
Multiplication of 0-1 Matrices
via Clustering

Jesper Jansson1, Mirosław Kowaluk2, Andrzej Lingas3(B), and Mia Persson4

1 Graduate School of Informatics, Kyoto University, Kyoto, Japan
jj@i.kyoto-u.ac.jp

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
kowaluk@mimuw.edu.pl

3 Department of Computer Science, Lund University, Lund, Sweden
Andrzej.Lingas@cs.lth.se

4 Department of Computer Science and Media Technology, Malmö University,
Malmö, Sweden

Mia.Persson@mau.se

Abstract. We study applications of clustering (in particular the .k-
center clustering problem) in the design of efficient and practical deter-
ministic algorithms for computing an approximate and the exact arith-
metic matrix product of two 0-1 rectangular matrices .A and .B with
clustered rows or columns, respectively. Let .λA and .λB denote the min-
imum maximum radius of a cluster in an .�-center clustering of the rows
of .A and in a .k-center clustering of the columns of .B, respectively. In
particular, when . A and . B are square matrices of size .n×n, we obtain the
following results.
1. A simple deterministic algorithm that approximates each entry of

the arithmetic matrix product of .A and .B within an additive error
of at most .2λA in .O(n2�) time or at most .2λB in .O(n2k) time.

2. A simple deterministic preprocessing of the matrices .A and .B in
.O(n2�) time or .O(n2k) time after which every query asking for the
exact value of an arbitrary entry of the arithmetic matrix product of
. A and . B can be answered in .O(λA) time or .O(λB) time, respectively.

3. A simple deterministic algorithm for the exact arithmetic matrix
product of . A and .B running in time .O(n2(� + k +min{λA, λB})).

Keywords: arithmetic matrix multiplication · clustering · Hamming
space · minimum spanning tree

1 Introduction

The arithmetic matrix product of two 0-1 matrices is closely related to the
Boolean one of the corresponding Boolean matrices. For square .n × n matrices,
both can be computed in .O(n2.372) time [1, 23]. Both are basic tools in science
and engineering. Unfortunately, no truly subcubic practical algorithms for any
of them are known. Therefore, many researchers studied the complexity of these
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
V. Chau et al. (Eds.): IJTCS-FAW 2025, LNCS 15828, pp. 92–102, 2025.
https://doi.org/10.1007/978-981-96-8312-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-8312-3_7&domain=pdf
https://doi.org/10.1007/978-981-96-8312-3_7

Multiplication of 0-1 Matrices via Clustering 93

products for special input matrices, e.g., sparse or structured matrices [3, 4, 11,
15, 21, 24], providing faster and often more practical algorithms.

The method of multiplying matrices with clustered rows or columns, proposed
for Boolean matrix product in [4] and subsequently generalized in [11, 15] and
used in [2], relies on the construction of an approximate spanning tree of the
rows of the first input matrix or the columns of the second input matrix in
a Hamming space. Then, each column or each row of the product matrix is
computed with the help of a traversal of the tree in time proportional to the total
Hamming cost of the tree up to a logarithmic factor. Simply, the next entry in
a column or a row in the product matrix can be obtained from the previous one
in time roughly proportional to the Hamming distance between the consecutive
(in the tree traversal) corresponding rows or columns of the first or the second
input matrix, respectively. Thus, in case the entire tree cost is substantially
subquadratic in .n, the total running time of this method becomes substantially
subcubic provided that a good approximation of a minimum spanning tree of the
rows of the first input matrix or the columns of the second one can be constructed
in substantially subcubic time. As for simplicity and practicality, a weak point
of this method is that in order to construct such an approximation relatively
quickly, it employs a randomized dimension reduction.

In case of the arithmetic matrix product of 0-1 matrices, in some cases, a
faster approximate arithmetic matrix multiplication can be more useful [8, 21].
Among other things, it can enable to identify largest entries in the product
matrix and it can be also used to provide a fast estimation of the number of:
the so called witnesses for the Boolean product of two Boolean matrices [14],
triangles in a graph, or more generally, subgraphs isomorphic to a small pattern
graph [12] etc. There is a number of results on approximate arithmetic matrix
multiplication, where the quality of approximation is expressed in terms of the
Frobenius matrix norm .|| ||F (i.e., the square root of the sum of the squares of
the entries of the matrix) [8, 21].

Cohen and Lewis [8] and Drineas et al. [9] used random sampling to
approximate arithmetic matrix product. Their papers provide an approxima-
tion .D of the matrix product .AB of two .n × n matrices .A and .B such that
.||AB − D||F = O(||AB||F /

√
c), for a parameter .c > 1 (see also [21]). The

approximation algorithm in [9] runs in .O(n2c) time. Drineas et al. [9] also derived
bounds on the entrywise differences between the exact matrix product and its
approximation. Unfortunately, the best of these bounds is .Ω(M2n/

√
c), where

.M is the maximum value of an entry in .A and .B. By using a sketch tech-
nique, Sarlós [22] obtained the same Frobenius norm guarantees, also in . O(n2c)
time. However, he derived stronger individual upper bounds on the additive
error of each entry .Dij of the approximation matrix . D. They are of the form
.O(||Ai∗||2||B∗j ||2/

√
c), where .Ai∗ and .B∗j stands for the .i-th row of . A and the

.j-th column of .B, respectively, that hold with high probability. More recently,
Pagh [21] presented a randomized approximation .Õ(n(n + c))-time algorithm
for the arithmetic product of .n × n matrices . A and .B such that each entry of
the approximate matrix product differs at most by .||AB||F /

√
c from the cor-

94 J. Jansson et al.

rect one. His algorithm first compresses the matrix product to a product of two
polynomials and then uses the fast Fourier transform to multiply the polyno-
mials. Subsequently, Kutzkov [20] developed analogous deterministic algorithms
employing different techniques. For approximation results related to sparse arith-
metic matrix products, see [19, 21].

1.1 Our Contributions

In this paper, we exploit the possibility of applying the classic simple .2-
approximation algorithm for the . k center clustering problem [16] in order to
derive efficient and practical deterministic algorithms for computing an approx-
imate and the exact arithmetic matrix product of two 0-1 rectangular matrices
. A and .B with clustered rows or columns, respectively.

The .k-center clustering problem in a Hamming space .{0, 1}d is for a set
.P of . n points in .{0, 1}d to find a set .T of . k points in .{0, 1}d that minimize
.maxv∈P minu∈T ham(v, u), where .ham(v, u) stands for the Hamming distance
between . v and .u, (the number of coordinate positions they differ from each
other). Each center in . T induces a cluster consisting of all points in . P for which
it is the nearest center.

Let .λA and .λB denote the minimum maximum radius of a cluster in an .�-
center clustering of the rows of . A or in a .k-center clustering of the columns of
.B, respectively. Assuming that . A and . B are of sizes .p× q and .q ×r, respectively,
we obtain the following results.

1. A simple deterministic algorithm that approximates each entry of the arith-
metic matrix product of . A and .B within an additive error of at most .2λA in
.O(pq� + pr) time if .p ≥ r or at most .2λB in .O(qrk + pr) time if .p ≤ r.

2. A simple deterministic preprocessing of the matrices . A and . B in . O(pq�+ pr)
time if .p ≥ r or .O(qrk + pr) time if .p ≤ r after which every query asking for
the exact value of an arbitrary entry of the arithmetic matrix product of . A
and .B can be answered in .O(λA) time if .p ≥ r or .O(λB) time if . p ≤ r.

3. A simple deterministic algorithm for the exact arithmetic matrix product of
. A and .B running in time . O(pq� + rqk +min{prλA + rq�, prλB + pqk}).

1.2 Techniques

All our main results rely on the classical, simple .2-approximation algorithm
for the .k-center clustering problem (farthest-point clustering) due to Gonzalez
[16] (see also Fact 1). Two of them rely also on the idea of updating the inner
product of two vectors . a and . b in .{0, 1}q over the Boolean or an arithmetic
semi-ring to that of two vectors .a′ and . b′ in .{0, 1}q, where .a = a′ or .b = b′, in
time roughly proportional to .ham(a, a′) + ham(b, b′). The idea has been used in
[4, 11, 15]. As in the aforementioned papers, we combine it with a traversal of an
approximate minimum spanning tree of the rows or columns of an input matrix
in the Hamming space .{0, 1}q, where . q is the length of the rows or columns (see
also Lemma 6).

Multiplication of 0-1 Matrices via Clustering 95

1.3 Paper Organization

The next section contains basic definitions. Section 3 presents our approximation
algorithm for the arithmetic product of two 0-1 matrices and the preprocessing
enabling efficient answers to queries asking for the value of an arbitrary entry
of the arithmetic product matrix. Section 4 is devoted to our algorithm for the
exact arithmetic matrix product of two 0-1 matrices. We conclude with a short
discussion on possible extensions of our results.

2 Preliminaries

For a positive integer . r, .[r] stands for the set of positive integers not exceeding
. r.

The transpose of a matrix .D is denoted by .D�. If the entries of .D are in
.{0, 1} then .D is a 0-1 matrix.

The Hamming distance between two points .a, b (vectors) in .{0, 1}d is the
number of the coordinates in which the two points differ. Alternatively, it can
be defined as the distance between . a and . b in the .L1 metric over .{0, 1}d. It is
denoted by . ham(a, b).

The .k-center clustering problem in a Hamming space .{0, 1}d is as follows:
given a set .P of . n points in .{0, 1}d, find a set .T of . k points in .{0, 1}d that
minimize . maxv∈P minu∈T ham(v, u).

The minimum-diameter .k-clustering problem in a Hamming space . {0, 1}d

is as follows: given a set .P of . n points in .{0, 1}d, find a partition of .P into
. k subsets .P1, P2, . . . , Pk that minimize .maxi∈[k] maxv,u∈Pi

ham(v, u). Note that
the .k-center clustering problem could be also termed as the minimum-radius .k-
clustering problem. It is known to be NP-hard and even NP-hard to approximate
within .2 − ε for any constant .ε > 0 [10, 13].

Fact 1. [16] Let .P be a set of . n points in .{0, 1}d, and let .k ∈ [n]. There is a
simple deterministic .2-approximation algorithm for the .k-center clustering and
minimum-diameter .k-clustering problems running in .O(ndk) time.

3 An Approximate Arithmetic Matrix Product of 0-1
Matrices

Our approximation algorithm for the arithmetic matrix product of two 0-1 matri-
ces is specified by the following procedure.

procedure . APPROXMMCLUS(A,B, �)
Input: Two 0-1 matrices .A and .B of sizes .p × q and .q × r, respectively, where
.p ≥ r, and a positive integer . � not exceeding . p.
Output: A .p × r matrix . D, where for .1 ≤ i ≤ p and .1 ≤ j ≤ r, .Dij is an
approximation of the inner product .Cij of the .i-th row .Ai∗ of .A and the .j-th
column .B∗j of .B.

96 J. Jansson et al.

1. Determine an approximate .�-center clustering of the rows of the matrix . A in
.{0, 1}q. For each row .Ai∗ of . A, set .cen�(Ai∗) to the center of the cluster in
the .�-clustering to which .Ai∗ belongs.

2. Form the .� × q matrix .A′, where the .i′-th row is the .i′-th center in the
approximate .�-center clustering of the rows of . A.

3. Compute the arithmetic .� × r matrix product .C ′ of .A′ and . B.
4. For .1 ≤ i ≤ p and .1 ≤ j ≤ r, set .Dij to .C ′

i′j , where the .i′-th row .A′
i′∗ of . A′

is . cen�(Ai∗).

For a 0-1 .p × q matrix . A, let .λ(A, �, row) be the minimum, over all .�-center
clusterings of the rows of .A in the Hamming space .{0, 1}q, of the maximum
Hamming distance between a center of a cluster and a member of the cluster.
Similarly, for a 0-1 .q × r matrix .B, let .λ(B, k, col) be the minimum, over all
.k-center clusterings of the columns of .B in the Hamming space .{0, 1}q, of the
maximum Hamming distance between a center of a cluster and a member of the
cluster.

Lemma 1. Suppose a .2-approximation algorithm for the .�-center clustering is
used in .APPROXMMCLUS(A,B, �) and .C stands for the arithmetic product
of . A and .B. Then, for .1 ≤ i ≤ p and .1 ≤ j ≤ r, .|Cij − Dij | ≤ 2λ(A, �, row).

Proof. Recall that .p ≥ r is assumed in the input to .APPROXMMCLUS(A, B, �).
For .1 ≤ i ≤ p and .1 ≤ j ≤ r, .Dij is the inner product of .cen�(Ai∗), where
.ham(Ai∗, cen�(Ai∗)) ≤ 2λ(A, �, row), with .B∗j . Hence, .Cij , which is the inner
product of .Ai∗ with .B∗j , can differ at most by .2λ(A, �, row) from .Dij . . ��

By .T (s, q, t), we shall denote the worst-case time taken by the multiplication
of two 0-1 matrices of sizes .s × q and .q × t, respectively.

Lemma 2. .APPROXMMCLUS(A,B, �) can be implemented in . O(pq�+pr+
T (�, q, r)) time.

Proof. Recall that .p ≥ r. Step 1, which includes the assignment of the closest
center to each row of . A, can be done in .O(pq�) time by using Fact 1, i.e., the
classic algorithm of Gonzalez [16]. Step 2 takes .O(�q) time, which is . O(T (�, q, r))
time. Finally, Step 3 takes .T (�, q, r) time while Step 4 can be done in .O(pr) time.
Thus, the overall time is .O(pq� + pr + T (�, q, r)). . ��

We can use the straightforward .O(sqt)-time algorithm for the multiplication
of two matrices of sizes .s × q and .q × t, respectively. Since . T (�, q, r) = O(�q r) =
O(�qp) if .p ≥ r, Lemmata 1 and 2 yield the first part (1) of our first main result
(Theorem 1 below), for .p ≥ r. Its second part (2) for .p ≤ r follows from the
first part by .(AB)� = B�A�. Note that then the number of rows in .B�, which
is . r, is not less than the number of columns in .A�, which is . p. Simply, we run
.APPROXMMCLUS(B�, A�, k) in order to compute an approximation of the
transpose of the arithmetic matrix product of .A and .B. Note also that a .k-
clustering of columns of . B is equivalent to a .k-clustering of the rows of .B� and
that .λ(B�, k, row) = λ(B, k, col).

Multiplication of 0-1 Matrices via Clustering 97

Theorem 1. Let . A and .B be two 0-1 matrices of sizes .p × q and .q × r, respec-
tively. There is a simple deterministic algorithm which provides an approxima-
tion of all entries of the arithmetic matrix product of . A and . B within an additive
error of at most:

1. .2λ(A, �, row) in time .O(pq� + pr) if . p ≥ r,
2. .2λ(B, k, col) in time .O(rqk + pr) if . p ≤ r.

We slightly extend .APPROXMMCLUS(A,B, �) in order to obtain a pre-
processing for answering queries about single entries of the arithmetic matrix
product of . A and . B.

procedure . PREPROCMMCLUS(A,B, �)
Input: Two 0-1 matrices .A and .B of sizes .p × q and .q × r, respectively, where
.p ≥ r, and a positive integer . � not exceeding . p.
Output: The .p×r matrix .D returned by .APPROXMMCLUS(A,B, �), and for
.1 ≤ i ≤ p, the set of coordinate indices .ind(A, i) on which .Ai∗ differs from its
cluster center.

1. Run .APPROXMMCLUS(A,B, �).
2. For .1 ≤ i ≤ p, determine the set .ind(A, i) of coordinate indices on which . Ai∗

differs from .cen�(Ai∗).

Lemma 3. .PREPROCMMCLUS(A,B, �) can be implemented in . O(pq� +
pr + T (�, q, r)) time.

Proof. Recall that .p ≥ r. Step 1 can be done in .O(pq�+ pr + T (�, q, r)) time by
Lemma 2. Step 2 can be easily implemented in .O(pq) time. . ��

Our procedure for answering a query about a single entry of the matrix
product of . A and .B is as follows.

procedure . QUERY MMCLUS(A,B, �, i, j)
Input: The preprocessing done by .PREPROCMMCLUS(A,B, �) for 0-1
matrices . A and . B of sizes .p × q and .q × r, respectively, where .p ≥ r, .� ∈ [p], and
two query indices .i ∈ [p] and . j ∈ [r].
Output: The inner product .Cij of the .i-th row .Ai∗ of . A and the .j-th column . B∗j

of . B.

1. Set .Cij to the entry .Dij of the matrix .D computed by
.APPROXMMCLUS(A,B, �) in .PREPROCMMCLUS(A,B, �, k).

2. For .m ∈ ind(A, i) do
(a) If the .m-th coordinate of the center assigned to .Ai∗ is . 0 and . Bmj = 1

then .Cij ← Cij + 1.
(b) If the .m-th coordinate of the center assigned to .Ai∗ is . 1 and .Bmj is also

. 1 then .Cij ← Cij − 1.

Lemma 4. .QUERY MMCLUS(A,B, �, i, j) is correct, i.e., the final value of
.Cij is the inner product of the .i-th row .Ai∗ of . A and the .j-th column .B∗j of .B.

98 J. Jansson et al.

Proof. .Cij is initially set to .Dij , which is the inner product of the center assigned
to .Ai∗ and .B∗j . Then, .Cij is appropriately corrected by increasing or decreasing
with . 1 for each coordinate index .m ∈ ind(A, i) which contributes . 1 to the inner
product of .Ai∗ and .B∗j and . 0 to the inner product of the center of .Ai∗ and . B∗j

or vice versa. . ��
Lemma 5. .QUERY MMCLUS(A,B, �, k, i, j) takes .O(λ(A, �, row)) time.

Proof. Recall that .2λ(A, �, row) is an upper bound on the maximum Hamming
distance between a row of . A and its center in the .�-center clustering computed by
.APPROXMMCLUS(A,B, �) in .PREPROCMMCLUS(A,B, �). Recall also
that .p ≥ r. Step 1 takes .O(1) time. Since the .m-th coordinate in the centers
can be accessed in the matrix .A′ computed by .APPROXMMCLUS(A,B, �),
each of the two substeps in the block of the loop in Step 2 can be done in
.O(1) time. Finally, since .|ind(A, j)| ≤ 2λ(A, �, row), the block is iterated at
most .2λ(A, �, row) times. Consequently, the whole Step 2 takes . O(λ(A, �, row))
time. . ��

By putting Lemmata 3, 4, and 5 together, and using the straightforward
.O(sqt)-time algorithm to multiply matrices of size .s × q and .q × t, we obtain
our next main result for .p ≥ r. The case .p ≤ r reduces to the case .p ≥ r by
.(AB)� = B�A�. Recall that then the number of rows in .B�, which is . r, is not
less than the number of columns in .A�, which is . p. Also, we have . λ(B�, k, row) =
λ(B, k, col). We simply run .PREPROCMMCLUS(B�, A�, k) and
.QUERY MMCLUS(B�, A�, k, j, i) instead.

Theorem 2. Let . A and .B be two 0-1 matrices of sizes .p × q and .q × r, respec-
tively. Given parameters .� ∈ [p] and .k ∈ [r], the matrices can be preprocessed by
a simple deterministic algorithm in .O(pq� + pr) time if .p ≥ r or . O(rqk + pr)
time if .p ≤ r such that a query asking for the exact value of a single entry .Cij of
the arithmetic matrix product . C of . A and .B can be answered in . O(λ(A, �, row))
time if .p ≥ r or .O(λ(B, k, col)) time if . p ≤ r.

4 The Exact Arithmetic Matrix Product of 0-1 Matrices

Theorem 2 yields the following corollary.

Corollary 1. Let .A and .B be two 0-1 matrices of sizes .p × q and . q × r,
respectively. Given parameters .� ∈ [p] and .k ∈ [r], the arithmetic matrix
product of .A and .B can be computed by a simple deterministic algorithm in
.O(pq� + prλ(A, �, row)) time if .p ≥ r or .O(rqk + prλ(B, k, col)) time if . p ≤ r.

There is however a slightly better way of obtaining a simple deterministic
algorithm for the arithmetic matrix product of two 0-1 matrices via .�-center
clustering of the rows of the first matrix or .k-center clustering of the columns of
the second matrix. The idea is to use the aforementioned technique of traversing
an approximate minimum spanning tree of the rows of the first matrix or the

Multiplication of 0-1 Matrices via Clustering 99

columns of the second matrix in an appropriate Hamming space in order to
compute a row or column of the product matrix [4, 11, 15]. The technique easily
generalizes to 0-1 rectangular matrices. We shall use the following procedure and
lemma in the spirit of [4, 11, 15].
procedure . MMST (A,B, T)
Input: Two matrices . A and . B of sizes .p×q and .q×r, respectively, and a spanning
tree . T of the rows of . A in the Hamming space . {0, 1}q.
Output: The arithmetic matrix product . C of . A and . B.

1. Construct a traversal (i.e., a non-necessarily simple path visiting all vertices)
. U of . T.

2. For any pair .Am∗, .Ai∗, where the latter row follows the former in the traversal
.U, compute the set .diff(m, i) of indices .h ∈ [q] where .Aih 	= Amh.

3. For .j = 1, . . . , r, iterate the following steps:
(a) Compute .Csj where .As∗ is the row of . A from which the traversal . U of . T

starts.
(b) While following . U , iterate the following steps:

i. Set .m, i to the indices of the previously traversed row of . A and the
currently traversed row of . A, respectively.

ii. Set .Cij to .Cmj .
iii. For each .h ∈ diff(m, i), if .AihBhj = 1 then set .Cij to .Cij + 1 and if

.AmhBhj = 1 then set .Cij to .Cij − 1.

Define the Hamming cost .ham(S) of a spanning tree . S of a point set . P ⊂
{0, 1}d by . ham(S) =

∑
(v,u)∈S ham(v, u).

Lemma 6. Let . A and . B be two 0-1 matrices of sizes .p×q and .q×r, respectively.
Given a spanning tree .TA of the rows of . A and a spanning tree .TB of the columns
of .B in the Hamming space .{0, 1}q, the arithmetic matrix product of .A and . B
can be computed in time . O(pq + qr + pr +min{r × ham(TA), p × ham(TB)}).

Proof. First, we shall prove that .MMST (A,B, TA) computes the arithmetic
matrix product of . A and .B in time .O(pq + qr + r × ham(TA)). The correctness
of the procedure .MMST follows from the correctness of the updates of .Cij in
the block of the inner loop, i.e., in Step 3(b). Step 1 of .MMST (A,B, TA) can be
done in .O(p) time while Step 2 requires .O(pq) time. The first step in the block
under the outer loop, i.e., computing .Csj in Step 3(a), takes .O(q) time. The
crucial observation is that the second step in this block, i.e., Step 3(b), requires
.O(p + ham(TA)) time. Simply, the substeps (i), (ii) take .O(1) time while the
substep (iii) requires .O(|diff(m, i)|+1) time. Since the block is iterated . r times,
the whole outer loop, i.e., Step 3, requires .O(qr + pr + rham(TA)) time. Thus,
.MMST (A,B, TA) can be implemented in time . O(pq + qr + rp+ r × ham(TA)).

Similarly, we can run .MMST (B�, A�, TB) to obtain the transpose of the
arithmetic matrix product of . A and .B. So, to obtain the lemma, we can alternate
the steps of .MMST (A,B, TA) and .MMST (B�, A�, TB), and stop whenever
any of the calls is completed. .��

100 J. Jansson et al.

Theorem 3. Let . A and .B be two 0-1 matrices of sizes .p × q and .q × r, respec-
tively. Given parameters .� ∈ [p] and .k ∈ [r], the arithmetic matrix prod-
uct of .A and .B can be computed by a simple deterministic algorithm in time
.O(pq� + rqk +min{prλ(A, �, row) + rq�, prλ(B, k, col) + pqk}).
Proof. We determine an .�-center clustering of the rows of . A in .{0, 1}q of max-
imum cluster radius not exceeding .2λ(A, �, row) in .O(pq�) time by employing
Fact 1. Similarly, we construct a .k-center clustering of the columns of . B in . {0, 1}q

of maximum cluster radius not exceeding .2λ(B, k, col) in .O(rqk) time. The cen-
ters in both aforementioned clusterings are some rows of . A and some columns
of . B, respectively, by the specification of the method in [16]. Hence, the .�-center
clustering gives rise to a spanning tree .TA of the rows of . A with all members of a
cluster being pendants of their cluster center and the centers connected by a path
of length .�−1. The Hamming cost of .TA is at most . (p−�)2λ(A, �, row)+(�−1)q.
Similarly, we obtain a spanning tree .TB of the columns of .B having the Ham-
ming cost not exceeding .(r−k)2λ(B, k, col)+(k−1)q. The theorem follows from
Lemma 6 by straightforward calculations. . ��

5 Extensions

The rows or columns in the input 0-1 matrices can be very long. Also, a large
number of clusters might be needed in order to obtain a low upper bound on their
radius. Among other things, for these reasons, we have picked Gonzalez’s classical
algorithm for the .k-center clustering problem [16] as a basic tool in our approach
to the arithmetic matrix product of two 0-1 matrices with clustered rows or
columns. The running time of his algorithm is linear not only in the number of
input points but also in their dimension, and in the parameter .k. Importantly,
it is very simple and provides a solution within . 2 of the optimum. For instance,
there exist faster (in terms of . n and . k) .2-approximation algorithms for .k-center
clustering with hidden exponential dependence on the dimension in their running
time, see [10, 17],

One could easily generalize our main results by replacing Gonzalez’s algo-
rithm with a simple and efficient approximation algorithm for the more general
problem of .k-center clustering with outliers [6]. In the latter problem, a given
number . z of input points could be discarded as outliers when trying to minimize
the maximum cluster radius. Unfortunately, the algorithms for this more general
problem tend to be more complicated and the focus seems to be the approxima-
tion ratio achievable in polynomial time (e.g., . 3 in [6] and . 2 in [18]) not the time
complexity.

There are many other variants of clustering than .k-center clustering, and
plenty of methods have been developed for them in the literature. In fact, in
the design of efficient algorithms for the exact arithmetic matrix product of 0-1
matrices with clustered rows or columns, using the .k-median clustering could
seem more natural. The objective in the latter problem is to minimize the sum
of distances between the input points and their nearest centers. Unfortunately,
no simple deterministic .O(1)-approximation algorithms for the latter problem

Multiplication of 0-1 Matrices via Clustering 101

that are efficient in case the dimension and . k parameters are large seem be to
available [5, 7].

Our approximate and exact algorithms for the matrix product of 0-1 matrices
as well as the preprocessing of the matrices can be categorized as supervised
since they assume that the user has some knowledge on the input matrices and
can choose reasonable values of the parameters . � and . k guaranteeing relatively
low overall time complexity. Otherwise, one could try the .�-center and .k-center
clustering subroutines for a number of combinations of different values of . � and . k
in order to pick the combination yielding the lowest upper bound on the overall
time complexity of the algorithm or preprocessing.

Acknowledgments. J.J. was partially supported by KAKENHI grant 24K22294.

References

1. Alman, J., Duan, R., Vassilevska Williams, V., Xu, Y., Xu, Z., Zhou, R.: More
asymmetry yields faster matrix multiplication. In: Proceedings of the Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2025), pp. 2005–2039. ACM-
SIAM (2025)

2. Alves, J., Moustafa, S., Benkner, S., Francisco, A.: Accelerating graph neural net-
works with a novel matrix compression format (2024). https://doi.org/10.48550/
arXiv.2409.02208

3. Anand, E., van den Brand, J., McCarthy, R.: The structural complexity of matrix-
vector multiplication. arXiv:2502.21240 (2025)

4. Björklund, A., Lingas, A.: Fast boolean matrix multiplication for highly clustered
data. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125,
pp. 258–263. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44634-
6_24

5. Charikar, M., Guha, S., Tardos, E., Shmoys, D.: A constant-factor approximation
algorithm for the k-median problem. In: Proceedings of the 31st Annual ACM
Symposium on Theory of Computing (STOC 1999), pp. 1–10. ACM (1999)

6. Charikar, M., Khuller, S., Mount, D., Narasimhan, G.: Algorithms for facility loca-
tion problems with outliers. In: Proceedings of the 12th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2001), pp. 642–651. ACM-SIAM (2001)

7. Chen, K.: On coresets for k-median and k-means clustering in metric and euclidean
spaces and their applications. SIAM J. Comput. 39, 923–947 (2009)

8. Cohen, E., Lewis, D.D.: Approximating matrix multiplication for pattern recogni-
tion tasks. J. Algorithms 30(2), 211–252 (1999)

9. Drineas, P., Kannan, R., Mahoney, M.: Fast monte carlo algorithms for matrices
I: approximating matrix multiplication. SIAM J. Comput. 36(1), 132–157 (2006)

10. Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Proceed-
ings of ACM Symposium on Theory of Computing (STOC 1988), pp. 434–444.
ACM (1988)

11. Floderus, P., Jansson, J., Levcopoulos, C., Lingas, A., Sledneu, D.: 3D rectangu-
lations and geometric matrix multiplication. Algorithmica 80(1), 136–154 (2018)

12. Floderus, P., Kowaluk, M., Lingas, A., Lundell, E.: Detecting and counting small
pattern graphs. SIAM J. Discret. Math. 29(3), 1322–1339 (2015)

https://doi.org/10.48550/arXiv.2409.02208
https://doi.org/10.48550/arXiv.2409.02208
https://doi.org/10.48550/arXiv.2409.02208
https://doi.org/10.48550/arXiv.2409.02208
https://doi.org/10.48550/arXiv.2409.02208
https://doi.org/10.48550/arXiv.2409.02208
https://doi.org/10.48550/arXiv.2409.02208
https://doi.org/10.48550/arXiv.2409.02208
http://arxiv.org/abs/2502.21240
https://doi.org/10.1007/3-540-44634-6_24
https://doi.org/10.1007/3-540-44634-6_24
https://doi.org/10.1007/3-540-44634-6_24
https://doi.org/10.1007/3-540-44634-6_24
https://doi.org/10.1007/3-540-44634-6_24
https://doi.org/10.1007/3-540-44634-6_24
https://doi.org/10.1007/3-540-44634-6_24
https://doi.org/10.1007/3-540-44634-6_24
https://doi.org/10.1007/3-540-44634-6_24

102 J. Jansson et al.

13. Gąsieniec, L., Jansson, J., Lingas, A.: Approximation algorithms for hamming
clustering problems. J. Discrete Algorithms 2(2), 289–301 (2004)

14. Gąsieniec, L., Kowaluk, M., Lingas, A.: Faster multi-witnesses for Boolean matrix
multiplication. Inf. Process. Lett. 109(4), 242–247 (2009)

15. Gąsieniec, L., Lingas, A.: An improved bound on boolean matrix multiplication
for highly clustered data. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003.
LNCS, vol. 2748, pp. 329–339. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45078-8_29

16. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Scirnce 38, 293–306 (1985)

17. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics
and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)

18. Harris, D., Pensyl, T., Srinivasan, A., Trinh, K.: A lottery model for center-type
problems with outliers. In: Proceedings of the International Workshop on Approx-
imation Algorithms for Combinatorial Optimization Problems (APPROX 2017),
pp. 10:1–10:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

19. Iven, M., Spencer, C.: A note on compressed sensing and the complexity of matrix
multiplication. Inf. Process. Lett. 109(10), 468–471 (2009)

20. Kurzkov, K.: Deterministic algorithms for skewed matrix products. In: Proceed-
ings of the International Symposium on Theoretical Aspects of Computer Science
(STACS 2013), pp. 466–477. Schloss Dagstuhl- Leibniz-Zentrum fuer Informatik,
vol. 20 (2013)

21. Pagh, R.: Compressed matrix multiplication. ACM Trans. Comput. Theory
(TOCT) 5(3), 1–17 (2013)

22. Sarlós, T.: Improved approximation algorithms for large matrices via random pro-
jections. In: Proceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS 2006), pp. 143–152. IEEE Computer Society (2006)

23. Vassilevska Williams, V., Xu, Y., Xu, Z., Zhou, R.: New bounds for matrix multi-
plication: from alpha to omega. In: Proceedings of the Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2024). ACM-SIAM (2024)

24. Yuster, R., Zwick, U.: Fast sparse matrix multiplication. ACM Trans. Algorithms
1, 2–13 (2005)

https://doi.org/10.1007/978-3-540-45078-8_29
https://doi.org/10.1007/978-3-540-45078-8_29
https://doi.org/10.1007/978-3-540-45078-8_29
https://doi.org/10.1007/978-3-540-45078-8_29
https://doi.org/10.1007/978-3-540-45078-8_29
https://doi.org/10.1007/978-3-540-45078-8_29
https://doi.org/10.1007/978-3-540-45078-8_29
https://doi.org/10.1007/978-3-540-45078-8_29
https://doi.org/10.1007/978-3-540-45078-8_29
https://doi.org/10.1007/978-3-540-45078-8_29

	Multiplication of 0-1 Matrices via Clustering
	1 Introduction
	1.1 Our Contributions
	1.2 Techniques
	1.3 Paper Organization

	2 Preliminaries
	3 An Approximate Arithmetic Matrix Product of 0-1 Matrices
	4 The Exact Arithmetic Matrix Product of 0-1 Matrices
	5 Extensions
	References

