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Abstract. We study the problem of computing the Voronoi diagram of
a set of n2 points with O(logn)-bit coordinates in the Euclidean plane in
a substantially sublinear in n number of rounds in the congested clique
model with n nodes. Recently, Jansson et al. have shown that if the points
are uniformly at random distributed in a unit square then their Voronoi
diagram within the square can be computed in O(1) rounds with high
probability (w.h.p.). We show that if a very weak smoothness condition
is satisfied by an input set of n2 points with O(logn)-bit coordinates in
the unit square then the Voronoi diagram of the point set within the unit
square can be computed in O(logn) rounds in this model.

Keywords: Voronoi diagram, Delaunay triangulation, the convex hull, distributed
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1 Introduction

The congested clique is a relatively new model of communication and computa-
tion introduced by Lotker et al. in 2005 [9]. It focuses on the cost of communi-
cation between the nodes in a network, ignoring the cost of local computation
within each node. Hence, it can be seen as opposite to the Parallel Random
Access Machine (PRAM) model, studied extensively in the 80s and 90s. The
PRAM model focuses on the computation cost and ignores the communication
cost [1].

Originally, the complexity of dense graph problems has been studied in the
congested clique model under the following assumptions. Each node of the con-
gested clique represents a distinct vertex of the input graph and knows its neigh-
borhood in the graph. Every node also knows the unique ID numbers (between
1 and n) of itself and all the other nodes at the start of the computation. The
computation proceeds in rounds. In each round, each of the n nodes can send a
distinct message of O(log n) bits to each other node and can perform unlimited
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local computation. The primary complexity objective is to minimize the number
of rounds necessary to solve a given problem on the input graph in this model.

For several basic graph problems, e.g., the minimum spanning tree problem,
one has succeeded to design even O(1)-round protocols in the congested clique
model [11,14]. Observe that when the input graph is of bounded degree and edge
weights have O(log n)-bit representation, each node can send the ID numbers of
all nodes in its neighborhood and the weights of its incident edges, e.g., to the
first node in O(1) rounds. After that, the first node can solve the whole problem
locally. However, such a trivial solution would require Ω(n) rounds when the
input graph is dense.

Matrix problems [3], sorting and routing [7], and geometric problems [6]
have also been studied in the congested clique model. In all cases, the basic
input items, i.e., matrix entries or keys, or points in the plane, respectively, are
assumed to have O(log n)-bit representations and each node initially has a batch
of n such items. Note that the bound on bit representation of an input item is
a natural consequence of the O(log n)-bit bound on the size of a single message
which makes input items of unbounded bit representation imcompatible with the
assumed model. As in the graph case, in every round, each node can send a
distinct O(log n)-bit message to each other node and perform unlimited local
computation. Significantly, it has been shown that matrix multiplication can be
performed in a number of rounds substantially sublinear in n [3] while sorting
and routing can be implemented in O(1) rounds (Theorems 4.5 and 3.7 in [7]).

As for the geometric problems, Jansson et al. [6] recently provided low poly-
logarithmic, deterministic upper bounds on the number of rounds required to
solve several basic geometric problems for a set of n2 points in the plane with
O(log n)-bit coordinates in the model of congested clique with n nodes. As for
the construction of the Voronoi diagram and the dual Delaunay triangulation of
the point set (see Fig. 1 for an illustration and Section 2 for the formal defini-
tion), they have shown an O(1) upper bound on the number of required rounds
under the assumption that the points are drawn uniformly at random from a unit
square. On the other hand, already at the end of 90s, Goodrich presented O(1)-
round randomized protocols for the construction of three-dimensional convex
hull of a set of points in three-dimensional Euclidean space in O(1) communi-
cation rounds in the so-called Bulk Synchronous Processing model (BSP) [5].
His result also implies an O(1)-round bound on the randomized construction
of the Voronoi diagram and the dual Delaunay triangulation of a planar point
set in the BSP model. By using the O(1)-round routing protocol of Lenzen [7],
Goodrich’s O(1) bound on the number of rounds necessary for the construction
of the Voronoi diagram and Delaunay triangulation most likely can be carried
over from the BSP model to ours.

In this context, the major open problem is to derive a non-trivial upper bound
on the number of rounds sufficient to deterministically construct the Voronoi
diagram when the points are not necessarily drawn uniformly at random. The
bottleneck in the design of efficient parallel or distributed algorithms for the
Voronoi diagram of a planar point set using a direct divide-and-conquer approach
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(a) (b) (c)

Fig. 1. An example of a planar point set, its Voronoi diagram, and the dual Delaunay
triangulation.

is an efficient parallel or distributed merging of Voronoi diagrams Aggarwal et
al. [1] presented an O(log2 n)-time CREW PRAM algorithm for the Voronoi
diagram based on an involved O(log n))-time PRAM method for the parallel
merging. Subsequently, Amato and Preparata [2] demonstrated an O(log n)-time
CREW PRAM algorithm for the three-dimensional convex hull and consequently
also for the two-dimensional Voronoi diagram of a point set.

We substantially extend the local approach to the construction of the Voronoi
diagram used in the design of parallel and distributed algorithms for the Voronoi
diagram of points drawn uniformly at random, e.g., from a unit square [6,8,15].
We show that already a very weak smoothness condition on the input set of n2

points with O(log n)-bit coordinates within a unit square is sufficient to obtain
an O(log n) upper bound on the number of rounds required to construct the
Voronoi diagram of the set within the unit square on the congested n-clique.
Roughly, our weak smoothness condition says that if a square Q of side length
ℓ within the unit square contains at least n out of the n2 input points then any
square of the same size at distance at most 4

√
2ℓ from Q and within the unit

square has to contain at least one input point.
In order to simplify the presentation, we assume throughout the paper that

the points in the input point sets are in general position (i.e., neither any three
input points are co-linear nor any four input points are co-circular).

Our paper is structured as follows. The next section contains basic mathe-
matical/geometric definitions, lemma, and facts on routing and sorting in the
congested clique model. Section 3 presents our protocol for the Voronoi diagram
and Delaunay triangulation of a weakly smooth planar point set within a square.
We conclude with final remarks.

2 Preliminaries

The cardinality of a set S is denoted by |S|.
For a positive integer r, [r] stands for the set of positive integers not exceeding

r.
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For a finite set S of points in the Euclidean plane, the Voronoi diagram of S
is the partition of the plane into |S| regions such that each region consists of all
points in the plane having the same closest point in S; see Fig. 1.

A Delaunay triangulation of S is a maximal set of non-crossing edges between
pairs of points from S such that no point from S is placed inside any of the formed
triangles’ circumcircles. It is well known that if no four points in S are co-circular
then the Delaunay triangulation of S is a dual of the Voronoi diagram of S in
the following sense [13]: for each edge e of of each region in the Voronoi diagram
of S, if e is a part of the bisector of the points u, v in S then (u, v) is an edge
of the Delaunay triangulation of S; again, see Fig. 1.

Our concept of weak smoothness is formally defined in terms of two param-
eters as follows.

Definition 1. Let ε, d be two positive real constants. A set of N points in a
unit square is (ε, d)-smooth if for any two equal size squares Q, R within the
unit square the following implication holds:
if Q contains at least Nε points of S and R is at distance at most d · ℓ from Q,
where ℓ is the length of each edge of Q and R, then R contains at least one point
of S.

We also need to define a sequence of grids within a unit square and related
notions.

Definition 2. For a nonnegative integer i, we shall denote by Gi(U) the or-
thogonal grid within the unit orthogonal square U that includes the edges of U
such that the distance between two neighboring vertical or horizontal grid line
segments is 1

2i . A basic square of Gi(U) is a square within U such that the end-
points of each its edge is a pair of neighboring grid points. For a basic square
R in Gi(U), we shall denote the orthogonal region consisting of R and the two
layers of basic squares around R by TLi(R) (if between R and an edge of the
unit square there is place only for one or zero layers then TLi(R) includes only
one or zero layers on this side, respectively).

The proof of the following lemma corresponds to the second paragraph of the
proof of Theorem 4 in [6].

Lemma 1. Let R be a basic square in a grid Gi(U) within the unit square U .
Consider a finite set S of points within the unit square. If R contains a point
in S then the Voronoi diagram of S within R can be computed by taking into
account only the points of S within TLi(U). Hence, in particular all edges (u, v)
of the Delaunay triangulation of S such that a part of the bisector of u and v
borders some region of the Voronoi diagram of S within R can be determined.

Proof. Let e be an edge of the Voronoi diagram of S within R. The edge e has
to be a part of the bisector of some couple of points s1 and s2 in S. Consider
an arbitrary point q on e. Suppose that s1 or s2 is placed outside TLi(R), i.e.,
the orthogonal area consisting of at most 1 + 8 + 16 = 25 squares including R.
See Fig. 2. Without loss of generality, let s2 be such a point. Then the distance
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Fig. 2. An example of the configuration in the proof of Lemma 1.

between q and s2 is at least 2 · 1
2i , while the distance between q and every point

inside R is at most
√
2 · 1

2i . We obtain a contradiction because R contains at
least one point from S and q is closer to such a point than to s2. ⊓⊔

Lenzen gave an efficient solution to the following fundamental routing problem in
the congested clique model, known as the Information Distribution Task (IDT)
[7]:
Each node of the congested n-clique holds a set of exactly n O(log n)-bit mes-
sages with their destinations, with multiple messages from the same source node
to the same destination node allowed. Initially, the destination of each mes-
sage is known only to its source node. Each node is the destination of exactly
n of the aforementioned messages. The messages are globally lexicographically
ordered by their source node, their destination, and their number within the
source node. For simplicity, each such message explicitly contains these values,
in particular making them distinguishable. The goal is to deliver all messages to
their destinations, minimizing the total number of rounds.

Lenzen proved that IDT can be solved in O(1) rounds (Theorem 3.7 in [7]).
He also noted that the relaxed IDT, where each node is required to send and
receive at most n messages, reduces to IDT in O(1) rounds. From here on, we
shall refer to this important result as:

Fact 1 [7] The relaxed Information Distribution Task can be solved determinis-
tically within O(1) rounds.

The Sorting Problem (SP) is defined as follows:
Each node i of the congested n-clique holds a set of n O(log n)-bit keys. All the
keys are different w.l.o.g. Each node i needs to learn all the keys of indices in
[n(i− 1) + 1, ni] (if any) in the total order of all keys.

Lenzen showed that SP can be solved in O(1) rounds if each node holds a set
of exactly n keys (Theorem 4.5 in [7]). In order to relax the requirement that
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each node holds exactly n keys to that of with most n keys, we can determine
the maximum key and add appropriate different dummy keys in O(1) rounds.
We summarize this result as:

Fact 2 [7] The relaxed Sorting Problem can be solved in O(1) rounds.

3 The local approach

Consider a ( 12 , 4
√
2)-smooth set of n2 points with O(log n)-bit coordinates in a

unit orthogonal square. We shall first describe a protocol for listing the edges of
the Delaunay triangulation of the set that are dual to the edges of the Voronoi
diagram of the set within the unit square. Roughly, it implicitly grows a quadtree
of squares rooted at the unit square in phases corresponding to the levels of the
quadtree. If a square R currently at a leaf of the quadtree jointly with the
two layers of equal size squares around it includes O(n) input points then the
intersection of the Voronoi diagram of the input point set with R and the dual
edges of the Delaunay triangulation of the input point set can be computed
locally. This follows from Lemma 1 combined with the fact that the parent
square of R does not satisfy an analogous condition. Otherwise, four child squares
whose union forms R are created on the next level of the quadtree. In particular,
checking the aforementioned condition in parallel for the squares at the current
front level of the quadtree and delivering the necessary points to the nodes
representing respective frontier squares in O(1) rounds on the congested n-clique
are highly non-trivial.

protocol DT − SQUARE(S,U)
Input: A ( 12 , 4

√
2)-smooth set of n2 points with O(log n)-bit coordinates in a unit

orthogonal square U held in n-point batches at the n nodes of the congested
clique.
Output:The set of the edges of the Delaunay triangulation of S dual to the edges
of the Voronoi diagram of S within U held in O(n)-edge batches at consecutive
clique nodes.

1. Initialize a list L of edges of the Delaunay triangulation of S.
2. Activate the basic square U in G0(U) and assign it to the first node.
3. For i = 0, 1, . . . do

(a) Each node for each point p in its batch determines the number num(p)
of the basic square of Gi(U) containing p in a common fixed numbering
of the basic squares in Gi(U) (e.g., column-wise). Next, a prefixed repre-
sentation of p consisting of bit representation of num(p) followed by the
bit representation of the coordinates of p is created.

(b) The points in S are sorted by their prefixed representation. After that
each node informs all other nodes about the range of numbers of the
basic squares in Gi(U) holding the prefixed representations of points in
S that landed at the node after the sorting of the prefixed representations
of all the points.
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(c) For each basic square W in Gi(U) such that the prefixed representa-
tions of points belonging to W landed in a sequence C of at least two
consecutive nodes, the nodes in C inform additionally the other nodes
in C about the number of the prefixed representations of the points in
W they got so in particular the node in C with the smallest index can
compute the total number of the points in W .

(d) Each node for each active basic square R in Gi(U) it represents sends
queries to the nodes holding the prefixed point representations of the
points in the basic squares in TLi(R) (i.e., in R and the two layers of
basic squares around R in Gi(U)) about the number of points in these
squares. In case several nodes hold the prefixed point representation of
points in a basic square in TLi(U), the query is send just to that with
the smallest index.

(e) After getting answers to the queries, each node for each active basic
square in R in Gi(U) it represents proceeds as follows. If the total number
of points of S in TLi(R) does not exceed 100n then the node asks the
nodes holding the prefixed representations of the points in the basic
squares in TLi(R) for sending the points to the node. After that the
node computes the Voronoi diagram of all these points and then the
intersection of the diagram with R locally. Next, the node appends to
L all edges (u, v) where a part of the bisector of u and v borders some
region of the Voronoi diagram in the computed intersection. Otherwise,
the node activates the four squares in Gi+1(U) whose union forms R and
assigns them temporarily to itself.

(f) The nodes balance the assignment of active basic squares in Gi+1(U) by
informing all other nodes about the number of active basic squares in
Gi+1(U) they are assigned and following the results of the same assign-
ment balancing algorithm run by each of them separately locally.

(g) The list L is sorted in order to remove multiple copies of the same edge.

Lemma 2. DT − SQUARE(S,U) activates basic squares solely in the grids
Gi(U), where i = O(log n).

Proof. Simply, the points in S have O(log n)-bit coordinates so at depth at most
O(log n) the condition in Step 3(e) of DT −SQUARE(S,U) has to be satisfied.

⊓⊔

Lemma 3. The protocol DT − SQUARE(S,U) is correct.

Proof. When the Voronoi diagram of the points of S in TLi(U) for a basic
square R of the grid Gi(U) is computed then there must be square Q′ in the
grid Gi−1(U) that contains at least 100n/25 points in S and is at distance at
most

√
2

2i−1 from the basic square in Gi−1(U) that is the parent of R. Hence, there
is a basic square Q in Gi(U) that is part of Q′ and contains at least 100n/100
points in S; see Fig. 3. By straightforward calculations, the distance between Q
and R is at most 4

√
2 1
2i . Thus, by the assumed ( 12 , 4

√
2)-smoothness property,
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Fig. 3. An example of the configuration in the proof of Lemma 3.

the square R contains at least one point in S. It follows from Lemma 1 that the
intersection of the Voronoi diagram of the points of S in TLi(R) with R yields
the Voronoi diagram of S within R. Hence, the edges appended to the list L are
the edges of the Delaunay triangulation of S dual to the edges of the Voronoi
diagram of S within U . It easily follows by induction on i during forming the
quadtree of active basic squares that the leaf active basic squares form a partition
of the unit square U. Therefore, for each edge (u, v) of the Delaunay triangulation
of S dual to an edge of the Voronoi diagram of S within U there must exist a
positive integer i and an active basic square R in Gi(U) such that R does not
have any child active basic squares in Gi+1(U) and a part of the bisector of u
and v borders some region in the Voronoi diagram of S within R. Hence, the list
L is complete. ⊓⊔

Lemma 4. For i = 0, 1, . . . , O(log n), the number of active basic squares in the
grid Gi(U) is O(n) during the performance of DT − SQUARE(S,U).

Proof. We argue similarly as at the beginning of the proof of Lemma 3. If R is
an active basic square in Gi(U) different from the unit square U then there must
exist a basic square Q in TLi−1(R

′), where R′ is the parent of R in Gi−1(U), such
that Q contains at least 100n/25 points in S. Now it is sufficient to note that: (i)
there are at most O(n) basic squares in Gi−1(U) that contain at least 100n/25
points in S; (ii) there are at most O(1) basic squares Q′ in Gi−1(U) different
from R′ such that Q is included in TLi−1(Q

′); (iii) an active basic square in
Gi−1(U) can be a parent to at most four active basic squares in Gi(U). ⊓⊔

Lemma 5. The protocol DT −SQUARE(S,U) can be implemented in O(log n)
rounds on the congested clique.

Proof. Steps 1, 2 can be easily implemented in O(1) rounds. By Lemma 2, the
block under the for loop in Step 3 is iterated O(log n) times. It is sufficient to
show that this block (a-g) can be implemented in O(1) rounds.

Step 3(a) can be performed totally locally.
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The sorting of the prefixed representations of points in S in Step 3(b) can be
done in O(1) rounds by Fact 3.

For each node, the range of the numbers of the basic squares in Gi(U) holding
the prefixed representations of points in S at the node after the sorting of the
prefix representations of the points can be specified by two O(log n)-bit numbers.
Hence, all nodes can inform all other nodes about their ranges in O(1) rounds.
Thus, Step 3(b) requires O(1) rounds in total.

The situation described in Step 3(c) can happen for at most n basic squares
W in Gi(U). It requires sending by each node at most two different messages to
at most n nodes in total and also receiving at most n messages. Hence, Step 3(c)
can be implemented in O(1) rounds by using the routing protocol from Fact 2.

In Step 3(d), for each active basic square, a node representing the square
has to send O(1) O(log n)-bit queries to O(1) other nodes. The total number of
active basic squares in Gi(U) is O(n) by Lemma 4. Hence, by using the routing
protocol from Fact 2 this task can be done in O(1) rounds.

Consider Step 3(e). Answering the queries sent in Step 3(c) can be done by
local computations and the routing reverse to that in Step 3(d) in O(1) rounds.
After that each node for each active square assigned to it determines locally if
the criterion for computing the Voronoi diagram of S within R is satisfied. If so
the node sends messages asking the nodes holding the prefixed representations
of points in the squares of TLi(R) for sending the points. This requires sending
O(n) messages for each active basic square in Gi(U). Since the total number of
such squares is O(n) by Lemma 4 and each node represents O(1) active squares in
Gi(U), it can be accomplished in O(1) rounds by Fact 1. Delivering the requested
points to the nodes representing respective active basic squares can also be done
in O(1) rounds for the following reasons. For each active basic square the node
representing it needs to receive O(n) points. Furthermore, by Lemma 4 there are
O(n) active basic squares in Gi(U). Hence, since the active squares are assigned
to the n nodes in a balanced way, each node needs to receive O(n) points. Also,
the points contained in a given basic square in Gi(U) can be requested by at
most O(1) nodes since there are at most O(1) active basic squares behind these
requests to the given square. Since the sorted prefixed representations of the
points in S are divided between the nodes in a balanced way, each node needs
to send O(n) points, each of them to O(1) nodes. We conclude that this part of
Step 3(d) can be implemented in O(1) rounds by Fact 1. The remaining parts
of Step 3(d) are done locally.

Step 3(f) requires sending and receiving by each node O(1) messages so it
can be done in O(1) rounds.

Consider an edge (u, v) dual to some edge of the Voronoi diagram of the
points of S included in TLi(R) within an active basic square R in Gi(U). The
edge can be appended to L at most for O(1) different squares R as u, v are in
TLi(R). Therefore, the list L may contain at most O(1) copies of an edge of the
Delaunay triangulation of S so Step 3(g) can be implemented in O(1) rounds by
using the sorting protocol from Fact 2. ⊓⊔

Lemmata 3, 5 yield our first main result.
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Theorem 1. Let S be a ( 12 , 4
√
2)-smooth set of n2 points with O(log n)-bit co-

ordinates in an orthogonal unit square, held in n-point batches at the n nodes of
the congested clique. The set of edges of the Delaunay triangulation of S dual to
the edges of the Voronoi diagram of S within the unit square can be constructed
in O(log n) rounds on the congested clique.

Lemma 6. Let S be defined as in Theorem 1. Suppose that a list L of the edges
of the Delaunay triangulation of S dual to the edges of the Voronoi diagram of S
within the unit square is held in O(n)-edge batches at the n nodes of the congested
clique. The Voronoi diagram of S within the unit square can be constructed in
O(1) rounds on the congested clique.

Proof. Double the list L by inserting for each (u, v) ∈ L also (v, u) into L. For
each edge (u, v) determine locally an O(log n)-bit representation of the angle
β(u, v) between (u, v) and the horizontal line passing through u. For instance,
the representation can specify the tangent of the angle by (vy−uy, vx−ux). Sort
the edges (x, y) by (x, β(u, v)), letting the nodes to compare the angle tangents
locally, using the sorting protocol from Fact 3. In this way, for each point u ∈ S,
a sub-list of all edges of the Delaunay triangulation incident to u in the angular
order is created. Some of the sub-lists can stretch through several nodes of the
clique network. Given the edges of the Delaunay triangulation incident to u in
the angular order, the edges of the Voronoi region of u within the unit square can
be easily produced. This is done by intersecting the bisectors of u and the other
endpoints of consecutive edges incident to u in the angular order as long as the
intersection of two consecutive bisectors is within the unit square. Otherwise, the
border of the region of u has to be filled with the fragment of the perimeter of the
unit square between the intersections of the two bisectors with the perimeter. ⊓⊔

Theorem 1 combined with Lemma 6 yield our second main result.

Theorem 2. Let S be a ( 12 , 4
√
2)-smooth set of n2 points with O(log n)-bit co-

ordinates in an orthogonal unit square held in n-point batches at the n nodes of
the congested clique. The Voronoi diagram of S can within the unit square be
constructed in O(log n) rounds on the congested clique.

4 Final remarks

The message complexity of a protocol in the congested clique model is the max-
imum total number of O(log n)-bit messages exchanged by the n nodes of the
congested clique during a run of the protocol (e.g., see [12]). In case of our proto-
cols, it is easily seen to be the product of the maximum number of messages that
can be exchanged in a single round, i.e., Θ(n2), times the number of required
rounds. Thus, the message complexity of our deterministic protocols for the De-
launay triangulation and the Voronoi diagram of n2 point sets from Section 3 is
O(n2 log n).

The remaining major open problem is the derivation of a low polylogarithmic
upper bound on the number of rounds sufficient to deterministically construct
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the Voronoi diagram of n2 points with O(log n)-bit coordinates in the Euclidean
plane (when the points are not necessarily randomly distributed) on the con-
gested clique with n nodes. This seems feasible but it might require a substantial
effort as in the PRAM case [2,1].

Note here that the existence of an O(log n)-time (unit cost) PRAM algorithm
for a geometric problem on a point set (e.g., [2]) does not guarantee the mem-
bership of the problem in the NC1 class defined in terms of Boolean circuits
[4,10]. Simply, assuming that the input points have O(log n)-bit coordinates,
the arithmetic operations of the PRAM implemented by Boolean circuits of
bounded fan-in have a non-constant depth, at least Ω(log log n). Consequently,
the Boolean circuit simulating the O(log n)-time PRAM for fixed input size can
have a super-logarithmic depth. This is a subtle and important point in the con-
text of relatively recent results of Frei and Wada providing simulations of the
classes NCk, k > 0, by MapReduce (see Theorems 9 and 10 in [4]), and con-
sequently, in the Massively Parallel Computation (MPC) and BSP models (see
Theorem 1 in [10]). Due to the O(1)-round routing protocol of Lenzen [7], the
congested clique model in our setting can be roughly regarded as a special case
of MPC, where the size of the input is approximately the square of the number
of processors. For this reason, the NC simulation results from [4] are relevant to
our model only when the parameter ϵ in the exponent of the space bounds in [4]
equals 1

2 . This is possible in case of Theorem 9 in [4] on NC1 simulation but not
possible in case of Theorem 10 in [4] on NCk, k > 0, simulation. However, the
proof of the former theorem in [4] relies on a strict logarithmic upper bound on
the depth of Boolean circuit of bounded fan-in required by Barrington’s charac-
terization of the NC1 class in terms of bounded-width polynomial-size branching
programs. Otherwise, one has to adhere to the direct circuit simulation method
from [4] that does not work for ϵ = 1

2 . In summary, Theorems 9 and 10 in [4] do
not seem to have any direct consequences for geometric problems on point sets
in our model setting.

References

1. A. Aggarwal, B. Chazelle, L. J. Guibas, C. Ó’Dúnlaing, and C.-K. Yap. Parallel
computational geometry. Algorithmica, 3:293–327, 1988.

2. M. Amato and F. Preparata. A time-optimal parallel algorithm for three-
dimensional convex hull. Algorithmica, 14(2):169–182, 1995.

3. K. Censor-Hillel, P. Kaski, J. H. Korhonen, C. Lenzen, A. Paz, and J. Suomela.
Algebraic methods in the congested clique. Distributed Computing, 32(6):461–478,
2019.

4. F. Frei and K. Wada. Efficient deterministic MapReduce algorithms for paralleliz-
able problems. Journal of Parallel and Distributed Computing, 177:28–38, 2023.

5. M. Goodrich. Randomized fully-scalable BSP techniques for multi-searching and
convex hull construction. In Proceedings of the Eighth Annual Symposium on Dis-
crete Algorithms, pages 767–776. ACM-SIAM, 1997.

6. J. Jansson, C. Levcopoulos, A. Lingas, and V. Polishchuk. Convex hulls, trian-
gulations, and Voronoi diagrams of planar point sets on the congested clique.
arXiv:2305.09987, 2023. Preliminary version in Proceedings of the Thirty-Fifth
Canadian Conference on Computational Geometry (CCCG 2023), pages 183–189,
2023.

11



7. C. Lenzen. Optimal deterministic routing and sorting on the congested clique. In
Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing
(PODC 2013), pages 42–50. ACM, 2013.

8. C. Levcopoulos, J. Katajainen, and A. Lingas. An optimal expected-time parallel
algorithm for Voronoi diagrams. In Proceedings of the First Scandinavian Work-
shop on Algorithm Theory (SWAT 88), volume 318 of Lecture Notes in Computer
Science, pages 190–198. Springer-Verlag, 1988.

9. Z. Lotker, B. Patt-Shamir, E. Pavlov, and D. Peleg. Minimum-weight spanning tree
construction in O(log logn) communication rounds. SIAM Journal on Computing,
35(1):120–131, 2005.

10. D. Nanongkai and M. Scquizzato. Equivalence classes and conditional hardness in
massively parallel computing. Distributed Computing, 35:165–183, 2022.

11. K. Nowicki. A deterministic algorithm for the MST problem in constant rounds of
congested clique. In Proceedings of the Fifty-Third Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC 2021), pages 1154–1165. ACM, 2021.

12. S. Pemmaraju and V. Sardeshmukh. Super-fast mst algorithms in the congested
clique using o(m) messages. In Proceedings of the 36th Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS’2016),
pages 47:1–47:15. LIPICS, 2016.

13. F. Preparata and M. Shamos. Computational Geometry: An Introduction, vol-
ume 10 of Texts and Monographs in Computer Science. Springer-Verlag, 1985.

14. P. Robinson. Brief announcement: What can we compute in a single round of the
congested clique? In Proceedings of the 2023 ACM Symposium on Principles of
Distributed Computing (PODC 2023), pages 168–171. ACM, 2023.

15. B. C. Vemuri, R. Varadarajan, and N. Mayya. An efficient expected time parallel
algorithm for Voronoi construction. In Proceedings of the Fourth Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA 1992), pages 392–
401. ACM, 1992.

12


	The Voronoi Diagram of Weakly Smooth Planar Point Sets in O(n) Deterministic Rounds on the Congested Clique

