
CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Convex Hulls and Triangulations of Planar Point Sets on the Congested
Clique

Jesper Jansson⇤ Christos Levcopoulos† Andrzej Lingas‡

Abstract

We consider geometric problems on planar n2-point sets
in the congested clique model. Initially, each node in the
n-clique network holds a batch of n distinct points in the
Euclidean plane given by O(log n)-bit coordinates. In
each round, each node can send a distinct O(log n)-bit
message to each other node in the clique and perform
unlimited local computations. We show that the con-
vex hull of the input n2-point set can be constructed in
O(min{h, log n}) rounds, where h is the size of the hull,
on the congested clique. We also show that a triangu-
lation of the input n2-point set can be constructed in
O(log2 n) rounds on the congested clique.

1 Introduction

The communication/computation model of congested
clique focuses on the communication cost and ignores
that of local computation. It can be seen as a reac-
tion to the criticized model of Parallel Random Access
Machine (PRAM), studied in the 80s and 90s, which
focuses on the computation cost and ignores the com-
munication cost [1].

In recent decades, the complexity of dense graph
problems has been intensively studied in the congested
clique model. Typically, each node of the clique net-
work initially represents a distinct vertex of the input
graph and knows that vertex’s neighborhood in the in-
put graph. Then, in each round, each of the n nodes
can send a distinct message of O(log n) bits to each
other node and can perform unlimited local computa-
tion. Several dense graph problems, for example, the
minimum spanning tree problem, have been shown to
admit O(1)-round algorithms in the congested clique
model [10]. Note that when the input graph is of
bounded degree, each node can send its whole infor-
mation to a distinguished node in O(1) rounds. The
distinguished node can then solve the graph problem
locally. However, when the input graph is dense such a
trivial solution requires ⌦(n) rounds.

⇤Graduate School of Informatics, Kyoto University, Kyoto,
Japan, jj@i.kyoto-u.ac.jp

†Department of Computer Science, Lund University, 22100
Lund, Sweden, Christos.Levcopoulos@cs.lth.se

‡Department of Computer Science, Lund University, 22100
Lund, Sweden, Andrzej.Lingas@cs.lth.se

Researchers have also successfully studied problems
not falling in the category of graph problems, like ma-
trix multiplication [3] or sorting and routing [6], in the
congested clique model. In both cases, one assumes that
the basic items, i.e., matrix entries or keys, respectively,
have O(log n) bit representations and that each node
initially has a batch of n such items. As in the graph
case, each node can send a distinct O(log n)-bit message
to each other node and perform unlimited computation
in every round. Significantly, it has been shown that
matrix multiplication admits an O(n1�2/!)-round algo-
rithm [3], where ! is the exponent of fast matrix mul-
tiplication, while sorting and routing admit O(1)-round
algorithms [6] under the aforementioned assumptions.

We extend this approach to include basic geometric
problems on planar point sets. These problems are gen-
erally known to admit polylogarithmic time solutions
on PRAMs with a polynomial number of processors [1].
Initially, each node of the n-clique network holds a batch
of n points belonging to the input set S of n2 points with
O(log n)-bit coordinates in the Euclidean plane. As in
the graph, matrix, sorting, and routing cases, in each
round, each node can send a distinct O(log n)-bit mes-
sage to each other node and perform unlimited local
computations. Analogously, trivial solutions consisting
in gathering the whole data in a distinguished node re-
quire ⌦(n) rounds.

First, we provide a simple implementation of the
Quick Convex Hull algorithm [9], showing that the con-
vex hull of S can be constructed in O(h) rounds on the
congested clique, where h is the size of the hull. Then,
we present and analyze a more refined algorithm for
the convex hull of S on the congested clique running
in O(log n) rounds. Finally, we present a divide-and-
conquer method for constructing a triangulation of S in
O(log2 n) rounds on the congested clique.

2 Preliminaries

For a positive integer r, [r] stands for the set of positive
integers not exceeding r.

Let S = {p1, ..., pn} be a set of n distinct points in
the Euclidean plane such that the x-coordinate of each
point is not smaller than that of p1 and not greater
than that of pn. The upper hull of S (with respect to
(p1, pn)) is the part of the convex hull of S beginning in

183

35th Canadian Conference on Computational Geometry, 2023

S
1

S
2

Figure 1: An example of the bridge between the upper
hulls of S1 and S2.

p1 and ending in pn in clockwise order. Symmetrically,
the lower hull of S (with respect to (p1, pn)) is the part
of the convex hull of S beginning in pn and ending in
p1 in clockwise order. A supporting line for the convex
hull or upper hull or lower hull of a finite point set in
the Euclidean plane is a straight line that touches the
hull without crossing it properly.

Let S1, S2 be two finite sets of points in the Eu-
clidean plane separated by a vertical line. The bridge
between the upper (or lower) hull of S1 and the upper
(or, lower, respectively) hull of S2 is a straight line that
is a supporting line for the both upper (lower, respec-
tively) hulls. See Figure 1 for an illustration.

3 Quick Convex Hull Algorithm on Congested
Clique

The Quick Convex Hull Algorithm is well known in
the literature, see, e.g, [9]. Roughly, we shall imple-
ment it as follows in the congested clique model. First,
the set S of n2 input points with O(log n)-bit coor-
dinates is sorted by their x-coordinates [6]. As a re-
sult, each consecutive clique node gets a consecutive
n-point fragment of the sorted S. Next, each node in-
forms all other nodes about its two extreme points
along the x axis. By using this information, each node
can determine the same pair of extreme points pmin,
pmax in S along the x axis. Using this extreme pair,
each node can decompose its subsequence of S into the
upper-hull subsequence consisting of the points that lie
above or on the segment (pmin, pmax) and the lower-
hull subsequence consisting of points that lie below or
on (pmin, pmax). From now on, the upper hull of S and
the lower hull of S are computed separately by call-
ing the procedures QuickUpperHull(pmin, pmax) and
QuickLowerHull(pmin, pmax), respectively. The for-
mer procedure proceeds as follows. Each node sends
a point q of highest y-coordinate among those in its
upper-hull subsequence di↵erent from pmin and pmax

to all other nodes. Then, each node selects the same
point q of maximum y-coordinate among all points in
the whole upper-hull subsequence di↵erent from pmin

and pmax. Note that q must be a vertex of the upper
hull of S. Two recursive calls QuickUpperHull(pmin, q)

and QuickUpperHull(q, pmax) follow, etc. The pro-
cedure QuickLowerHull is defined symmetrically. As
each non-leaf call of these two procedures results in a
new vertex of the convex hull, and each step of these pro-
cedures but for the recursive calls takes O(1) rounds, the
total number of rounds necessary to implement the out-
lined variant of Quick Convex Hull algorithm, specified
in the procedure QuickConvexHull(S), is proportional
to the size of the convex hull of S.

procedure QuickConvexHull(S)
Input: A set of n2 points in the Euclidean plane with
O(log n) bit coordinates, each node holds a batch of n
input points.
Output: The vertices of the convex hull of S held in
clockwise order in consecutive nodes in batches of at
most n vertices.

1. Sort the points in S by their x-coordinates so each
node receives a subsequence consisting of n consec-
utive points in S, in the sorted order.

2. Each node sends the first point and the last point
in its subsequence to the other nodes.

3. Each node computes the same point pmax of the
maximum x-coordinate and the same point pmin of
the minimum x-coordinate in the whole input se-
quence S based on the gathered information. Next,
it decomposes its sorted subsequence into the up-
per hull subsequence consisting of points above or
on the segment connecting pmax and pmin and the
lower hull subsequence consisting of the points ly-
ing below or on this segment. In particular, the
points pmin and pmax are assigned to both upper
and lower hull subsequences of the subsequences
they belong to.

4. Each node sends its first and last point in its upper
hull subsequence as well as its first and last point
in its lower hull subsequence to all other nodes.

5. QuickUpperHull(pmin, pmax)

6. QuickLowerHull(pmin, pmax)

7. By the previous steps, each node keeps consecu-
tive pieces (if any) of the upper hull as well as the
lower hull. However, some nodes can keep empty
pieces. In order to obtain a more compact output
representation in batches of n consecutive vertices
of the hull (but for the last batch) assigned to con-
secutive nodes of the clique, the nodes can count
the number of vertices on the upper and lower hull
they hold and send the information to the other
nodes. Using the global information, they can de-
sign destination addresses for their vertices on both
hulls. Then, the routing protocol from [6] can be
applied.

184

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

procedure QuickUpperHull(p, r)
Input: The upper-hull subsequence of the input point
set S held in consecutive nodes in batches of at most
n points and two distinguished points p, r in the sub-
sequence , where the x-coordinate of p is smaller than
that of r.
Output: The vertices of the upper hull of S with x-
coordinates between those of p and r held in clockwise
order in consecutive nodes, between those holding p and
r respectively, in batches of at most n points.

1. Each node u determines the set Su of points in
its upper-hull subsequence that have x-coordinates
between those of p and r and lie above or on the
segment between p and r. If Su is not empty then
the node sends a point in Su having the largest y-
coordinate to the clique node holding p, from here
on referred to as the master node.

2. If the master node has not received any point sat-
isfying the requirements from the previous step
then it proclaims p and r to be vertices of the up-
per hull by sending this information to the nodes
holding p and/or q, respectively. (In fact one of
the vertices p and r has been marked as being on
the upper hull earlier.) Next, it pops a call of
QuickUpperHull from the top of a stack of re-
cursive calls held in a prefix of the clique nodes
numbered 1, 2, In case the stack is empty it ter-
minates QuickUpperHull(pmin, pmax).

3. If the master has received some points satisfying
the requirements from Step 1 than it determines
a point q of maximum y-coordinate among them.
Next, it puts the call of QuickUpperHull(q, r)
on the top of the stack and then activates
QuickUpperHull(p, q).

The procedure QuickLowerHull(p, r) is defined anal-
ogously.
Each step of the procedure QuickConvexHull(S),

but for the calls to QuickUpperHull(pmin, pmax) and
QuickLowerHull(pmin, pmax) can be done in O(1)
rounds on the congested clique on n nodes. In
particular, the sorting and the routing steps in
QuickConvexHull(S) can be done in O(1) rounds by
[6]. Similarly, each step of QuickUpperHull(p, r),
and symmetrically each step of QuickLowerHull(p, r),
but for recursive calls, can be done in O(1) rounds.
Since each non-leaf (in the recursion tree) call of
QuickUpperHull(p, r) and QuickLowerHull(p, r) re-
sults in a new vertex of the convex hull, their total num-
ber does not exceed h. Hence, we obtain the following
theorem.

Theorem 1 Consider a congested n-clique network,
where each node holds a batch of n points in the Eu-
clidean plane specified by O(log n)-bit coordinates. Let

h be the number of vertices on the convex hull of the set
S of the n2 points. The convex hull of S can be com-
puted by the procedure QuickConvexHull(S) in O(h)
rounds on the congested clique.

4 An O(log n)-round Algorithm for Convex Hull on
Congested Clique

Our refined algorithm for the convex hull of the input
point set S analogously as QuickConvexHull(S) starts
by sorting the points in S by their x-coordinates and
then splitting the sorted sequence of points in S into
an upper-hull subsequence and lower-hull subsequence.
Next, it computes the upper hull of S and the lower
hull of S by calling the procedures NewUpperHull(s)
and NewLowerHull(S), respectively. The procedure
NewUpperHull(S) lets each node ` construct the up-
per hull H` of its batch of at most n points in the
upper-hull subsequence locally. The crucial step of
NewUpperHull(S) is a parallel computation of bridges
between all pairs H`, Hm, ` 6= m, of the con-
structed upper hulls by parallel calls to the procedure
Bridge(H`, Hm). Based on the bridges between H`

and the other upper hulls Hm, each node ` can deter-
mine which of the vertices of H` belong to the upper
hull of S (see Lemma 1). The procedure Bridge has
recursion depth O(log n) and the parallel implemen-
tation of the crucial step of NewUpperHull(s) takes
O(log n) rounds. The procedure NewLowerHull(s) is
defined symmetrically. Consequently, the refined algo-
rithm for the convex hull of S specified by the procedure
NewConvexHull(S) can be implemented in O(log n)
rounds.

The procedure NewConvexHull(S) is defined in ex-
actly the same way as QuickConvexHull(S), except
that the calls to QuickUpperHull(pmin, pmax) and
QuickLowerHull(pmin, pmax) are replaced by calls to
NewUpperHull(S) and NewLowerHull(S), respec-
tively.

procedure NewUpperHull(S)
Input: The upper-hull subsequence of the input point
set S held in consecutive nodes in batches of at most n
points.
Output: The vertices of the upper hull of S held in clock-
wise order in consecutive nodes in batches of at most n
vertices.

1. Each node ` computes the upper hull H` of its
upper-hull subsequence locally.

2. In parallel, for each pair `, m of nodes, the pro-
cedure Bridge(H`, Hm) computing the bridge be-
tween H` and Hm is called. (The procedure uses
the two nodes in O(log n) rounds, exchanging at
most two messages between the nodes in each of
these rounds.)

185

35th Canadian Conference on Computational Geometry, 2023

3. Each node ` checks if it has a single point p not
marked as not qualifying for the upper hull of S
such that there are bridges between Hk and H` and
H` and Hm, where k < ` < m, p is an endpoint
of both bridges, and the angle formed by the two
bridges is smaller than 180 degrees. If so, p is also
marked as not qualifying for the upper hull of S.

4. Each node ` prunes the set of vertices of Hl, leaving
only those vertices that have not been marked in
the previous steps (including calls to the procedure
Bridge) as not qualifying for the upper hull of S.

The following lemmata enable the implementation of
the n2 calls to Bridge(H`, Hm) in the second step of
NewUpperHull(S) in O(log n) rounds on the congested
clique.

Lemma 2 For ` 2 [n], let H` be the upper hull of the
upper-hull subsequence of S assigned to the node `. A
vertex v of H` is not a vertex of the upper hull of S if
and only if it lies below a bridge between H` and Hm,
where ` 6= m, or there are two bridges between H` and
Hs, Ht, respectively, where s < ` < t, such that they
touch v and form an angle of less than 180 degrees at v.

Proof. Clearly, if at least one of the two conditions
on the right side of “if and only if” is satisfied then v
cannot be a vertex of the upper hull of S. Suppose that
v is not a vertex of the upper hull of S. Then, since it
is a vertex of Hl, there must be an edge e of the upper
hull of S connecting Hk with Hm for some k ` m,
k 6= m, that lies above v.We may assume without loss of
generality that v does not lie below any bridge between
H` and Hq, ` 6= q. It follows that s < ` < t. Let bk
be the bridge between Hk and H`, and let bm be the
bridge between H` and hm. It also follows that both bk
and bm are placed below e and the endpoint of bk at H`

is v or a vertex of H` to the left of v while the endpoint
of bm at H` is v or a vertex to the right of v. Let C
be the convex chain that is a part of H` between the
endpoints of bk and bm on H`. Suppose that C includes
at least one edge. The bridge bk has to form an angle
not less than 180 degrees with the leftmost edge of C
and symmetrically the bridge bm has to form an angle
not less than 180 degrees with the rightmost edge of C.
However, this is impossible because the bridges bk and
bm are below the edge e of the upper hull of S with
endpoints on Hk and Hm so they form an angle less
than 180 degrees. We conclude that C consists solely of
v and consequently v is an endpoint of both bk and bm.
See Figure 2. ⇤

The following folklore lemma follows easily by a stan-
dard case analysis (cf. [5, 7, 8]). It implies that the
recursive depth of the procedure Bridge is O(log n).

H

H

H

b
b

k

e

v

l

m

m
k

Figure 2: The final case in the proof of Lemma 2.

Lemma 3 Let S1, S2 be two n-point sets in the Eu-
clidean plane separated by a vertical line. Let H1, H2

be the upper hulls of S1, S2, respectively. Suppose that
each of H1 and H2 has at least three vertices. Next, let
m1, m2 be the median vertices of H1, H2, respectively.
Suppose that the segment connecting m1 with m2 is not
the bridge between H1 and H2. Then, the vertices on H1

either to the left or to the right of m1, or the vertices
on H2 either to the left or to the right of m2 cannot be
an endpoint of the bridge between H1 or H2.

procedure Bridge(H 0
`, H

0
m)

Input: A continuous fragment H 0
` of the upper hull H`

of the upper-hull subsequence assigned to a node ` and
a continuous fragment H 0

m of the upper hull Hm of the
upper-hull subsequence assigned to the node m.
Output: The bridge between H 0

` and H 0
m. Moreover, all

points in the upper-hull subsequence held in the nodes
` and m placed under the bridge are marked as not
qualifying for the convex hull of S.

1. If H 0
` or H

0
m has at most two vertices then compute

the bridge between H 0
` and H 0

m by binary search.
Next, mark all the points in the upper-hull subse-
quence between the endpoints of the found bridge
that are assigned to the nodes ` or m as not quali-
fying for vertices of the upper hull of S and stop.

2. Find a median m1 of H 0
` and a median m2 of H 0

m.

3. If the straight line passing through m1 and m2 is a
supporting line for both H 0

` and H 0
m then mark all

the points in the upper-hull subsequence between
m1 and m2 that are assigned to the nodes ` or m
as not qualifying for vertices of the upper hull of S
and stop.

4. Otherwise, call Bridge(H 00
` , H

00
m), where either

H 0
` = H 00

` and H 00
m is obtained from H 0

m by remov-
ing vertices on the appropriate side of the median
of H 0

m or vice versa, according to Lemma 2.

186

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

The procedure NewLowerHull(H 0
`, H

0
m) is defined

analogously.
As in case of the procedure QuickConvexHull(S),

each step of NewConvexHull(S), but for the calls
to NewUpperHull(S) and NewLowerHull(S), can be
done in O(1) rounds on the congested clique by [6]. Fur-
thermore, the first, next to the last, and last steps of
NewUpperHull(S) require O(1) rounds. By Lemma 2,
the recursion depth of the procedure Bridge is loga-
rithmic in n. The crucial observation is now that con-
sequently the nodes ` and m need to exchange O(log n)
messages in order to implement Bridge(H`, Hm). In
particular, they need to inform each other about the
current medians and in case H 0

` or H
0
m contains at most

two vertices, the node ` or m needs to inform about
the situation and the two vertices the other node. In
consequence, by Lemma 1, these two nodes can im-
plement Bridge(H`, Hm) by sending a single message
to each other in each round in a sequence of O(log n)
consecutive rounds. It follows that all the n2 calls
of Bridge(H`, Hm) can be implemented in parallel in
O(log n) rounds. Note that in each of the O(log n)
rounds, each clique node sends at most one message
to each other clique node, so in total, each node sends
at most n � 1 messages to the other nodes in each of
these rounds. It follows that NewUpperHull(S) and
symmetrically NewLowerHull(S) can be implemented
in O(log n) rounds on the congested clique. We con-
clude that NewConvexHull(S) can be done in O(log n)
rounds on the congested clique.

Theorem 4 Consider a congested n-clique network,
where each node holds a batch of n points in the Eu-
clidean plane specified by O(log n)-bit coordinates. The
convex hull of the set S of the n2 input points can
be computed by the procedure NewConvexHull(S) in
O(log n) rounds on the congested clique.

5 Point Set Triangulation in O(log2 n) Rounds on
Congested Clique

Our method of triangulating a set of n2 points in the
congested n-clique model initially resembles that of con-
structing the convex hull of the points. That is, first the
input point set is sorted by x-coordinates. Then, each
node triangulates its sorted batch of n points locally.
Next, the triangulations are pairwise merged and ex-
tended to triangulations of doubled point sets by using
the procedure Merge in parallel in O(log n) phases. In
the general case, the procedure Merge calls the proce-
dure Triangulate in order to triangulate the area be-
tween the sides of the convex hulls of the two input
triangulations, facing each other.

The main idea of the procedure Triangulate is to
pick a median vertex on the longer of the convex hulls
sides and send its coordinates and the coordinates of

its neighbors to the nodes holding the facing side of the
other hull. The latter nodes send back candidates (if
any) for a mate of the median vertex so that the segment
between the median vertex and the mate can be an edge
of a triangulation extending the input ones. The seg-
ment is used to split the area to triangulate into two that
are triangulated by two recursive calls of Triangulate
in parallel. Before the recursive calls the edges of the
two polygons surrounding the two areas are moved to
new node destinations so each of the polygons is held by
a sequence of consecutive clique nodes. This is done by
a global routing in O(1) rounds serving all parallel calls
of Triangulate on a given recursion level, for a given
phase of Merge (its first argument).

Since the recursion depth Triangulate is O(log n) and
Merge is run in O(log n) phases, the total number of
required rounds becomes O(log2 n).

To simplify the presentation, we shall assume that the
size n of the clique network is a power of 2.

procedure Triangulation(S)

1. Sort the points in S by their x-coordinates so each
node receives a subsequence consisting of n consec-
utive points in S, in the sorted order.

2. Each node sends the first point and the last point
in its subsequence to the other nodes.

3. Each node q constructs a triangulation Tq,q of the
points in its sorted subsequence locally.

4. For 1 p < q n, Tp,q will denote the already
computed triangulation of the points in the sorted
subsequence held in the nodes p through q. For
i = 0, log n � 1, in parallel, for j = 1, 1 + 2i+1, 1 +
22i+1, 1 + 32i+1, ... the union of the triangulations
Tj,j+2i�1 and Tj+2i,j+2i+1�1 is transformed to a
triangulation Tj,j+2i+1�1 of the sorted subsequence
held in the nodes j through j + 2i+1 � 1 by calling
the procedure Merge(i, j).

procedure Merge(i, j)
Input: A triangulation Tj,j+2i�1 of the subsequence held
in the nodes j through j + 2i � 1 and a triangulation
Tj+2i,j+2i+1�1 of the subsequence held in the nodes j+2i

through j + 2i+1 � 1,.
Output: A triangulation Tj,j+2j+1�1 of the subsequence
held in the nodes j through j + 2j+1 � 1.

1. Compute the bridges between the convex hulls of
Tj,j+2i�1 and Tj+2i,j+2i+1�1. Determine the poly-
gon P formed by the bridges between the convex
hulls of Tj,j+2i�1 and Tj+2i,j+2i+1�1, the right side
of the convex hull of Tj,j+2i�1, and the left side
of the convex hull of Tj+2i,j+2i+1�1 between the
bridges.

2. Triangulate(P, j, j + 2i+1 � 1)

187

35th Canadian Conference on Computational Geometry, 2023

procedure Triangulate(P, p, q)
Input: A simple polygon P composed of two convex
chains facing each other on opposite sides of a vertical
line and two edges crossing the line, held in nodes p
through q, with p < q.
Output: A triangulation of P held in nodes p through q.

1. If p = q then the p node triangulates P locally and
terminates the call of the procedure.

2. The nodes p through q determine the lengths of
the convex chains on the border of P and the node
holding the median vertex v of the longest chain (in
case of ties, the left chain) sends the coordinates of
v and the adjacent vertices on the chain to the other
nodes p through q.

3. The nodes holding vertices of the convex chain that
is opposite to the convex chain containing v deter-
mine if they hold vertices u that could be connected
by a segment with v within P. They verify if the seg-
ment (v, u) is within the intersection of the union
of the half-planes induced by the edges adjacent to
v on the side of P with the union of the half-planes
induced by the edges adjacent to u on the side of
P. If so, they send one such a candidate vertex u
to the node holding v.

4. The node holding v selects one of the received can-
didate vertices u as the mate and sends its coordi-
nates to the other nodes p through q.

5. The nodes p through q split the polygon P into two
subpolygons P1 and P2 by the edge (v, u) and by
exchanging messages in O(1) rounds compute the
new destinations for the edges of the polygons P1

and P2 so P1 can be held in nodes p through r1 and
P2 in the nodes r2 through q, where p r1 r2 q
and r1 = r2 or r2 = r1 + 1.

6. A synchronized global routing in O(1) rounds cor-
responding to the current phase of the calls to the
procedure Merge (given by its first argument) and
all parallel calls of the procedure Triangulate on
the same recursion level is implemented. In partic-
ular, the edges of P1 and P2 are moved to the new
consecutive destinations among nodes p through q.

7. In parallel, Triangulate(P1, p, r1) and
Triangulate(P2, r2, q) are performed.

At the beginning, we have outlined our triangulation
method, in particular the procedures forming it, in a
top-down fashion. We now complement this outline
with a bottom-up analysis. All steps of the procedure
Triangulate(P, p, q) but for the recursive calls in the
last step and the next to the last step can be imple-
mented in O(1) rounds, using only the nodes p through

q. The next to the last step is a part of the global rout-
ing. It serves all calls of the procedure Triangulate on
the same recursion level for a given phase of the parallel
calls of procedureMerge(i,), i.e., for given i. Since each
node is involved in at most two of the aforementioned
calls of Triangulate that cannot be handled locally, the
global routing, implementing the next to the last step
of Triangulate, requires O(1) rounds. Since the re-
cursion depth of Triangulate is O(log n), Triangulate
takes O(log n) rounds. The first step of the procedure
Merge(i, j), i.e., constructing the bridges between the
convex hulls, can be implemented in O(log n) rounds by
using the convex hull algorithm from Section 4 on nodes
i through i + 2i+1 � 1. The second step can easily be
implemented in O(1) rounds using the aforementioned
nodes. Finally, the call to Triangulate in the last step of
Merge requires O(log n) rounds by our analysis of this
procedure. Again, it can be done by nodes j through
j+2i+1�1 but for the last steps of calls to Triangulate
that are served by the discussed, synchronized global
routing in O(1) rounds. We conclude that Merge(i, j)
can be implemented in O(log n) rounds. Finally, all
steps in Triangulation(S) except the one involving par-
allel calls to Merge(i, j) in O(log n) phases can be done
in O(1) rounds. For a given phase, i.e., given i, each
node is involved in O(1) calls of Merge(i, j) but for the
next to the last steps in Triangulate that for a given re-
cursion level of Triangulate are implemented by the join
global routing in O(1) rounds. It follows from our analy-
sis of Merge(i, j) and i = O(log n) that Triangulate(S)
can be implemented in O(log2 n) rounds.

Theorem 5 Consider a congested n-clique network,
where each node holds a batch of n points in the
Euclidean plane specified by O(log n)-bit coordinates.
A triangulation of the set S of the n2 input points
can be computed by the procedure Triangulation(S) in
O(log2 n) rounds on the congested clique.

6 Remarks

The primary di�culty in the design of e�cient parallel
algorithms for the Voronoi diagram of a planar point
set using a divide-and-conquer approach is the e�cient
parallel merging of Voronoi diagrams [1, 11]. In the full
version of this paper [4], we show that when the n2 in-
put points with O(log n)-bit coordinates are drawn uni-
formly at random from a unit square then the expected
number of rounds required to build their Voronoi dia-
gram on the congested clique is O(1).

Acknowledgments

This research was partially supported by Swedish Re-
search Council grants 621-2017-03750 and 2018-04001,
and JSPS KAKENHI JP20H05964.

188

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. Ó’Dúnlaing,
and C. Yap. Parallel Computational Geometry. Algo-
rithmica, 3: 293–327, 1988. Preliminary version in Pro-
ceedings of the 26th IEEE Symposium on Foundations
of Computer Science, FOCS 1985, pp. 468–477, 1985.

[2] S.G. Akl. Optimal parallel algorithms for computing
convex hulls and for sorting. Computing, 33(1): 1–11,
1984.

[3] K. Censor-Hillel, P. Kaski, J.H. Korhonen, C. Lenzen,
C., A. Paz, and J. Suomela. Algebraic Methods in the
Congested Clique. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing,
PODC 2015, pp. 143–152, 2015.

[4] J. Jansson, C. Levcopoulos, and A. Lingas. Convex
Hulls and Triangulations of Planar Point Sets on the
Congested Clique. arXiv:2305.09987, 2023.

[5] D.G. Kirkpatrick and R. Seidel. The ultimate planar
convex hull algorithm? SIAM Journal on Computing,
15(1): 287–299, 1986.

[6] C. Lenzen. Optimal Deterministic Routing and Sorting
on the Congested Clique. In Proceedings of the 2013
ACM Symposium on Principles of Distributed Comput-
ing, PODC 2013, pp. 42–50, 2013.

[7] M.H. Overmars and J. Van Leeuwen. Maintenance of
Configurations in the Plane. Journal of Computer and
System Sciences, 23(2): 166–204, 1981.

[8] F. Preparata. An optimal real-time algorithm for planar
convex hulls. Communications of the ACM, 22(7): 402–
405, 1979.

[9] J. Ramesh and S. Suresha. Convex Hull - Parallel and
Distributed Algorithms. Technical Report, Stanford
University, U.S.A., 2016.

[10] P. Robinson. What Can We Compute in a Single Round
of the Congested Clique? arXiv:2210.02638, 2022.

[11] B. C. Vemuri, R. Varadarajan and N. Mayya. An Ef-
ficient Expected Time Parallel Algorithm for Voronoi
Construction. In Proceedings of the ACM Symposium
on Parallel Algorithms and Architectures, SPAA 1992,
pp. 392–401, 1992.

189

