)
iterations of the while block

are sufficient. In fact, already
(
B
2

)
−B + 2 iterations are sufficient since in a graph

with B vertices and at least
(
B
2

)
− (B − 2) edges each pair of non-adjacent vertices

has a common neighbor. Note that the cost of an optimal solution to any of the at

most
(
B
2

)
−B+ 2 auxiliary problems approximately solved in consecutive iterations

of the while block cannot be greater than that of an optimal solution to the original

B-constraint-bounded d-diameter Network Construction problem. Hence, the upper

bound (
(
B
2

)
−B+2)

(
B
2

)
on the approximation factor of the iterative method follows

from Lemma 7.

Hosoda et al. showed the B-constraint-bounded Network Construction prob-

lem to be APX-complete in [10]. Similarly, we can show the B-constraint-

bounded d-diameter Network Construction problem to be APX-complete by using

Theorem 8.

Theorem 9. The B-constraint-bounded d-diameter Network Construction prob-

lem is APX-complete, when B ≥ 3 and d ≥ 2. It is also NP-hard to approximate

beyond (B − 2) factor and UGC-hard to approximate beyond B − 1, for B ≥ 3 and

d ≥ 2.
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Proof. By Theorem 8, it is sufficient to show that the B-constraint-bounded d-

diameter Network Construction problem is APX-hard in order to show the APX-

completeness of this problem.

Consider an instance I of the Minimum Weight Hitting Set problem with a finite

set U of elements u1, . . . , ur having uniform weights 1, and a family C of subsets of U,

each of cardinality not exceeding B−1. Form a set V of vertices a and v1, v1, . . . , vr,

where for i = 1, . . . , r, the pair of vertices a, vi corresponds to the element ui. Set

the construction cost of edges connecting two vertices vi, vj to zero, the construction

cost of edges {a, vi} for i = 1, . . . , r, to 1. Now, for each subset Cj in C, form

the constraint Sj = {a} ∪ {vi|ui ∈ Cj}. By our assumptions and the construction,

|Sj | ≤ B − 1 + 1 ≤ B holds. Note that if all edges of zero cost are constructed and

for each constraint Sj at least one edge of the form {a, vi} (having cost 1), where

vi ∈ Cj , is constructed then constraints induce subgraphs of diameter at most d

(in fact of diameter at most 2). Otherwise, at least one of the subgraphs induced

by a constraint is disconnected. The construction of an edge {a, vi} corresponds to

the insertion of the element ui into the hitting set. Thus, the d-diameter Network

Construction problem for the aforementioned instance becomes equivalent to the

Minimum Weight Hitting Set problem for the instance I, in this setting. Hence, by

Fact 4, we obtain APX-hardness of the B-constraint-bounded Network Construction

problem. The APX-completeness follows now from Theorem 8. Finally, by Fact 5,

we conclude that B-constraint-bounded d-diameter Network Construction problem

is NP-hard to approximate beyond (B − 2) factor and UGC-hard to approximate

beyond B − 1 factor, for B ≥ 3, d ≥ 2.

In the general case with unbounded constraints, straightforward greedy

approaches do not seem to work. However, if the edge costs are uniform, we can

obtain a large but still a nontrivial approximation factor in polynomial time by

splitting the constraints into small and large ones, and using Theorem 8 to obtain

an approximation for the former.

For an instance of the uniform cost d-diameter Network Construction problem

with n vertices, consider the overlap graph whose vertices are in one-to-one corre-

spondence with the input constraints and a pair of vertices is adjacent if and only if

the corresponding constraints overlap. Note that if the overlap graph is connected

then any solution to the d-diameter problem has to include at least n − 1 edges.

Otherwise, one can consider subproblems of the d-diameter problem constrained to

the unions of constraints belonging to the same connected component of the overlap

graph instead.

Theorem 10. The uniform cost d-diameter Network Construction problem with n

vertices and r constraints, d ≥ 2, admits an O((n ln r)0.8) approximation, when a

solution graph has to be connected.

Proof. Split the constraints into small ones of size ≤ (n ln r)0.2 and the remaining

large ones. We can apply the (
(
B
2

)
−B+2)

(
B
2

)
approximation to the small constraints
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obtaining an (n ln r)0.8 approximation. To satisfy the large constraints on more than

(n ln r)0.2 vertices, we proceed as follows.

Let Q be the set of vertices involved in the large constraints. and let q stand for

the cardinality of Q. Thus, we have a sequence of sets (i.e., constraints) S1, . . . , Sk,

k ≤ r, each of size at least t = (n ln r)0.2. We would like to hit all these sets using

the elements from Q and for each vertex v in the hitting set to construct all edges

connecting v with other vertices in Q. To form our hitting set, we use the standard

greedy algorithm. Since the set size is at least t, each time at least t/n fraction of

the sets will be hit.

This is easily seen when the sets are disjoint, i.e., when each vertex occurs in at

most one of the sets. Suppose that the maximum number of the sets that a vertex

in Q can occur is l ≥ 1. Then, the union of the sets forms a multiset of size at most

nl and consequently their number k does not exceed nl
t . Hence, the greedy heuristic

picks an element hitting at least t/n fraction of the sets.

As a result, the greedy algorithm produces a hitting set of size n
t ln r = (n ln r)0.8.

Thus, the total cost of the constructed edges to satisfy the large constraints is

at most (n ln r)0.8(q − 1). Since the cost of an optimal solution is at least q − 1

by the theorem assumption, we obtain an (n ln r)0.8 approximation for the large

constraints.

5. Final Remarks

It would be useful to tighten the upper and lower competitiveness bounds on the

online version of the B-constraint-bounded Network Construction problem. It would

be especially interesting to know if the factor that is logarithmic in n can be removed

from the upper bounds.

As mentioned in Sec. 4.2, straightforward greedy approaches do not seem to work

for the d-diameter Network Construction problem with unbounded constraints. One

reason for this is that natural candidates for potential functions in greedy methods

(e.g., the number of pairs of vertices within distance d of each other) seem to lack

the submodularity property. It is an interesting question if it is possible to achieve a

reasonable approximation factor for this problem in the general case, at least when

edge costs are uniform.

Finally, it would be interesting to consider fixed-parameter algorithms for the

Network Construction Problem parameterized by B, r, and d.
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