
Convex Hulls, Triangulations, and Voronoi
Diagrams of Planar Point Sets on the Congested

Clique⋆

Jesper Jansson1, Christos Levcopoulos2,
Andrzej Lingas2, and Valentin Polishchuk3

1 Graduate School of Informatics, Kyoto University, Kyoto, Japan.
jj@i.kyoto-u.ac.jp

2 Department of Computer Science, Lund University, Lund, Sweden.
{Christos.Levcopoulos, Andrzej.Lingas}@cs.lth.se

3 Communications and Transport Systems, ITN, Linköping university, Sweden
valentin.polishchuk@alumni.stonybrook.edu

Abstract. We consider geometric problems on planar n2-point sets in
the congested clique model. Initially, each node in the n-clique net-
work holds a batch of n distinct points in the Euclidean plane given
by O(logn)-bit coordinates. In each round, each node can send a dis-
tinct O(logn)-bit message to each other node in the clique and perform
unlimited local computations. We show that the convex hull of the in-
put n2-point set can be constructed in O(min{h, logn}) rounds, where
h is the size of the hull, on the congested clique. We also show that a
triangulation of the input n2-point set can be constructed in O(log2 n)
rounds on the congested clique. Finally, we demonstrate that the Voronoi
diagram of n2 points with O(logn)-bit coordinates drawn uniformly at
random from a unit square can be computed within the square with high
probability in O(1) rounds on the congested clique.

Keywords: convex hull, triangulation, Voronoi diagram, distributed algorithms,
the congested clique model

1 Introduction

The congested clique is a model of communication/computation that focuses on
the cost of communication between the nodes in a network and ignores that of
local computation within each node. This model was introduced by Lotker et
al. [10]. It can be seen as a reaction to the criticized Parallel Random Access
Machine (PRAM) model, studied extensively in the 1980s and 1990s, which in
contrast focuses on the computation cost and ignores the communication cost
[1].
⋆ A preliminary version of this article appeared in Proceedings of the Thirty-

Fifth Canadian Conference on Computational Geometry (CCCG 2023), Montréal,
Canada, pp. 183–189, 2023.

ar
X

iv
:2

30
5.

09
98

7v
3

 [
cs

.D
C

]
 2

5
N

ov
 2

02
3

In recent decades, the complexity of dense graph problems has been inten-
sively studied in the congested clique model. Typically, each node of the clique
network initially represents a distinct vertex of the input graph and knows that
vertex’s neighborhood in the input graph. The nodes are assumed to have unique
numbers (IDs) between 1 and n which are already known by all nodes in the
network at the start of the computation. Then, in each round, each of the n
nodes can send a distinct message of O(log n) bits to each other node and can
perform unlimited local computation; see Fig. 1. Several dense graph problems,
for example, the minimum spanning tree problem, have been shown to admit
O(1)-round algorithms in the congested clique model [11,15]. Note that when
the input graph is of bounded degree, each node can send its whole information
to a distinguished node in O(1) rounds. The distinguished node can then solve
the graph problem locally. However, when the input graph is dense such a trivial
solution requires Ω(n) rounds.

n

O(lo
g)

nO(log)

n

O(log)

n
O(log)

Unlimited

computation

Fig. 1. An example of a congested clique network.

Researchers have also studied problems not falling in the category of graph
problems, like matrix multiplication [3] or sorting and routing [8], in the con-
gested clique model. In both cases, one assumes that the basic items, i.e., matrix
entries or keys, respectively, have O(log n) bit representations and that each
node initially has a batch of n such items. As in the graph case, each node
can send a distinct O(log n)-bit message to each other node and perform unlim-
ited computation in every round. Significantly, it has been shown that matrix
multiplication admits an O(n1−2/ω)-round algorithm [3], where ω is the expo-
nent of fast matrix multiplication, while sorting and routing admit O(1)-round
algorithms (Theorems 4.5 and 3.7 in [8]) under the aforementioned assumptions.

We extend this approach to include basic geometric problems on planar point
sets. These problems are generally known to admit polylogarithmic time solu-
tions on PRAMs with a polynomial number of processors [1]. Initially, each node
of the n-clique network holds a batch of n points belonging to the input set S of
n2 points with O(log n)-bit coordinates in the Euclidean plane. As in the graph,
matrix, sorting, and routing cases, in each round, each node can send a distinct
O(log n)-bit message to each other node and perform unlimited local computa-

2

tions. Analogously, trivial solutions consisting in gathering the whole data in a
distinguished node require Ω(n) rounds.

More precisely, the problems that we consider are computing the convex hull,
a triangulation, and the Voronoi diagram of a set S of n2 points with O(log n)-bit
coordinates in the plane, defined next. The convex hull of S is the smallest convex
polygon P for which every q ∈ S lies in the interior of P or on the boundary
of P . A triangulation of S is a maximal set of non-crossing edges between pairs
of points from S. Finally, the Voronoi diagram of S is the partition of the plane
into |S| regions such that each region consists of all points in the plane having
the same closest point in S.

Our contributions are as follows. First, we provide a simple implementation
of the Quick Convex Hull algorithm [5], showing that the convex hull of S can
be constructed in O(h) rounds on the congested clique, where h is the size of the
hull. Then, we present and analyze a more refined algorithm for the convex hull of
S on the congested clique running in O(log n) rounds. Next, we present a divide-
and-conquer method for constructing a triangulation of S in O(log2 n) rounds on
the congested clique. We conclude with with remarks on the construction of the
Voronoi diagram of a planar point set. In particular, we show that the Voronoi
diagram of n2 points with O(log n)-bit coordinates drawn uniformly at random
from a unit square can be computed within the square with high probability in
O(1) rounds on the congested clique.

We also refer to the points of the input point set as vertices, while reserving
the word nodes to refer to the communicating parties in the underlying congested
clique network. In order to simplify the presentation, we assume throughout the
paper that the points in the input point sets are in general position.

2 Preliminaries

Let S = {p1, ..., pn} be a set of n distinct points in the Euclidean plane such that
the x-coordinate of each point is not smaller than that of p1 and not greater than
that of pn. The upper hull of S (with respect to (p1, pn)) is the part of the convex
hull of S beginning in p1 and ending in pn in clockwise order. Symmetrically,
the lower hull of S (with respect to (p1, pn)) is the part of the convex hull of S
beginning in pn and ending in p1 in clockwise order.

A supporting line for the convex hull or upper hull or lower hull of a finite
point set in the Euclidean plane is a straight line that touches the hull without
crossing it properly. Let S1, S2 be two finite sets of points in the Euclidean
plane separated by a vertical line. The bridge between the upper (or lower) hull
of S1 and the upper (or, lower, respectively) hull of S2 is a straight line that is
a supporting line for both of the upper (lower, respectively) hulls. See Fig. 2 for
an illustration.

We define the Information Distribution Task (IDT) [8] as follows:
Each node of the congested n-clique holds a set of exactly n O(log n)-bit mes-
sages with their destinations, with multiple messages from the same source node
to the same destination node allowed. Initially, the destination of each mes-

3

S
1

S
2

Fig. 2. An example of the bridge between the upper hulls of S1 and S2.

sage is known only to its source node. Each node is the destination of exactly
n of the aforementioned messages. The messages are globally lexicographically
ordered by their source node, their destination, and their number within the
source node. For simplicity, each such message explicitly contains these values,
in particular making them distinguishable. The goal is to deliver all messages to
their destinations, minimizing the total number of rounds.

Lenzen showed that IDT can be solved in 16 rounds (Theorem 3.7 in [8]).
He also observed that the relaxed IDT, where each node is required to send and
receive at most n messages, easily reduces to IDT in O(1) rounds. Hence, we
have the following fact.

Fact 1 [8] The relaxed Information Distribution Task can be solved determinis-
tically within O(1) rounds.

The Sorting Problem (SP) is defined as follows:
Each node i of the congested n-clique holds a set of n O(log n)-bit keys. All the
keys are different w.l.o.g. Each node i needs to learn all the keys of indices in
[n(i− 1) + 1, ni] (if any) in the total order of all keys.

Lenzen showed that SP can be solved in 37 rounds if each node holds a set
of exactly n keys (Theorem 4.5 in [8]). In order to relax the requirement that
each node holds exactly n keys to that of with most n keys, we can determine
the maximum key and add appropriate different dummy keys in O(1) rounds.
Hence, we obtain the following fact.

Fact 2 [8] The relaxed Sorting Problem can be solved in O(1) rounds.

3 Quick Convex Hull Algorithm on Congested Clique

The Quick Convex Hull Algorithm (also known as QuickHull or CONVEX) is
well known in the literature; see, e.g., [5,14]. Roughly, we shall implement it as
follows in the congested clique model. First, the set S of n2 input points with
O(log n)-bit coordinates is sorted by their x-coordinates [8]. As a result, each
consecutive clique node gets a consecutive n-point fragment of the sorted S.
Next, each node informs all other nodes about its two extreme points along the

4

x axis. By using this information, each node can determine the same pair of ex-
treme points pmin, pmax in S along the x axis. Using this extreme pair, each node
can decompose its subsequence of S into the upper-hull subsequence consisting
of the points that lie above or on the segment (pmin, pmax) and the lower-hull
subsequence consisting of points that lie below or on (pmin, pmax). From now on,
the upper hull of S and the lower hull of S are computed separately by calling the
procedures QuickUpperHull(pmin, pmax) and QuickLowerHull(pmin, pmax), re-
spectively. The former procedure proceeds as follows. Each node selects a point
q at maximum distance from the segment (pmin, pmax) among all points in its
upper-hull subsequence, excluding the points pmin and pmax. Next, it sends the
point q to all other nodes. Then, each node selects the same point q, different
from pmin and pmax, at maximum distance from the segment (pmin, pmax) among
all points in the whole upper-hull subsequence; see Fig. 3. Note that q must be
a vertex of the upper hull of S. Two recursive calls QuickUpperHull(pmin, q)
and QuickUpperHull(q, pmax) follow. The procedure QuickLowerHull is de-
fined symmetrically. As each non-leaf call of these two procedures results in a
new vertex of the convex hull, and each step of these procedures but for the
recursive calls takes O(1) rounds, the total number of rounds necessary to im-
plement the outlined variant of Quick Convex Hull algorithm, specified in the
procedure QuickConvexHull(S), is proportional to the size of the convex hull
of S.

p

q r

Fig. 3. Illustrating the points p, q, r in the procedure QuickUpperHull.

procedure QuickConvexHull(S)
Input: A set of n2 points in the Euclidean plane with O(log n) bit coordinates,
each node holds a batch of n input points.
Output: The vertices of the convex hull of S held in clockwise order in consecutive
nodes in batches of at most n vertices.

1. Sort the points in S by their x-coordinates so each node receives a subse-
quence consisting of n consecutive points in S, in the sorted order.

2. Each node sends the first point and the last point in its subsequence to the
other nodes.

5

3. Each node computes the same point pmax of the maximum x-coordinate
and the same point pmin of the minimum x-coordinate in the whole input
sequence S based on the gathered information. (If there are ties in the min-
imum x-coordinate then pmin is set to a point with minimum y-coordinate.
Similarly, if there are ties in the maximum x-coordinate then pmax is set to
a point with maximum y-coordinate.)

4. Each node decomposes its sorted subsequence into the upper hull subse-
quence consisting of points above or on the segment connecting pmax and
pmin and the lower hull subsequence consisting of the points lying below or
on this segment. In particular, the points pmin and pmax are assigned to
both upper and lower hull subsequences of the subsequences they belong to.

5. Each node sends its first and last point in its upper hull subsequence as well
as its first and last point in its lower hull subsequence to all other nodes.

6. QuickUpperHull(pmin, pmax)

7. QuickLowerHull(pmin, pmax)

8. By the previous steps, each node keeps consecutive pieces (if any) of the
upper hull as well as the lower hull. However, some nodes can keep empty
pieces. In order to obtain a more compact output representation in batches
of n consecutive vertices of the hull (but for the last batch) assigned to
consecutive nodes of the clique, the nodes can count the number of vertices
on the upper and lower hull they hold and send the information to the other
nodes. Using the global information, they can design destination addresses
for their vertices on both hulls. Then, the routing protocol from Fact 1 can
be applied.

procedure QuickUpperHull(p, r)

Input: The upper-hull subsequence of the input point set S held in consecutive
nodes in batches of at most n points and two distinguished points p, r in the
subsequence , where the x-coordinate of p is smaller than that of r.
Output: The vertices of the upper hull of S with x-coordinates between those of
p and r held in clockwise order in consecutive nodes, between those holding p
and r respectively, in batches of at most n points.

1. Each node u determines the set Su of points in its upper-hull subsequence
that have x-coordinates between those of p and r and lie above or on the
segment between p and r. If Su is not empty then the node sends a point
in Su at maximum distance from the line segment between p and r to the
clique node holding p, from here on referred to as the master node.

2. If the master node has not received any point satisfying the requirements
from the previous step then it proclaims p and r to be vertices of the upper
hull by sending this information to the nodes holding p and/or r, respectively.
(In fact one of the vertices p and r has been marked as being on the upper
hull earlier.) Next, it pops a call of QuickUpperHull from the top of a stack
of recursive calls held in a prefix of the clique nodes numbered 1, 2, In
case the stack is empty it terminates QuickUpperHull(pmin, pmax).

6

3. If the master node has received some points satisfying the requirements
from Step 1 then it determines a point q at maximum distance from the
line segment between p and r among them; see Fig. 3. Next, it puts the
call of QuickUpperHull(q, r) on the top of the stack and then activates
QuickUpperHull(p, q).

The procedure QuickLowerHull(p, r) is defined analogously.
Each step of the procedure QuickConvexHull(S), but for the calls to

QuickUpperHull(pmin, pmax) and QuickLowerHull(pmin, pmax), can be done
in O(1) rounds on the congested clique on n nodes. In particular, the sorting
and the routing steps in QuickConvexHull(S) can be done in O(1) rounds
by Facts 1, 2. Similarly, each step of QuickUpperHull(p, r), and symmetrically
each step of QuickLowerHull(p, r), but for recursive calls, can be done in O(1)
rounds. Since each non-leaf (in the recursion tree) call of QuickUpperHull(p, r)
and QuickLowerHull(p, r) results in a new vertex of the convex hull, their total
number does not exceed h. Hence, we obtain the following theorem.

Theorem 1. Consider a congested n-clique network, where each node holds a
batch of n points in the Euclidean plane specified by O(log n)-bit coordinates. Let
h be the number of vertices on the convex hull of the set S of the n2 points.
The convex hull of S can be computed by the procedure QuickConvexHull(S) in
O(h) rounds on the congested clique.

4 An O(logn)-round Algorithm for Convex Hull on
Congested Clique

Our refined algorithm for the convex hull of the input point set S analogously as
QuickConvexHull(S) described in Section 3 starts by sorting the points in S by
their x-coordinates and then splitting the sorted sequence of points in S into an
upper-hull subsequence and lower-hull subsequence. Next, it computes the upper
hull of S and the lower hull of S by calling the procedures NewUpperHull(s) and
NewLowerHull(S), respectively. The procedure NewUpperHull(S) lets each
node ℓ construct the upper hull Hℓ of its batch of at most n points in the upper-
hull subsequence locally. The crucial step of NewUpperHull(S) is a parallel
computation of bridges between all pairs Hℓ, Hm, ℓ ̸= m, of the constructed
upper hulls by parallel calls to the procedure Bridge(Hℓ, Hm). Based on the
bridges between Hℓ and the other upper hulls Hm, each node ℓ can determine
which of the vertices of Hℓ belong to the upper hull of S (see Lemma 1). The
procedure Bridge has recursion depth O(log n) and the parallel implementation
of the crucial step of NewUpperHull(s) takes O(log n) rounds. The procedure
NewLowerHull(s) is defined symmetrically. Consequently, the refined algorithm
for the convex hull of S specified by the procedure NewConvexHull(S) can be
implemented in O(log n) rounds.

The procedure NewConvexHull(S) is defined in exactly the same way as
QuickConvexHull(S), except that the call QuickUpperHull(pmin, pmax) in Step

7

6 is replaced by the call NewUpperHull(S) and the call QuickLowerHull(pmin, pmax)
in Step 7 is replaced by the call NewLowerHull(S).

The strategy of NewUpperHull(S) is to successively identify and mark
points in S that cannot belong to the upper hull of S as not qualifying, and
finally return the unmarked points.

procedure NewUpperHull(S)
Input: The upper-hull subsequence of the input point set S held in consecutive
nodes in batches of at most n points.
Output: The vertices of the upper hull of S held in clockwise order in consecutive
nodes in batches of at most n vertices.

1. Each node ℓ computes the upper hull Hℓ of its upper-hull subsequence locally.
2. In parallel, for each pair ℓ, m of nodes, the procedure Bridge(Hℓ, Hm) com-

puting the bridge between Hℓ and Hm is called. (The procedure uses the
two nodes in O(log n) rounds, exchanging at most two messages between the
nodes in each of these rounds.)

3. Each node ℓ checks if it has a single point p not marked as not qualifying
for the upper hull of S such that there are bridges between Hk and Hℓ and
Hℓ and Hm, where k < ℓ < m, p is an endpoint of both bridges, and the
angle formed by the two bridges is smaller than 180 degrees. If so, p is also
marked as not qualifying for the upper hull of S.

4. Each node ℓ prunes the set of vertices of Hl, leaving only those vertices that
have not been marked in the previous steps (including calls to the procedure
Bridge) as not qualifying for the upper hull of S.

The following lemmata enable the implementation of the n2 calls to Bridge(Hℓ, Hm)
in the second step of NewUpperHull(S) in O(log n) rounds on the congested
clique.

Lemma 1. For any ℓ ∈ {1, 2, . . . , n}, let Hℓ be the upper hull of the upper-hull
subsequence of S assigned to the node ℓ. A vertex v of Hℓ is not a vertex of the
upper hull of S if and only if it lies below a bridge between Hℓ and Hm, where
ℓ ̸= m, or there are two bridges between Hℓ and Hk, Hm, respectively, where
k < ℓ < m, such that they touch v and form an angle of less than 180 degrees at
v.

Proof. Clearly, if at least one of the two conditions on the right side of “if and
only if” is satisfied then v cannot be a vertex of the upper hull of S. Suppose
that v is not a vertex of the upper hull of S. Then, since it is a vertex of Hl,
there must be an edge e of the upper hull of S connecting Hk with Hm for some
k ≤ ℓ ≤ m, k ̸= m, that lies above v. We may assume without loss of generality
that v does not lie below any bridge between Hℓ and Hq, ℓ ̸= q. It follows that
k < ℓ < m. Let bk be the bridge between Hk and Hℓ, and let bm be the bridge
between Hℓ and Hm. It also follows that both bk and bm are placed below e and
the endpoint of bk at Hℓ is v or a vertex of Hℓ to the left of v while the endpoint
of bm at Hℓ is v or a vertex to the right of v. Let C be the convex chain that is a

8

part of Hℓ between the endpoints of bk and bm on Hℓ. Suppose that C includes
at least one edge. The bridge bk has to form an angle not less than 180 degrees
with the leftmost edge of C and symmetrically the bridge bm has to form an
angle not less than 180 degrees with the rightmost edge of C. However, this is
impossible because the bridges bk and bm are below the edge e of the upper hull
of S with endpoints on Hk and Hm so they form an angle less than 180 degrees.
We conclude that C consists solely of v and consequently v is an endpoint of
both bk and bm. See Fig. 4. ⊓⊔

H
l

v

e

H

H

b

m

b
m

k

k

Fig. 4. The final case in the proof of Lemma 1.

The following folklore lemma follows easily by a standard case analysis (cf.
[7,12,13]). See also Fig. 5. It implies that when computing the two endpoints of
the bridge between two upper hulls, one can eliminate at least a quarter of all
the remaining candidates after looking at six points only. Hence, the recursive
depth of the procedure Bridge is O(log n).

m
1

H
1

H
2m

2

Fig. 5. An example of the segment connecting m1 with m2 in Lemma 2.

Lemma 2. Let S1, S2 be two n-point sets in the Euclidean plane separated by a
vertical line. Let H1, H2 be the upper hulls of S1, S2, respectively. Suppose that

9

each of H1 and H2 has at least three vertices. Next, let m1, m2 be the median
vertices of H1, H2, respectively. Suppose that the segment connecting m1 with
m2 is not the bridge between H1 and H2. Then depending on m1, m2 and their
neighbors on H1, H2, respectively, none of the vertices in at least one of the
following four sets is an endpoint of the bridge between H1 and H2:
(i) the vertices on H1 to the left of m1;
(ii) the vertices on H1 to the right of m1;
(iii) the vertices on H2 to the left of m2; and
(iv) the vertices on H2 to the right of m2.

procedure Bridge(H ′
ℓ, H

′
m)

Input: A continuous fragment H ′
ℓ of the upper hull Hℓ of the upper-hull subse-

quence assigned to a node ℓ and a continuous fragment H ′
m of the upper hull

Hm of the upper-hull subsequence assigned to the node m.
Output: The bridge between H ′

ℓ and H ′
m. Moreover, all points in the upper-hull

subsequence held in the nodes ℓ and m placed under the bridge are marked as
not qualifying for the convex hull of S.

1. If H ′
ℓ or H ′

m has at most two vertices then compute the bridge between H ′
ℓ

and H ′
m by sending the at most two vertices from ℓ to m or vice versa,

computing the bridge locally at m or ℓ, respectively, and sending back the
bridge segment from ℓ to m or vice versa, respectively. Next, mark all the
points in the upper-hull subsequence between the endpoints of the found
bridge that are assigned to the nodes ℓ or m as not qualifying for vertices of
the upper hull of S and stop.

2. Find a median m1 of H ′
ℓ and a median m2 of H ′

m.
3. If the straight line passing through m1 and m2 is a supporting line for both

H ′
ℓ and H ′

m then mark all the points in the upper-hull subsequence between
m1 and m2 that are assigned to the nodes ℓ or m as not qualifying for vertices
of the upper hull of S and stop.

4. Otherwise, ℓ and m inform each other about the neighbors of m1 on H ′
ℓ and

the neighbors of m2 on H ′
m, respectively. Then, Bridge(H ′′

ℓ , H
′′
m) is called,

where either H ′
ℓ = H ′′

ℓ and H ′′
m is obtained from H ′

m by removing vertices on
the appropriate side of the median of H ′

m or vice versa, according to Lemma
2.

The procedure NewLowerHull(H ′
ℓ, H

′
m) is defined analogously.

As in the procedure QuickConvexHull(S), each step of NewConvexHull(S),
but for the calls to NewUpperHull(S) and NewLowerHull(S), can be done in
O(1) rounds on the congested clique by [8]. Furthermore, the first, next to the
last, and last steps of NewUpperHull(S) require O(1) rounds. By Lemma 2, the
recursion depth of the procedure Bridge is logarithmic in n. The crucial obser-
vation is now that consequently the nodes ℓ and m need to exchange O(log n)
messages in order to implement Bridge(Hℓ, Hm). In particular, they need to
inform each other about the current medians and their neighbors on H ′

ℓ or H ′
m,

respectively. Also, in case H ′
ℓ or H ′

m contains at most two vertices, the node ℓ
or m needs to inform the other node about the situation and about those at

10

most two vertices. In consequence, by Lemma 2, these two nodes can imple-
ment Bridge(Hℓ, Hm) by sending a single message to each other in each round
in a sequence of O(log n) consecutive rounds. It follows that all the n2 calls of
Bridge(Hℓ, Hm) can be implemented in parallel in O(log n) rounds. Note that
in each of the O(log n) rounds, each clique node sends at most one message to
each other clique node, so in total, each node sends at most n − 1 messages
to the other nodes in each of these rounds. It follows that NewUpperHull(S)
and symmetrically NewLowerHull(S) can be implemented in O(log n) rounds
on the congested clique. We conclude that NewConvexHull(S) can be done in
O(log n) rounds on the congested clique.

Theorem 2. Consider a congested n-clique network, where each node holds a
batch of n points in the Euclidean plane specified by O(log n)-bit coordinates. The
convex hull of the set S of the n2 input points can be computed by the procedure
NewConvexHull(S) in O(log n) rounds on the congested clique.

5 Point Set Triangulation in O(log2 n) Rounds on
Congested Clique

Our method of triangulating a set of n2 points in the congested n-clique model
initially resembles that of constructing the convex hull of the points. That is,
first the input point set is sorted by x-coordinates. Then, each node triangulates
its sorted batch of n points locally. Next, the triangulations are pairwise merged
and extended to triangulations of doubled point sets by using the procedure
Merge in parallel in O(log n) phases. In the general case, the procedure Merge
calls the procedure Triangulate in order to triangulate the area between the
sides of the convex hulls of the two input triangulations, facing each other.

The main idea of the procedure Triangulate is to pick a median vertex v on
the longer of the convex hulls sides and send its coordinates and the coordinates
of its neighbors to the nodes holding the facing side of the other hull. The latter
nodes send back candidates (if any) for a mate u of the median vertex v such that
the segment between v and u can be an edge of a triangulation extending the
existing partial triangulation. The segment is used to split the area to triangulate
into two that are triangulated by two recursive calls of Triangulate in parallel.
See Fig. 6. Before the recursive calls the edges of the two polygons surrounding
the two areas are moved to new node destinations so each of the polygons is held
by a sequence of consecutive clique nodes. This is done by a global routing in
O(1) rounds serving all parallel calls of Triangulate on a given recursion level,
for a given phase of Merge (its first argument).

Since the recursion depth Triangulate is O(log n) and Merge is run in
O(log n) phases, the total number of required rounds becomes O(log2 n).

To simplify the presentation, we shall assume that the size n of the clique
network is a power of 2.

11

procedure Triangulation(S)

1. Sort the points in S by their x-coordinates so each node receives a subse-
quence consisting of n consecutive points in S, in the sorted order.

2. Each node sends the first point and the last point in its subsequence to the
other nodes.

3. Each node q constructs a triangulation Tq,q of the points in its sorted sub-
sequence locally.

4. For 1 ≤ p < q ≤ n, Tp,q will denote the already computed triangulation
of the points in the sorted subsequence held in the nodes p through q. For
i = 0, . . . , log n− 1, in parallel, for j = 1, 1+2i+1, 1+2 · 2i+1, 1+3 · 2i+1, . . .
the union of the triangulations Tj,j+2i−1 and Tj+2i,j+2i+1−1 is transformed
to a triangulation Tj,j+2i+1−1 of the sorted subsequence held in the nodes j
through j + 2i+1 − 1 by calling the procedure Merge(i, j).

procedure Merge(i, j)
Input: A triangulation Tj,j+2i−1 of the subsequence held in the nodes j through
j+2i−1 and a triangulation Tj+2i,j+2i+1−1 of the subsequence held in the nodes
j + 2i through j + 2i+1 − 1,.
Output: A triangulation Tj,j+2i+1−1 of the subsequence held in the nodes j
through j + 2j+1 − 1.

1. Compute the bridges between the convex hulls of Tj,j+2i−1 and Tj+2i,j+2i+1−1.
Determine the polygon P formed by the bridges between the convex hulls of
Tj,j+2i−1 and Tj+2i,j+2i+1−1, the right side of the convex hull of Tj,j+2i−1,
and the left side of the convex hull of Tj+2i,j+2i+1−1 between the bridges.

2. Triangulate(P, j, j + 2i+1 − 1)

1
P

P
2

v

P

u

Fig. 6. An example of the partition of the polygon P into the subpolygons P1, P2 in
the procedure Triangulate.

procedure Triangulate(P, p, q)
Input: A simple polygon P composed of two convex chains facing each other on
opposite sides of a vertical line and two edges crossing the line, held in nodes p
through q, with p < q.
Output: A triangulation of P held in nodes p through q.

12

1. If p = q then the p node triangulates P locally and terminates the call of
the procedure.

2. The nodes p through q determine the lengths of the convex chains on the
border of P and the node holding the median vertex v of the longest chain
(in case of ties, the left chain) sends the coordinates of v and the adjacent
vertices on the chain to the other nodes p through q.

3. The nodes holding vertices of the convex chain that is opposite to the convex
chain containing v determine if they hold vertices u that could be connected
by a segment with v within P. They verify if the segment (v, u) is within
the intersection of the union of the half-planes on the side of P induced by
the edges adjacent to v with the union of the half-planes on the side of P
induced by the edges adjacent to u. If so, they send one such a candidate
vertex u to the node holding v.

4. The node holding v selects one of the received candidate vertices u as the
mate and sends its coordinates to the other nodes p through q.

5. The nodes p through q split the polygon P into two subpolygons P1 and P2

by the edge (v, u) and by exchanging messages in O(1) rounds compute the
new destinations for the edges of the polygons P1 and P2 so P1 can be held in
nodes p through r1 and P2 in the nodes r2 through q, where p ≤ r1 ≤ r2 ≤ q
and r1 = r2 or r2 = r1 + 1.

6. A synchronized global routing in O(1) rounds corresponding to the current
phase of the calls to the procedure Merge (given by its first argument) and
all parallel calls of the procedure Triangulate on the same recursion level
is implemented by using Fact 1. In particular, the edges of P1 and P2 are
moved to the new consecutive destinations among nodes p through q.

7. In parallel, Triangulate(P1, p, r1) and Triangulate(P2, r2, q) are performed.

At the beginning, we have outlined our triangulation method, in particular
the procedures forming it, in a top-down fashion. We now complement this out-
line with a bottom-up analysis. All steps of the procedure Triangulate(P, p, q)
but for the recursive calls in the last step and the next to the last step can be
implemented in O(1) rounds, using only the nodes p through q. The next to
the last step is a part of the global routing. It serves all calls of the procedure
Triangulate on the same recursion level for a given phase of the parallel calls of
procedure Merge(i,), i.e., for given i. Since each node is involved in at most two
of the aforementioned calls of Triangulate that cannot be handled locally, the
global routing, implementing the next to the last step of Triangulate, requires
O(1) rounds. Since the recursion depth of Triangulate is O(log n), Triangulate
takes O(log n) rounds. The first step of the procedure Merge(i, j), i.e., con-
structing the bridges between the convex hulls, can be implemented in O(log n)
rounds by using the convex hull algorithm from Section 4 on nodes j through
j+2i+1−1. The second step can easily be implemented in O(1) rounds using the
aforementioned nodes. Finally, the call to Triangulate in the last step of Merge
requires O(log n) rounds by our analysis of this procedure. Again, it can be done
by nodes j through j + 2i+1 − 1 but for the last steps of calls to Triangulate
that are served by the discussed synchronized global routing in O(1) rounds. We

13

conclude that Merge(i, j) can be implemented in O(log n) rounds. Finally, all
steps in Triangulation(S) except the one involving parallel calls to Merge(i, j)
in O(log n) phases can be done in O(1) rounds. For a given phase, i.e., given i,
each node is involved in O(1) calls of Merge(i, j) but for the next to the last
steps in Triangulate that for a given recursion level of Triangulate are imple-
mented by the joint global routing in O(1) rounds. It follows from our analysis
of Merge(i, j) and i = O(log n) that Triangulate(S) can be implemented in
O(log2 n) rounds.

Theorem 3. Consider a congested n-clique network, where each node holds a
batch of n points in the Euclidean plane specified by O(log n)-bit coordinates. A
triangulation of the set S of the n2 input points can be computed by the procedure
Triangulation(S) in O(log2 n) rounds on the congested clique.

6 On the Construction of Voronoi Diagram on Congested
Clique

The primary difficulty in the design of efficient parallel algorithms for the Voronoi
diagram of a planar point set using a divide-and-conquer approach is the effi-
cient parallel merging of Voronoi diagrams. In [1], Aggarwal et al. presented a
very involved O(log n)-time PRAM method for the parallel merging. As a result,
they obtained an O(log2 n)-time CREW PRAM algorithm for the Voronoi dia-
gram. Their work and later improved PRAM algorithms for the Voronoi diagram
[4,16] suggest that this problem should be solvable in (log n)O(1) rounds on the
congested clique.

When the points with O(log n)-bit coordinates are drawn uniformly at ran-
dom from a unit square or circle then the expected number of required rounds
to compute the Voronoi diagram or the dual Delaunay triangulation on the con-
gested clique becomes O(1) (cf. [9,16]). To demonstrate this we need to recall
the Chernoff bounds.

Fact 3 (multiplicative Chernoff lower bound) Suppose X1, ..., Xn are indepen-
dent random variables taking values in {0, 1}. Let X denote their sum and let
µ = E[X] denote the sum’s expected value. Then, for any δ ∈ [0, 1], P rob(X ≤
(1− δ)µ) ≤ e−

δ2µ
2 holds. Similarly, for any δ ≥ 0, P rob(X ≥ (1 + δ)µ) ≤ e−

δ2µ
2+δ

holds.

We shall say that an event dependent on n2 input points in the plane holds
with high probability (w.h.p.) if its probability is at least 1− 1

nα asymptotically,
(i.e., there is an integer n0 such that for all n ≥ n0, the probability is at least
1− 1

nα), where α is a constant not less than 2.

Theorem 4. The Voronoi diagram of n2 points with O(log n)-bit coordinates
drawn uniformly at random from a unit square in the Euclidean plane can be
computed within the square w.h.p. in O(1) rounds on the congested clique.

14

Proof. Consider an arbitrary square R of size 1√
n
× 1√

n
within the unit square.

Next, consider a sequence of n2 uniform random draws of points with O(log n)-
bit coordinates from the unit square. Call a draw in the sequence a success if
a point within R is drawn. The expected number of successes is n. Hence, it
follows by selecting δ =

√
6 lnn
n in the Chernoff bounds that Θ(n) of the drawn

points are within R with probability at least 1− 1
n3 .

Partition the unit square into n rectilinear squares of size 1√
n
× 1√

n
.

q

e

s
2

Q

s
1

Fig. 7. An example of the configuration in the proof of Theorem 4.

Let S be the set of n2 points drawn from the unit square. Consider the
Voronoi diagram of S within the unit square. Let e be an edge of the Voronoi
diagram. The edge e has to be a part of the bisector of some couple of points s1
and s2 in S. Consider an arbitrary point q on e and the rectilinear square Q in
the aforementioned partition that contains it. Suppose that s1 or s2 lies outside
the rectilinear area formed by Q and the two layers of squares around Q in the
partition, i.e., consisting of at most 1+8+16 = 25 squares including Q. See Fig.
7. Without loss of generality, let s2 be such a point. Then the distance between
q and s2 is at least 2 · 1√

n
, while the distance between q and every point inside Q

is at most
√
2 · 1√

n
. We obtain a contradiction w.h.p. because Q contains Ω(n)

points from S w.h.p. and q is closer to each of these points than to s2. It follows
that to compute the Voronoi diagram of S within a square in the partition w.h.p.
one needs solely to know the points in S located in Q and the at most 24 squares
around the square.

We can assign to each of the squares in the partition a distinct clique node
and deliver to each node the points from its square in O(1) rounds w.h.p. by
using the sorting and routing O(1)-round algorithms from Facts 1, 2. Then,
additionally we need to deliver to each node the points in S located in the at
most 24 squares around its square. By using again the routing algorithms from

15

Facts 1, 2, this can be achieved in O(1) rounds w.h.p. (Note that the total number
of points that need to be delivered to each node is O(n) w.h.p. since each of the
squares contains O(n) points w.h.p.) Finally, each node applies any sequential
Voronoi diagram algorithm (e.g., [6]) to locally compute the Voronoi diagram of
the w.h.p. O(n) many points it received and then it determines its intersection
with the square assigned to the node. This shows that each node computes its
local Voronoi diagram correctly w.h.p., and according to the first paragraph
above, this probability is at least 1− 1

n3 . Now, the union bound implies that the
probability that all nodes compute their local Voronoi diagrams correctly is at
least 1− 1

n2 .

7 Concluding Remarks

We have provided the first non-trivial, polylogarithmic upper bounds on the
number of rounds required to construct the convex hull and a triangulation of
a set of n2 points in the plane with O(log n)-bit coordinates in the model of
congested clique. As for the construction of the Voronoi diagram of the point
set, we have shown an O(1) upper bound on the number of rounds under the
assumption that the points are drawn uniformly at random from a unit square.
The major open problem is the derivation of a non-trivial upper bound on the
number of rounds sufficient to construct the Voronoi diagram when the points
are not necessarily randomly distributed. This seems to be possible but it might
require a substantial effort; see the discussion in the preceding section. An in-
teresting question is also if a simple polygon on n2 vertices with O(log n)-bit
coordinates can be triangulated using a substantially smaller number of rounds
than that needed to triangulate a set of n2 points in the plane with O(log n) bit
coordinates in the congested n-clique model.

Acknowledgments

This research was partially supported by Swedish Research Council grants 621-
2017-03750 and 2018-04001, and JSPS KAKENHI JP20H05964.

References

1. A. Aggarwal, B. Chazelle, L. Guibas, C. Ó’Dúnlaing, and C. Yap. Parallel Com-
putational Geometry. Algorithmica, 3: 293–327, 1988. Preliminary version in Pro-
ceedings of the 26th IEEE Symposium on Foundations of Computer Science, FOCS
1985, pp. 468–477, 1985.

2. S.G. Akl. Optimal parallel algorithms for computing convex hulls and for sorting.
Computing, 33(1): 1–11, 1984.

3. K. Censor-Hillel, P. Kaski, J.H. Korhonen, C. Lenzen, C., A. Paz, and J. Suomela.
Algebraic Methods in the Congested Clique. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC 2015, pp. 143–152,
2015.

16

4. R. Cole, M.T. Goodrich, and C. Ó’Dúnlaing. A Nearly Optimal Deterministic
Parallel Voronoi Diagram Algorithm. Algorithmica, 16(6): 569–617, 1996.

5. W.F. Eddy. A New Convex Hull Algorithm for Planar Sets. ACM Transactions
on Mathematical Software, 3(4): 398–403, 1977.

6. S. Fortune. A Sweepline Algorithm for Voronoi Diagrams. Algorithmica, 2: 153–
174, 1987.

7. D.G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM
Journal on Computing, 15(1): 287–299, 1986.

8. C. Lenzen. Optimal Deterministic Routing and Sorting on the Congested Clique. In
Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing,
PODC 2013, pp. 42–50, 2013.

9. C. Levcopoulos, J. Katajainen, and A. Lingas. An Optimal Expected-Time Parallel
Algorithm for Vornoi Diagrams. In: Proceedings of the 1st Scandinavian Workshop
on Algorithm Theory (SWAT), 1988.

10. Z. Lotker, B. Patt-Shamir, E. Pavlov, and D. Peleg. Minimum-Weight Spanning
Tree Construction in O(log log n) Communication Rounds. SIAM Journal on Com-
puting, 35(1): 120–131, 2005.

11. K. Nowicki. A deterministic algorithm for the MST problem in constant rounds
of congested clique. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2021, pp. 1154–1165, 2021.

12. M.H. Overmars and J. Van Leeuwen. Maintenance of Configurations in the Plane.
Journal of Computer and System Sciences, 23(2): 166–204, 1981.

13. F. Preparata. An optimal real-time algorithm for planar convex hulls. Communi-
cations of the ACM, 22(7): 402–405, 1979.

14. J. Ramesh and S. Suresha. Convex Hull - Parallel and Distributed Algorithms.
Technical Report, Stanford University, U.S.A., 2016.

15. P. Robinson. Brief Announcement: What Can We Compute in a Single Round of
the Congested Clique? In Proceedings of the 2023 ACM Symposium on Principles
of Distributed Computing, PODC 2023, pp. 168–171, 2023.

16. B. C. Vemuri, R. Varadarajan and N. Mayya. An Efficient Expected Time Parallel
Algorithm for Voronoi Construction. In Proceedings of the ACM Symposium on
Parallel Algorithms and Architectures, SPAA 1992, pp. 392–401, 1992.

17

	Convex Hulls, Triangulations, and Voronoi Diagrams of Planar Point Sets on the Congested Clique

