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Abstract. We study applications of clustering (in particular the .k-
center clustering problem) in the design of efficient and practical deter-
ministic algorithms for computing an approximate and the exact arith-
metic matrix product of two 0-1 rectangular matrices .A and .B with 
clustered rows or columns, respectively. Let .λA and .λB denote the min-
imum maximum radius of a cluster in an .�-center clustering of the rows 
of .A and in a .k-center clustering of the columns of .B, respectively. In 
particular, when . A and . B are square matrices of size .n×n, we obtain the  
following results. 
1. A simple deterministic algorithm that approximates each entry of 

the arithmetic matrix product of .A and .B within an additive error 
of at most .2λA in .O(n2�) time or at most .2λB in .O(n2k) time. 

2. A simple deterministic preprocessing of the matrices .A and .B in 
.O(n2�) time or .O(n2k) time after which every query asking for the 
exact value of an arbitrary entry of the arithmetic matrix product of 
. A and . B can be answered in .O(λA) time or .O(λB) time, respectively. 

3. A simple deterministic algorithm for the exact arithmetic matrix 
product of . A and .B running in time .O(n2(� + k +min{λA, λB})). 

Keywords: arithmetic matrix multiplication · clustering · Hamming 
space · minimum spanning tree 

1 Introduction 

The arithmetic matrix product of two 0-1 matrices is closely related to the 
Boolean one of the corresponding Boolean matrices. For square .n × n matrices, 
both can be computed in .O(n2.372) time [ 1, 23]. Both are basic tools in science 
and engineering. Unfortunately, no truly subcubic practical algorithms for any 
of them are known. Therefore, many researchers studied the complexity of these 
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products for special input matrices, e.g., sparse or structured matrices [ 3, 4, 11, 
15, 21, 24], providing faster and often more practical algorithms. 

The method of multiplying matrices with clustered rows or columns, proposed 
for Boolean matrix product in [ 4] and subsequently generalized in [ 11, 15] and  
used in [ 2], relies on the construction of an approximate spanning tree of the 
rows of the first input matrix or the columns of the second input matrix in 
a Hamming space. Then, each column or each row of the product matrix is 
computed with the help of a traversal of the tree in time proportional to the total 
Hamming cost of the tree up to a logarithmic factor. Simply, the next entry in 
a column or a row in the product matrix can be obtained from the previous one 
in time roughly proportional to the Hamming distance between the consecutive 
(in the tree traversal) corresponding rows or columns of the first or the second 
input matrix, respectively. Thus, in case the entire tree cost is substantially 
subquadratic in .n, the total running time of this method becomes substantially 
subcubic provided that a good approximation of a minimum spanning tree of the 
rows of the first input matrix or the columns of the second one can be constructed 
in substantially subcubic time. As for simplicity and practicality, a weak point 
of this method is that in order to construct such an approximation relatively 
quickly, it employs a randomized dimension reduction. 

In case of the arithmetic matrix product of 0-1 matrices, in some cases, a 
faster approximate arithmetic matrix multiplication can be more useful [ 8, 21]. 
Among other things, it can enable to identify largest entries in the product 
matrix and it can be also used to provide a fast estimation of the number of: 
the so called witnesses for the Boolean product of two Boolean matrices [ 14], 
triangles in a graph, or more generally, subgraphs isomorphic to a small pattern 
graph [ 12] etc. There is a number of results on approximate arithmetic matrix 
multiplication, where the quality of approximation is expressed in terms of the 
Frobenius matrix norm .|| ||F (i.e., the square root of the sum of the squares of 
the entries of the matrix) [ 8, 21]. 

Cohen and Lewis [ 8] and Drineas et al. [ 9] used random sampling to 
approximate arithmetic matrix product. Their papers provide an approxima-
tion .D of the matrix product .AB of two .n × n matrices .A and .B such that 
.||AB − D||F = O(||AB||F /

√
c), for a parameter .c > 1 (see also [ 21]). The 

approximation algorithm in [ 9] runs in .O(n2c) time. Drineas et al. [ 9] also derived 
bounds on the entrywise differences between the exact matrix product and its 
approximation. Unfortunately, the best of these bounds is .Ω(M2n/

√
c), where  

.M is the maximum value of an entry in .A and .B. By using a sketch tech-
nique, Sarlós [ 22] obtained the same Frobenius norm guarantees, also in . O(n2c)
time. However, he derived stronger individual upper bounds on the additive 
error of each entry .Dij of the approximation matrix . D. They are of the form 
.O(||Ai∗||2||B∗j ||2/

√
c), where  .Ai∗ and .B∗j stands for the .i-th row of . A and the 

.j-th column of .B, respectively, that hold with high probability. More recently, 
Pagh [ 21] presented a randomized approximation .Õ(n(n + c))-time algorithm 
for the arithmetic product of .n × n matrices . A and .B such that each entry of 
the approximate matrix product differs at most by .||AB||F /

√
c from the cor-
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rect one. His algorithm first compresses the matrix product to a product of two 
polynomials and then uses the fast Fourier transform to multiply the polyno-
mials. Subsequently, Kutzkov [ 20] developed analogous deterministic algorithms 
employing different techniques. For approximation results related to sparse arith-
metic matrix products, see [ 19, 21]. 

1.1 Our Contributions 

In this paper, we exploit the possibility of applying the classic simple .2-
approximation algorithm for the . k center clustering problem [ 16] in order  to  
derive efficient and practical deterministic algorithms for computing an approx-
imate and the exact arithmetic matrix product of two 0-1 rectangular matrices 
. A and .B with clustered rows or columns, respectively. 

The .k-center clustering problem in a Hamming space .{0, 1}d is for a set 
.P of . n points in .{0, 1}d to find a set .T of . k points in .{0, 1}d that minimize 
.maxv∈P minu∈T ham(v, u), where .ham(v, u) stands for the Hamming distance 
between . v and .u, (the number of coordinate positions they differ from each 
other). Each center in . T induces a cluster consisting of all points in . P for which 
it is the nearest center. 

Let .λA and .λB denote the minimum maximum radius of a cluster in an .�-
center clustering of the rows of . A or in a .k-center clustering of the columns of 
.B, respectively. Assuming that . A and . B are of sizes .p× q and .q ×r, respectively, 
we obtain the following results. 

1. A simple deterministic algorithm that approximates each entry of the arith-
metic matrix product of . A and .B within an additive error of at most .2λA in 
.O(pq� + pr) time if .p ≥ r or at most .2λB in .O(qrk + pr) time if .p ≤ r. 

2. A simple deterministic preprocessing of the matrices . A and . B in . O(pq�+ pr)
time if .p ≥ r or .O(qrk + pr) time if .p ≤ r after which every query asking for 
the exact value of an arbitrary entry of the arithmetic matrix product of . A
and .B can be answered in  .O(λA) time if .p ≥ r or .O(λB) time if . p ≤ r.

3. A simple deterministic algorithm for the exact arithmetic matrix product of 
. A and .B running in time . O(pq� + rqk +min{prλA + rq�, prλB + pqk}).

1.2 Techniques 

All our main results rely on the classical, simple .2-approximation algorithm 
for the .k-center clustering problem (farthest-point clustering) due to Gonzalez 
[ 16] (see also Fact  1). Two of them rely also on the idea of updating the inner 
product of two vectors . a and . b in .{0, 1}q over the Boolean or an arithmetic 
semi-ring to that of two  vectors  .a′ and . b′ in .{0, 1}q, where  .a = a′ or .b = b′, in 
time roughly proportional to .ham(a, a′) + ham(b, b′). The idea has been used in 
[ 4, 11, 15]. As in the aforementioned papers, we combine it with a traversal of an 
approximate minimum spanning tree of the rows or columns of an input matrix 
in the Hamming space .{0, 1}q, where  . q is the length of the rows or columns (see 
also Lemma 6).
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1.3 Paper Organization 

The next section contains basic definitions. Section 3 presents our approximation 
algorithm for the arithmetic product of two 0-1 matrices and the preprocessing 
enabling efficient answers to queries asking for the value of an arbitrary entry 
of the arithmetic product matrix. Section 4 is devoted to our algorithm for the 
exact arithmetic matrix product of two 0-1 matrices. We conclude with a short 
discussion on possible extensions of our results. 

2 Preliminaries 

For a positive integer . r, .[r] stands for the set of positive integers not exceeding 
. r.

The transpose of a matrix .D is denoted by .D�. If the entries of .D are in 
.{0, 1} then .D is a 0-1 matrix. 

The Hamming distance between two points .a, b (vectors) in .{0, 1}d is the 
number of the coordinates in which the two points differ. Alternatively, it can 
be defined as the distance between . a and . b in the .L1 metric over .{0, 1}d. It is 
denoted by . ham(a, b).

The .k-center clustering problem in a Hamming space .{0, 1}d is as follows: 
given a set .P of . n points in .{0, 1}d, find a set .T of . k points in .{0, 1}d that 
minimize . maxv∈P minu∈T ham(v, u).

The minimum-diameter .k-clustering problem in a Hamming space . {0, 1}d

is as follows: given a set .P of . n points in .{0, 1}d, find a partition of .P into 
. k subsets .P1, P2, . . . , Pk that minimize .maxi∈[k] maxv,u∈Pi

ham(v, u). Note that 
the .k-center clustering problem could be also termed as the minimum-radius .k-
clustering problem. It is known to be NP-hard and even NP-hard to approximate 
within .2 − ε for any constant .ε > 0 [ 10, 13]. 

Fact 1. [ 16] Let  .P be a set of . n points in .{0, 1}d, and  let  .k ∈ [n]. There is a 
simple deterministic .2-approximation algorithm for the .k-center clustering and 
minimum-diameter .k-clustering problems running in .O(ndk) time. 

3 An Approximate Arithmetic Matrix Product of 0-1 
Matrices 

Our approximation algorithm for the arithmetic matrix product of two 0-1 matri-
ces is specified by the following procedure. 

procedure . APPROXMMCLUS(A,B, �)
Input: Two 0-1 matrices .A and .B of sizes .p × q and .q × r, respectively, where 
.p ≥ r, and a positive integer . � not exceeding . p. 
Output: A  .p × r matrix . D, where  for  .1 ≤ i ≤ p and .1 ≤ j ≤ r, .Dij is an 
approximation of the inner product .Cij of the .i-th row .Ai∗ of .A and the .j-th 
column .B∗j of .B.



96 J. Jansson et al.

1. Determine an approximate .�-center clustering of the rows of the matrix . A in 
.{0, 1}q. For each row .Ai∗ of . A, set  .cen�(Ai∗) to the center of the cluster in 
the .�-clustering to which  .Ai∗ belongs. 

2. Form the .� × q matrix .A′, where the .i′-th row is the .i′-th center in the 
approximate .�-center clustering of the rows of . A.

3. Compute the arithmetic .� × r matrix product .C ′ of .A′ and . B.
4. For .1 ≤ i ≤ p and .1 ≤ j ≤ r, set .Dij to .C ′

i′j , where  the  .i′-th row .A′
i′∗ of . A′

is . cen�(Ai∗).

For a 0-1 .p × q matrix . A, let  .λ(A, �, row) be the minimum, over all .�-center 
clusterings of the rows of .A in the Hamming space .{0, 1}q, of the  maximum  
Hamming distance between a center of a cluster and a member of the cluster. 
Similarly, for a 0-1 .q × r matrix .B, let .λ(B, k, col) be the minimum, over all 
.k-center clusterings of the columns of .B in the Hamming space .{0, 1}q, of the  
maximum Hamming distance between a center of a cluster and a member of the 
cluster. 

Lemma 1. Suppose a .2-approximation algorithm for the .�-center clustering is 
used in .APPROXMMCLUS(A,B, �) and .C stands for the arithmetic product 
of . A and .B. Then, for .1 ≤ i ≤ p and .1 ≤ j ≤ r, .|Cij − Dij | ≤ 2λ(A, �, row). 

Proof. Recall that .p ≥ r is assumed in the input to .APPROXMMCLUS(A, B, �). 
For .1 ≤ i ≤ p and .1 ≤ j ≤ r, .Dij is the inner product of .cen�(Ai∗), where  
.ham(Ai∗, cen�(Ai∗)) ≤ 2λ(A, �, row), with  .B∗j . Hence, .Cij , which is the inner 
product of .Ai∗ with .B∗j , can differ at most by .2λ(A, �, row) from .Dij . . ��

By .T (s, q, t), we shall denote the worst-case time taken by the multiplication 
of two 0-1 matrices of sizes .s × q and .q × t, respectively. 

Lemma 2. .APPROXMMCLUS(A,B, �) can be implemented in . O(pq�+pr+
T (�, q, r)) time. 

Proof. Recall that .p ≥ r. Step 1, which includes the assignment of the closest 
center to each row of . A, can be done in .O(pq�) time by using Fact 1, i.e., the 
classic algorithm of Gonzalez [ 16]. Step 2 takes .O(�q) time, which is . O(T (�, q, r))
time. Finally, Step 3 takes .T (�, q, r) time while Step 4 can be done in .O(pr) time. 
Thus, the overall time is .O(pq� + pr + T (�, q, r)). . ��

We can use the straightforward .O(sqt)-time algorithm for the multiplication 
of two matrices of sizes .s × q and .q × t, respectively. Since . T (�, q, r) = O(�q r) =
O(�qp) if .p ≥ r, Lemmata 1 and 2 yield the first part (1) of our first main result 
(Theorem 1 below), for .p ≥ r. Its second part (2) for .p ≤ r follows from the 
first part by .(AB)� = B�A�. Note that then the number of rows in .B�, which  
is . r, is not less than the number of columns in .A�, which  is  . p. Simply, we run 
.APPROXMMCLUS(B�, A�, k) in order to compute an approximation of the 
transpose of the arithmetic matrix product of .A and .B. Note also that a .k-
clustering of columns of . B is equivalent to a .k-clustering of the rows of .B� and 
that .λ(B�, k, row) = λ(B, k, col).
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Theorem 1. Let . A and .B be two 0-1 matrices of sizes .p × q and .q × r, respec-
tively. There is a simple deterministic algorithm which provides an approxima-
tion of all entries of the arithmetic matrix product of . A and . B within an additive 
error of at most:  

1. .2λ(A, �, row) in time .O(pq� + pr) if . p ≥ r,
2. .2λ(B, k, col) in time .O(rqk + pr) if . p ≤ r.

We slightly extend .APPROXMMCLUS(A,B, �) in order to obtain a pre-
processing for answering queries about single entries of the arithmetic matrix 
product of . A and . B.

procedure . PREPROCMMCLUS(A,B, �)
Input: Two 0-1 matrices .A and .B of sizes .p × q and .q × r, respectively, where 
.p ≥ r, and a positive integer . � not exceeding . p. 
Output: The  .p×r matrix .D returned by .APPROXMMCLUS(A,B, �), and  for  
.1 ≤ i ≤ p, the set of coordinate indices .ind(A, i) on which .Ai∗ differs from its 
cluster center. 

1. Run .APPROXMMCLUS(A,B, �). 
2. For .1 ≤ i ≤ p, determine the set .ind(A, i) of coordinate indices on which . Ai∗

differs from .cen�(Ai∗). 

Lemma 3. .PREPROCMMCLUS(A,B, �) can be implemented in . O(pq� +
pr + T (�, q, r)) time. 

Proof. Recall that .p ≥ r. Step 1 can be done in .O(pq�+ pr + T (�, q, r)) time by 
Lemma 2. Step 2 can be easily implemented in .O(pq) time. . ��

Our procedure for answering a query about a single entry of the matrix 
product of . A and .B is as follows. 

procedure . QUERY MMCLUS(A,B, �, i, j)
Input: The preprocessing done by .PREPROCMMCLUS(A,B, �) for 0-1 
matrices . A and . B of sizes .p × q and .q × r, respectively, where .p ≥ r, .� ∈ [p], and  
two query indices .i ∈ [p] and . j ∈ [r].
Output: The inner product .Cij of the .i-th row .Ai∗ of . A and the .j-th column . B∗j

of . B.

1. Set .Cij to the entry .Dij of the matrix .D computed by 
.APPROXMMCLUS(A,B, �) in .PREPROCMMCLUS(A,B, �, k). 

2. For .m ∈ ind(A, i) do 
(a) If the .m-th coordinate of the center assigned to .Ai∗ is . 0 and . Bmj = 1

then .Cij ← Cij + 1. 
(b) If the .m-th coordinate of the center assigned to .Ai∗ is . 1 and .Bmj is also 

. 1 then .Cij ← Cij − 1. 

Lemma 4. .QUERY MMCLUS(A,B, �, i, j) is correct, i.e., the final value of 
.Cij is the inner product of the .i-th row .Ai∗ of . A and the .j-th column .B∗j of .B.
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Proof. .Cij is initially set to .Dij , which is the inner product of the center assigned 
to .Ai∗ and .B∗j . Then, .Cij is appropriately corrected by increasing or decreasing 
with . 1 for each coordinate index .m ∈ ind(A, i) which contributes . 1 to the inner 
product of .Ai∗ and .B∗j and . 0 to the inner product of the center of .Ai∗ and . B∗j

or vice versa. . ��
Lemma 5. .QUERY MMCLUS(A,B, �, k, i, j) takes .O(λ(A, �, row)) time. 

Proof. Recall that .2λ(A, �, row) is an upper bound on the maximum Hamming 
distance between a row of . A and its center in the .�-center clustering computed by 
.APPROXMMCLUS(A,B, �) in .PREPROCMMCLUS(A,B, �). Recall also 
that .p ≥ r. Step 1 takes .O(1) time. Since the .m-th coordinate in the centers 
can be accessed in the matrix .A′ computed by .APPROXMMCLUS(A,B, �), 
each of the two substeps in the block of the loop in Step 2 can be done in 
.O(1) time. Finally, since .|ind(A, j)| ≤ 2λ(A, �, row), the block is iterated at 
most .2λ(A, �, row) times. Consequently, the whole Step 2 takes . O(λ(A, �, row))
time. . ��

By putting Lemmata 3, 4, and  5 together, and using the straightforward 
.O(sqt)-time algorithm to multiply matrices of size .s × q and .q × t, we obtain 
our next main result for .p ≥ r. The case .p ≤ r reduces to the case .p ≥ r by 
.(AB)� = B�A�. Recall that then the number of rows in .B�, which  is  . r, is not  
less than the number of columns in .A�, which  is . p. Also,  we  have . λ(B�, k, row) =
λ(B, k, col). We simply run .PREPROCMMCLUS(B�, A�, k) and 
.QUERY MMCLUS(B�, A�, k, j, i) instead. 

Theorem 2. Let . A and .B be two 0-1 matrices of sizes .p × q and .q × r, respec-
tively. Given parameters .� ∈ [p] and .k ∈ [r], the matrices can be preprocessed by 
a simple deterministic algorithm in .O(pq� + pr) time if .p ≥ r or . O(rqk + pr)
time if .p ≤ r such that a query asking for the exact value of a single entry .Cij of 
the arithmetic matrix product . C of . A and .B can be answered in . O(λ(A, �, row))
time if .p ≥ r or .O(λ(B, k, col)) time if . p ≤ r.

4 The Exact Arithmetic Matrix Product of 0-1 Matrices 

Theorem 2 yields the following corollary. 

Corollary 1. Let .A and .B be two 0-1 matrices of sizes .p × q and . q × r,
respectively. Given parameters .� ∈ [p] and .k ∈ [r], the arithmetic matrix 
product of .A and .B can be computed by a simple deterministic algorithm in 
.O(pq� + prλ(A, �, row)) time if .p ≥ r or .O(rqk + prλ(B, k, col)) time if . p ≤ r.

There is however a slightly better way of obtaining a simple deterministic 
algorithm for the arithmetic matrix product of two 0-1 matrices via .�-center 
clustering of the rows of the first matrix or .k-center clustering of the columns of 
the second matrix. The idea is to use the aforementioned technique of traversing 
an approximate minimum spanning tree of the rows of the first matrix or the
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columns of the second matrix in an appropriate Hamming space in order to 
compute a row or column of the product matrix [ 4, 11, 15]. The technique easily 
generalizes to 0-1 rectangular matrices. We shall use the following procedure and 
lemma in the spirit of [ 4, 11, 15]. 
procedure . MMST (A,B, T )
Input: Two matrices . A and . B of sizes .p×q and .q×r, respectively, and a spanning 
tree . T of the rows of . A in the Hamming space . {0, 1}q.
Output: The arithmetic matrix product . C of . A and . B. 

1. Construct a traversal (i.e., a non-necessarily simple path visiting all vertices) 
. U of . T.

2. For any pair .Am∗, .Ai∗, where the latter row follows the former in the traversal 
.U, compute the set .diff(m, i) of indices .h ∈ [q] where .Aih 	= Amh. 

3. For .j = 1, . . . , r, iterate the following steps: 
(a) Compute .Csj where .As∗ is the row of . A from which the traversal . U of . T

starts. 
(b) While following . U , iterate the following steps: 

i. Set .m, i to the indices of the previously traversed row of . A and the 
currently traversed row of . A, respectively. 

ii. Set .Cij to .Cmj . 
iii. For each .h ∈ diff(m, i), if  .AihBhj = 1 then set .Cij to .Cij + 1 and if 

.AmhBhj = 1 then set .Cij to .Cij − 1. 

Define the Hamming cost .ham(S) of a spanning tree . S of a point set . P ⊂
{0, 1}d by . ham(S) =

∑
(v,u)∈S ham(v, u).

Lemma 6. Let . A and . B be two 0-1 matrices of sizes .p×q and .q×r, respectively. 
Given a spanning tree .TA of the rows of . A and a spanning tree .TB of the columns 
of .B in the Hamming space .{0, 1}q, the arithmetic matrix product of .A and . B
can be computed in time . O(pq + qr + pr +min{r × ham(TA), p × ham(TB)}).

Proof. First, we shall prove that .MMST (A,B, TA) computes the arithmetic 
matrix product of . A and .B in time .O(pq + qr + r × ham(TA)). The correctness 
of the procedure .MMST follows from the correctness of the updates of .Cij in 
the block of the inner loop, i.e., in Step 3(b). Step 1 of .MMST (A,B, TA) can be 
done in .O(p) time while Step 2 requires .O(pq) time. The first step in the block 
under the outer loop, i.e., computing .Csj in Step 3(a), takes .O(q) time. The 
crucial observation is that the second step in this block, i.e., Step 3(b), requires 
.O(p + ham(TA)) time. Simply, the substeps (i), (ii) take .O(1) time while the 
substep (iii) requires .O(|diff(m, i)|+1) time. Since the block is iterated . r times, 
the whole outer loop, i.e., Step 3, requires .O(qr + pr + rham(TA)) time. Thus, 
.MMST (A,B, TA) can be implemented in time . O(pq + qr + rp+ r × ham(TA)).

Similarly, we can run .MMST (B�, A�, TB) to obtain the transpose of the 
arithmetic matrix product of . A and .B. So, to obtain the lemma, we can alternate 
the steps of .MMST (A,B, TA) and .MMST (B�, A�, TB), and stop whenever 
any of the calls is completed. .��
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Theorem 3. Let . A and .B be two 0-1 matrices of sizes .p × q and .q × r, respec-
tively. Given parameters .� ∈ [p] and .k ∈ [r], the arithmetic matrix prod-
uct of .A and .B can be computed by a simple deterministic algorithm in time 
.O(pq� + rqk +min{prλ(A, �, row) + rq�, prλ(B, k, col) + pqk}). 
Proof. We determine an .�-center clustering of the rows of . A in .{0, 1}q of max-
imum cluster radius not exceeding .2λ(A, �, row) in .O(pq�) time by employing 
Fact 1. Similarly, we construct a .k-center clustering of the columns of . B in . {0, 1}q

of maximum cluster radius not exceeding .2λ(B, k, col) in .O(rqk) time. The cen-
ters in both aforementioned clusterings are some rows of . A and some columns 
of . B, respectively, by the specification of the method in [ 16]. Hence, the .�-center 
clustering gives rise to a spanning tree .TA of the rows of . A with all members of a 
cluster being pendants of their cluster center and the centers connected by a path 
of length .�−1. The Hamming cost of .TA is at most . (p−�)2λ(A, �, row)+(�−1)q.
Similarly, we obtain a spanning tree .TB of the columns of .B having the Ham-
ming cost not exceeding .(r−k)2λ(B, k, col)+(k−1)q. The theorem follows from 
Lemma 6 by straightforward calculations. . ��

5 Extensions 

The rows or columns in the input 0-1 matrices can be very long. Also, a large 
number of clusters might be needed in order to obtain a low upper bound on their 
radius. Among other things, for these reasons, we have picked Gonzalez’s classical 
algorithm for the .k-center clustering problem [ 16] as a basic tool in our approach 
to the arithmetic matrix product of two 0-1 matrices with clustered rows or 
columns. The running time of his algorithm is linear not only in the number of 
input points but also in their dimension, and in the parameter .k. Importantly, 
it is very simple and provides a solution within . 2 of the optimum. For instance, 
there exist faster (in terms of . n and . k) .2-approximation algorithms for .k-center 
clustering with hidden exponential dependence on the dimension in their running 
time, see [ 10, 17], 

One could easily generalize our main results by replacing Gonzalez’s algo-
rithm with a simple and efficient approximation algorithm for the more general 
problem of .k-center clustering with outliers [ 6]. In the latter problem, a given 
number . z of input points could be discarded as outliers when trying to minimize 
the maximum cluster radius. Unfortunately, the algorithms for this more general 
problem tend to be more complicated and the focus seems to be the approxima-
tion ratio achievable in polynomial time (e.g., . 3 in [ 6] and  . 2 in [ 18]) not the time 
complexity. 

There are many other variants of clustering than .k-center clustering, and 
plenty of methods have been developed for them in the literature. In fact, in 
the design of efficient algorithms for the exact arithmetic matrix product of 0-1 
matrices with clustered rows or columns, using the .k-median clustering could 
seem more natural. The objective in the latter problem is to minimize the sum 
of distances between the input points and their nearest centers. Unfortunately, 
no simple deterministic .O(1)-approximation algorithms for the latter problem
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that are efficient in case the dimension and . k parameters are large seem be to 
available [ 5, 7]. 

Our approximate and exact algorithms for the matrix product of 0-1 matrices 
as well as the preprocessing of the matrices can be categorized as supervised 
since they assume that the user has some knowledge on the input matrices and 
can choose reasonable values of the parameters . � and . k guaranteeing relatively 
low overall time complexity. Otherwise, one could try the .�-center and .k-center 
clustering subroutines for a number of combinations of different values of . � and . k
in order to pick the combination yielding the lowest upper bound on the overall 
time complexity of the algorithm or preprocessing. 
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