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a b s t r a c t

The NP-hard maximum rooted resolved triplets consistency problem (MRTC) takes as input a
set S of leaf labels and a setR of resolved triplets over S and asks for a rooted phylogenetic
tree that is consistent with the maximum number of elements in R. This article studies
the approximability of a generalization of the problem called the maximum rooted triplets
consistency problem (MTC) where in addition to resolved triplets, the inputmay contain fan
triplets, forbidden resolved triplets, and forbidden fan triplets. To begin with, we observe
that MTC admits a 1/4-approximation in polynomial time. Next, we generalize Wu’s exact
exponential-time algorithm for MRTC (Wu, 2004) to MTC. Forcing the algorithm to always
output a rooted k-ary phylogenetic tree for any specified k ≥ 2 subsequently leads to an
exponential-time approximation scheme (ETAS) for MTC. We then present a polynomial-
time approximation scheme (PTAS) for complete instances of MTC (meaning that for every
S ′

⊆ S with |S ′
|= 3, R contains at least one rooted triplet involving the leaf labels in S ′),

based on the techniques introduced by Jiang et al. (2001) for a related problem. We also
study the computational complexity of MTC restricted to fan triplets and forbidden fan
triplets. Finally, extensions to weighted instances are considered.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Phylogenetic trees are used by scientists to describe treelike evolutionary history for objects such as biological species,
natural languages, manuscripts, etc. [7]. Inferring an accurate phylogenetic tree from experimental data can be a difficult
task; for example, computationally expensive methods like maximum likelihood that are known to yield good trees may
be impractical for large data sets [6]. One potential remedy is the divide-and-conquer approach [6,12,19]: first apply some
expensive method to obtain a collection of highly reliable trees for small, overlapping subsets of the leaf labels, and then
use a computationally less intensive method to merge these small trees into a larger phylogenetic tree (also known as a
phylogenetic supertree).

✩ A preliminary version of this article appeared in Proceedings of the 26th Annual Symposium on Combinatorial PatternMatching (CPM 2015), volume 9133
of Lecture Notes in Computer Science, pp. 272–283, Springer International Publishing Switzerland, 2015.
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Fig. 1. Four of the optimal solutions to the instance of MTC in the example in Section 1.1. Each of the shown trees satisfies three of the four constraints
from R. The three leftmost solutions satisfy the same constraints from R even though they are non-isomorphic.

A concept that captures the combinatorial aspects of the smallest meaningful building blocks of phylogenetic trees in the
rooted case is rooted triplets consistency. Given a setR of possibly contradicting rooted phylogenetic trees with exactly three
leaves each (so-called rooted triplets), the maximum rooted triplets consistency problem asks for a tree that contains as many
of the rooted triplets in R as possible as embedded subtrees. Most previous work on the topic (e.g., [1,4,5,10,21,23,24]) has
focused on the casewhere all the given rooted triplets are resolved triplets, meaning that they are binary. This article considers
a more general problem variant where R may also contain non-binary triplets called fan triplets that should preferably be
included in the output tree as well as forbidden triplets that should be avoided. In cases where the raw experimental data
is of poor quality and an output tree containing a smaller number of internal nodes would be preferred to a fully resolved
one (as the latter might suggest many unsupported groupings of the leaf labels), including some appropriately chosen fan
triplets inRmay be helpful. Forbidden triplets can be used to exclude evolutionary relationships that are known for sure to
be false.

1.1. Definitions

A (rooted) phylogenetic tree is a rooted tree in which every internal node has at least two children and all leaves are
distinctly labeled. (Wedonot consider unrootedphylogenetic trees here.) All phylogenetic trees are assumed to beunordered
in the sense that there is no fixed left-to-right ordering of the children of the internal nodes. The degree of a node u in a
phylogenetic tree is the number of children of u and the degree of a phylogenetic tree equals themaximum of all of its nodes’
degrees. For any integer k ≥ 2, a k-ary phylogenetic tree is defined as a phylogenetic tree in which every internal node has
degree at most k.

The set of all leaf labels in a phylogenetic tree T is denoted by Λ(T ). To simplify the presentation, we identify each leaf
in T with the unique element in Λ(T ) that labels it. For any x, y ∈ Λ(T ), lcaT (x, y) is the lowest common ancestor in T of x
and y.

Suppose that T is a phylogenetic tree. For any distinct x, y, z ∈ Λ(T ), define the following four types of constraints on T :

1. xy|z, specifying that lcaT (x, y) should be a proper descendant of lcaT (x, z) (or equivalently, that lcaT (x, y) should be a
proper descendant of lcaT (y, z)).

2. x|y|z, specifying that lcaT (x, y) = lcaT (x, z) = lcaT (y, z) should hold.
3. ¬(xy|z), specifying that lcaT (x, y) should not be a proper descendant of lcaT (x, z) (or equivalently, that lcaT (x, y) should

not be a proper descendant of lcaT (y, z)).
4. ¬(x|y|z), specifying that the same node should not be the lowest common ancestor of a and b for all pairs a, b ∈

{x, y, z}.

The maximum rooted triplets consistency problem (MTC) is: given a set S of leaf labels and a set R of constraints on S
as defined above, output a phylogenetic tree T with Λ(T ) = S that satisfies as many constraints from R as possible. In
this article, the special case of MTC where all constraints in R are of type 1 is called the maximum rooted resolved triplets
consistency problem (MRTC).1 For any x, y, z ∈ S, the two constraints xy|z and yx|z express the same condition on T ,
so we assume without loss of generality that the input R to MTC contains at most one of them, and similarly that R
contains at most one of the six constraints x|y|z, y|x|z, . . . , z|y|x, at most one of ¬(xy|z) and ¬(yx|z), and at most one of
¬(x|y|z), ¬(y|x|z), . . . , ¬(z|y|x). Also observe that T cannot be binary if it satisfies a constraint of type 2.

Example. Let S = {a, b, c, d} and let R consist of the following constraints: ab|c [type 1], b|c|d [type 2], ¬(ab|d) [type 3],
¬(ac|d) [type 3]. Then no phylogenetic tree can satisfy all four constraints inR, so the phylogenetic tree T with Λ(T ) = S in
which all leaves are directly attached to the root is an optimal solution to MTC as it satisfies three constraints. Note that T is
not the unique optimal solution for this instance; some other optimal solutions are displayed in Fig. 1. □

To express the size of an instance ofMTC, wewrite n = |S| andm = |R|. An instance (S,R) of MTC is complete if, for every
S ′

⊆ S with |S ′
| = 3,R contains at least one constraint involving all three elements in S ′. An approximation algorithmA for

MTC is said to have approximation ratio f (where 0 ≤ f ≤ 1), if, for every possible input, the number of input constraints
satisfied by A’s output is at least f times the number of input constraints satisfied by an optimal solution.

1 MRTC is called MAX-LEVEL-0 in [4],MaxRTC in [5], MILCT in [10,15],MaxCL-0 in [13], MTC in [21], and MCTT in [23,24].
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Fig. 2. The type-1 constraint xy|z and the type-2 constraint x|y|z correspond to the resolved triplet on the left and the fan triplet on the right, respectively.

Remark 1. Phylogenetic treeswith exactly three leaves are also referred to as rooted triplets in the literature. A rooted triplet t
is either a binary or a non-binary tree. In the former case, t is a resolved triplet and always satisfies a constraint of type 1, and
if this constraint is also satisfied in a phylogenetic tree T then t and T are said to be consistent. Similarly, if t is non-binary
then t is called a fan triplet and always satisfies a constraint of type 2; if it is also satisfied in a phylogenetic tree T then t
and T are consistent. Thus, an equivalent formulation of MTC is: given a ‘‘good’’ set G and a ‘‘bad’’ set B of rooted triplets,
output a phylogenetic tree T with Λ(T ) =

⋃
t∈G∪B Λ(t) maximizing |T (G)| + |B \ T (B)|, where T (X ) for any set X of rooted

triplets is the subset of X consistent with T . In analogy with this terminology, constraints of type 1, 2, 3, and 4 are also called
resolved triplets, fan triplets, forbidden resolved triplets, and forbidden fan triplets from here on. See Fig. 2 for an illustration.
Non-binary nodes in a phylogenetic tree (such as the root of the fan triplet in Fig. 2) can be used to represent so-called hard
polytomies in biology.

1.2. Previous results

An O(mn)-time algorithm by Aho et al. [1] can determine if there exists a phylogenetic tree consistent with all of the
resolved triplets (i.e., constraints of type 1) in a given set, and if so, output such a tree. Its time complexity was improved to
min{O(n+mn1/2), O(m+n2 log n)} by Henzinger et al. [12]. Ng andWormald [20] extended Aho et al.’s algorithm to the case
where the input also contains fan triplets. Later, He et al. [11] extended it to the case where the input consists of resolved
triplets and forbidden resolved triplets, and the resulting running time to determine if there exists a phylogenetic tree that
satisfies all the input constraints is O((m + n)n log n).

In comparison, the optimization versions of rooted triplets consistency are computationally harder. MRTC is NP-
hard [3,15,24], even if restricted to complete instances [13]. Furthermore, MRTC in the non-complete case is APX-hard [4].
Obviously, these hardness results carry over to MTC as it is a generalization of MRTC. As for positive results for MRTC,
Ga̧sieniec et al. [10] presented a top-down, polynomial-time 1/3-approximation algorithm (see Section 5.1 in [10]). It was
generalized to a polynomial-time 1/3-approximation algorithm for the problem variant where all input constraints are of
type 1 or type 3 in [11]. Wu [24] proposed a bottom-up, polynomial-time heuristic for MRTC that was shown experimentally
to perform well in practice, and other heuristics for MRTC (with unknown approximation ratios) have been published in
Section of [10] and in [14,21,23]. An exact algorithm for MRTC running in O(3n

· (m + n2)) = O∗(3n) time, using dynamic
programming, was given byWu in [24].We also remark that the complementary version ofMRTC inwhich the objective is to
remove as few elements as possible from the inputR so that there exists a phylogenetic tree consistent with the remaining
elements inR cannot be approximatedwithin c · ln n for some constant c > 0 in polynomial time, unless P = NP [5]. A variant
of MRTC for ordered phylogenetic trees was studied in [9].

The unrooted analogue of a resolved triplet, called a quartet [22], is an unrooted tree with two internal nodes and
four distinctly labeled leaves. The corresponding maximum quartets consistency problem is MAX SNP-hard [18,22], but
the complete version of the problem admits a polynomial-time approximation scheme (PTAS) [18]. In an unpublished
manuscript [17], we outlined how to obtain a similar PTAS for complete MRTC.

See the survey in Section 2 in [5] for references to other rooted triplets consistency-related results in the literature
involving enumeration, ordered trees, phylogenetic networks, multi-labeled phylogenetic trees (MUL-trees), etc. Also, a
related minimization problem asking for a tree having as few internal nodes as possible that is consistent with all of the
resolved triplets in the input (when such a tree exists) was introduced in [16].

1.3. New results and organization of the article

First, Section2 showshowanyknown f -approximation algorithm forMRTC canbe applied to obtain an f
1+f -approximation

algorithm for MTC. Plugging in the polynomial-time approximation algorithm for MRTC from [10] with f = 1/3 thus gives
a polynomial-time 1/4-approximation algorithm for MTC.

Next, in Section 3, we extend Wu’s exact exponential-time algorithm for MRTC [24] to MTC. We also let it take an
additional parameter k ≥ 2 as input and force the output to be a k-ary phylogenetic tree. The resulting algorithm runs
in O((k + 1)n+1

· (m + n)) time. This may be Ω(nn) if k is unrestricted, but the running time is single-exponential in n when
k = O(1) and we use this fact to design an exponential-time approximation scheme (ETAS) for unrestricted MTC. More
precisely, for any constant 0 < ϵ < 1, the ETAS builds a phylogenetic tree satisfying at least a fraction of (1 − ϵ) of the
maximum number of input constraints satisfied by any phylogenetic tree in O((⌈ 12

ϵ
⌉ + 1)n+1

· (m + n)) time.
The APX-hardness of MRTC [4] (and hence, MTC) effectively rules out the possibility of finding a polynomial-time

approximation scheme (PTAS) for MTC. Nevertheless, in Section 4, wemake further progress on the approximation status of
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Fig. 3. An approximation algorithm for MTC.

Fig. 4. Applying Algorithm 1 to the example from Section 1.1 with S = {a, b, c, d} and R = {ab|c, b|c|d, ¬(ab|d), ¬(ac|d)}. Step 1 constructs the tree T1
on the left and step 2 constructs a binary tree T2 such as the tree shown on the right. Here, step 3 will return T1 .

MTC by providing a PTAS for MTC restricted to complete instances, based on some key ideas from [18] and generalizing our
unpublished work in [17].

As mentioned in Section 1.2, the restriction of MTC to constraints of type 1 (i.e., MRTC) is NP-hard [3,15,24]. On the other
hand, MTC is trivially solvable in polynomial time when restricted to constraints of type 2 (just output a phylogenetic tree
where all leaves are children of the root) or constraints of type 4 (output an arbitrary binary phylogenetic tree for the given
leaf labels). Although MTC is easy for each of these two cases, it becomes NP-hard again when constraints of types 2 and 4
are allowed simultaneously, as proved in Section 5. We also describe a polynomial-time 1/2-approximation algorithm for
this problem variant in Section 5.

Section 6 discusses how to adapt our algorithms to the weighted case, where nonnegative weights are assigned to the
input triplet constraints and the objective is to construct a phylogenetic tree that maximizes the sum of the weights of the
satisfied constraints. For our ETAS and our PTAS, we have to additionally assume that the ratio between the largest and the
smallest constraint weights is bounded by a constant.

Finally, Section 7 states some open problems.

2. A polynomial-time 1/4-approximation algorithm for MTC

Suppose that an approximation algorithm forMRTC is available.We can use it as a subroutine to obtain an approximation
algorithm for the more general maximum rooted triplets consistency problem (MTC) by applying the MRTC-approximation
algorithm to the type-1 constraints in R, arbitrarily refining all non-binary nodes to get a binary tree, and outputting the
better solution among the tree thus obtained and the trivial tree consisting of a root node to which all leaf labels are directly
attached. The details of the algorithm, from here on referred to as Algorithm 1, are given in Fig. 3 and an example is given in
Fig. 4.

Theorem 1. Algorithm 1 is an f
1+f -approximation algorithm for MTC, where f is the approximation ratio of the algorithm for

MRTC used in step 2.

Proof. To analyze the approximation ratio, partitionR into (R1,R2,R3,R4), whereRi for i ∈ {1, 2, 3, 4} is the subset ofR
of all triplet constraints of type i. Let OPT denote the number of triplet constraints in R satisfied by an optimal solution for
MTC on input R. Similarly, let OPT ′ be the number of triplet constraints in R1 satisfied by an optimal solution for MRTC on
input R1. There are two main cases:

1. |R2 ∪ R3| ≥
f

1+f · OPT : The tree T1 satisfies all input constraints of types 2 and 3, so in this case, the output satisfies
at least f

1+f · OPT input constraints.



K. Dannenberg, J. Jansson, A. Lingas et al. / Discrete Applied Mathematics 257 (2019) 101–114 105

2. |R2 ∪ R3| <
f

1+f · OPT : Since T2 is an f -approximation for MRTC and T2 is binary, T2 satisfies at least f · OPT ′
+ |R4|

triplet constraints from R1 ∪ R4. Now there are two subcases:

(a) OPT ≥ (1+ f ) ·OPT ′: First observe that |R1 ∪ R4| > m−
f

1+f ·OPT , so |R4| > m−|R1|−
f

1+f ·OPT . Next, since

OPT ′
+ |R2| + |R3| + |R4| ≥ OPT and f ≤ 1, a bound on the number of input triplet constraints satisfied by T2

is as follows: f ·OPT ′
+ |R4| > f ·OPT ′

+m− |R1| −
f

1+f ·OPT = f ·OPT ′
+ |R2| + |R3| + |R4| −

f
1+f ·OPT ≥

(f − 1) · OPT ′
+ OPT −

f
1+f · OPT =

1
1+f · OPT − (1 − f ) · OPT ′

≥
1

1+f · OPT −
1−f
1+f · OPT =

f
1+f · OPT .

(b) OPT < (1 + f ) · OPT ′: Here, f · OPT ′
+ |R4| >

f
1+f · OPT + |R4| ≥

f
1+f · OPT . □

Employing the known polynomial-time approximation algorithm for MRTC from Section 5.1 of [10] gives f = 1/3 in
Theorem1and thus immediately implies thatMTC canbe approximatedwithin a ratio of 1/4 in polynomial time.Moreover, if
a polynomial-time 1/2-approximation algorithm forMRTC is discovered in the future then Theorem1will give a polynomial-
time 1/3-approximation algorithm for MTC.

We can actually say something even stronger in the particular case of f = 1/3 because Ga̧sieniec et al. [10] proved that the
solution output by their polynomial-time 1/3-approximation algorithm for MRTC satisfies at least |R|/3 triplet constraints
in R. Assuming that this algorithm is used in step 2 of Algorithm 1 above then in case |R2 ∪ R3| ≥

1
4 · |R|, T1 satisfies at

least |R|/4 triplet constraints from R, while in case |R2 ∪ R3| < 1
4 · |R|, T2 satisfies at least 1

3 ·
3
4 · |R| =

1
4 · |R| triplet

constraints from R.

Corollary 1. In polynomial time, one can find an approximate solution to MTC satisfying at least |R|/4 triplet constraints in R.

Corollary 1 implies that any optimal solution to MTC satisfies at least |R|/4 triplet constraints inR. This fact will be used
in the proof of Theorem 5 in Section 4.2. Also observe that the bound in Corollary 1 is worst-case optimal in the sense that if
R consists of the four triplet constraints xy|z, xz|y, yz|x, and x|y|z for every three leaf labels x, y, z ∈ S, then at most |R|/4
triplet constraints in R can be satisfied by any phylogenetic tree.

3. An ETAS for MTC

In this section, we develop an exponential-time approximation scheme (ETAS) for MTC. Section 3.1 describes a general-
ization of Wu’s exact algorithm for MRTC [24], which is then utilized in Section 3.2 to obtain our ETAS. For this purpose, we
introduce some additional notation. Let (S,R) be an instance of MTC and consider any U ⊆ S. For any partition P of U with
|P| ≥ 2, let:

• w2(P) be the number of resolved triplets (constraints of type 1) ab|c inR such that a and b belong to two different parts
in P and c ̸∈ U;

• w3(P) be the number of fan triplets (constraints of type 2) a|b|c in R such that a, b, c belong to three different parts
in P;

• wf 2(P) be the number of forbidden resolved triplets (constraints of type 3) ¬(ab|c) in R such that a and c belong to
two different parts in P and b ̸∈ U , or b and c belong to two different parts in P and a ̸∈ U , or a, b, c belong to three
different parts in P; and

• wf 3(P) be the number of forbidden fan triplets (constraints of type 4) ¬(a|b|c) in R such that two elements in {a, b, c}
belong to two different parts in P and the remaining one does not belong to U .

Suppose that T is a phylogenetic tree. Let I(T ) be the set of internal nodes in T . For every v ∈ I(T ), let Tv denote the subtree
of T rooted at v, that is, the subtree of T induced by v and all proper descendants of v. Also, let πv be the partition of Λ(Tv)
into (Λ(Tv1 ), Λ(Tv2 ), . . . , Λ(Tvℓ

)), where v1, v2, . . . , vℓ are the children of v. With this notation, we can write:

Lemma 1. For any phylogenetic tree T withΛ(T ) = S, the number of constraints inR satisfied by T is equal to
∑

v∈I(T )(w2(πv)+
w3(πv) + wf 2(πv) + wf 3(πv)).

Proof. Consider any constraint C inR involving three leaf labels a, b, c ∈ S.We show the following equivalence: C is satisfied
by T if and only if there is a unique node v in T such that (*) the partition πv of Λ(Tv) satisfies the conditions on {a, b, c} in
the definition of wl(πv), where l is equal to 2, 3, f 2, or f 3 depending on if C is of type 1, 2, 3, or 4, respectively.

First suppose that C is satisfied by T . For l = 2, the unique node v in T for which (*) holds is lcaT (a, b). For l = 3, the
unique node v in T for which (*) holds is lcaT (a, b) = lcaT (a, c) = lcaT (b, c). For l = f 2, the unique node v in T for which (*)
holds is either lcaT (a, c) or lcaT (b, c) or lcaT (a, b) = lcaT (a, c) = lcaT (b, c). For l = f 3, the unique node v in T for which (*)
holds is either lcaT (a, b) or lcaT (a, c) or lcaT (b, c).

For the other direction, it is immediate that if the partition πv for some node v satisfies the condition in the definition
of wl(πv) with respect to {a, b, c} then C is satisfied by T . □



106 K. Dannenberg, J. Jansson, A. Lingas et al. / Discrete Applied Mathematics 257 (2019) 101–114

3.1. A generalization of Wu’s algorithm

We first generalizeWu’s dynamic programming-based algorithm for MRTC [24], which always outputs a binary phyloge-
netic tree, toMTC by allowing it to construct k-ary phylogenetic trees. (Recall that for any integer k ≥ 2, a k-ary phylogenetic
tree is a phylogenetic tree in which every internal node has at most k children). We also extend Wu’s algorithm to take into
account constraints of types 2, 3, and 4 in the input.

As in Wu’s algorithm, all subsets of S are considered in order of nondecreasing cardinality. For each such U ⊆ S, the new
algorithm computes and stores a value score(U), defined as follows. For any singleton U , define score(U) to be 0. For every
non-singleton subset U of S, define score(U) recursively by score(U) = maxkℓ=2{scoreℓ(U)}, where for every integer ℓ ≥ 2:

scoreℓ(U) = max
ℓ−partition (U1,...,Uℓ) of U

{ ℓ∑
i=1

score(Ui) +

3∑
j=2

(wj(U1, . . . ,Uℓ) + wfj(U1, . . . ,Uℓ))
}
.

After computing score(U) for every U ⊆ S, the algorithm recovers an optimal k-ary phylogenetic tree in a traceback step,
starting at U = S and always picking an ℓ-partition of the current subset U yielding the maximum value of score(U). The
corresponding node in the constructed tree gets ℓ children in one-to-one correspondence with the subsets of U that form
the selected partition. Note that in the special case where k = 2 and w3(P) = wf 2(P) = wf 3(P) = 0 for every partition P of
every U ⊆ S, the new algorithm is identical to Wu’s algorithm.

The next lemma shows that the expressionw2(πv)+w3(πv)+wf 2(πv)+wf 3(πv) in Lemma 1 can be computed efficiently.

Lemma 2. Given a partition P of U ⊆ S, the values of w2(P), w3(P), wf 2(P), and wf 3(P) can be computed in O(m + n) time,
where m = |R| and n = |S|.

Proof. Let ℓ = |P|. Color the elements in U with ℓ colors according to P , and assign another color to the elements in S \ U .
Then, for each constraint inR, check the colors of its elements to determine whether or not it increasesw2(P),w3(P),wf 2(P),
or wf 3(P) by one. □

Theorem 2. Let k ≥ 2 be a given integer. For any instance of MTC, Wu’s generalized algorithm outputs a k-ary phylogenetic
tree T with Λ(T ) = S that maximizes the number of satisfied triplet constraints in R among all k-ary phylogenetic trees using
O((k + 1)n+1

· (m + n)) time.

Proof. It follows by induction on |U | and Lemma 1 that score(U) equals the maximum number of input triplet constraints
that can be satisfied in any k-ary phylogenetic tree leaf-labeled by U . Therefore, the output of the algorithm is correct.

There are
(n
q

)
subsetsU of Swith q elements, and the number of ℓ-partitions of a subsetU with |U | = q is less than ℓq. Thus,

the total number of partitions processed by our algorithm is at most
∑n

q=1

(n
q

)
·
∑k

ℓ=2 ℓq ≤
∑k

ℓ=2(ℓ + 1)n ≤ (k + 1)n+1 by

binomial expansion. According to Lemma 2, for any given partition P of U ⊆ S, the values ofw2(P),w3(P),wf 2(P), andwf 3(P)
can be computed in O(m + n) time. We conclude that the algorithm runs in O((k + 1)n+1

· (m + n)) time. □

Remark 2. When |P| = 2 in Lemma 2, w2(P) is the same as w(V1, V2) in Wu’s exact algorithm for MRTC [24]. Theorem 2
in [24] computes w(V1, V2) in O(m + n2) time, so using our Lemma 2 instead slightly improves the running time of Wu’s
original algorithm from O(3n

· (m + n2)) to O(3n
· (m + n)).

3.2. The ETAS

We now analyze how much is lost by forcing the solution to an instance of MTC to be a k-ary phylogenetic tree, where k
is any integer such that k ≥ 13. See Fig. 5 for a simplified example.

Fig. 5. Illustrating Theorem 3. The phylogenetic tree T on the left can be approximated by the k-ary phylogenetic tree T ′ on the right, where k = 3, while
still satisfying many of the specified constraints. Note that the theorem concerns the case k ≥ 13, but the idea is the same as shown here.
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Theorem 3. For any integer k ≥ 13 and any phylogenetic tree T , there exists a k-ary phylogenetic tree T ′ on the same set of leaf
labels, i.e., with Λ(T ′) = Λ(T ), that satisfies at least a fraction of (1 − 12/k) of the input triplet constraints satisfied by T .

Proof. For the sake of the proof, assign to each forbidden resolved triplet¬(ab|c) inR contributing towf 2(πv) for somenode v

in T , either the resolved triplet ac|b or the resolved triplet bc|a or the fan triplet a|b|c , depending on which of these three
constraints is satisfied in T . Similarly, assign to each forbidden fan triplet ¬(a|b|c) in R contributing to wf 3(πv), either the
resolved triplet ab|c or the resolved triplet ac|b or the resolved triplet bc|a, depending on the structure of T . Let h2(πv) be the
cardinality of themultiset of assigned resolved triplets and let h3(πv) be the cardinality of themultiset of assigned fan triplets.
Thenwf 2(πv)+wf 3(πv) = h2(πv)+h3(πv), so the formula in Lemma 1 becomes

∑
v∈I(T )(w2(πv)+w3(πv)+h2(πv)+h3(πv)).

We give a probabilistic argument to show that there exists a T ′ satisfying the theorem. In bottom-up order, consider
every node v in T having degree larger than k. Let v1, v2, . . . , vℓ be the children of v, where ℓ > k. Partition {v1, v2, . . . , vℓ}

into k subsets uniformly at random. For every fan triplet a|b|c contributing to w3(πv) (i.e., having each of its elements in a
distinct Tvi ) or to h3(πv) (i.e., being assigned to a forbidden resolved triplet), define an indicator random variable Xa,b,c whose
value is 1 if and only if {a, b, c} fall into three different subsets. The probability that any two elements in {a, b, c} fall into the
same subset is upper bounded by 1/k+2/k = 3/k, so the expected value ofXa,b,c is at least 1−3/k. By linearity of expectation,
the expected number of fan triplets contributing to w3(πv) + h3(πv) and having their elements in three different subsets is
at least a fraction of (1 − 3/k) of all such fan triplets. Hence, there exists a partition P of {v1, v2, . . . , vℓ} into k subsets such
that a fraction of at least (1 − 3/k) of the fan triplets contributing to w3(πv) + h3(πv) have their elements in three different
subsets. For each p ∈ P , define an arbitrary rooted binary tree Fp whose leaves are labeled by the children of v belonging
to p and then replace each leaf vi in Fp by the subtree Tvi . Next, delete the edges in T connecting v to its children and instead
attach the root of Fp for every p ∈ P as a child of v. Observe that a fan triplet that contributes to w3(πv) may also contribute
up to three times to h3(πv) because it may have been assigned to up to three forbidden resolved triplets. It follows that the
sum of the new values of w3(πv)+ h3(πv) is at least (1− 4 · 3/k) of the sum of its previous values. Let T ′ be the tree obtained
after treating all nodes of T in bottom-up order.

In turn, consider any resolved triplet ab|c that contributes to w2(πv) or h2(πv) for some node v in T . Then v = lcaT (a, b) is
a proper descendant of lcaT (a, c), and c is not a descendant of v. By the definition of T ′, lcaT

′

(a, b) is still a proper descendant
of lcaT

′

(a, c), which means that ab|c is also satisfied in T ′. Thus, the sum of w2(πv) + h2(πv) over all internal nodes v in T is
the same as the sum of w2(πv) + h2(πv) over all internal nodes v in T ′. The theorem follows from Lemma 1. □

Motivated by Theorem 3, one can try to find a good approximate solution for MTC by constructing a k-ary phylogenetic
tree satisfying the maximum number of input triplet constraints over all k-ary phylogenetic trees, for some suitable value
of k. Indeed, combining Theorems 2 and 3 gives an ETAS for MTC:

Theorem 4. For any instance of MTC and any specified constant 0 < ϵ < 1, one can build a phylogenetic tree satisfying at least a
fraction of (1−ϵ) of themaximumnumber of triplet constraints inR satisfied by any phylogenetic tree in O((⌈ 12

ϵ
⌉+1)n+1

·(m+n))
time.

Proof. Select k = ⌈
12
ϵ
⌉ (≥ 13) and apply Wu’s generalized algorithm from Section 3.1. According to Theorem 2, this gives

an optimal k-ary phylogenetic tree. By Theorem 3, this tree satisfies at least a fraction of (1−12/k) ≥ (1− ϵ) of the number
of input triplet constraints satisfied by an optimal, degree-unrestricted phylogenetic tree. □

4. A PTAS for complete MTC

This section presents a polynomial-time approximation scheme (PTAS) forMTC restricted to complete instances, obtained
by modifying the PTAS of Jiang et al. in [18] for the unrooted analogue of complete MRTC. In short, their PTAS works by
constructing many instances of the label-to-bin assignment problem that are solved approximately by applying a PTAS of
Arora et al. [2] for smooth polynomial integer programs. For complete MTC, because of the type-2 constraints in the input,
the approach of [18] has to be generalized to also consider non-binary trees, which makes it a little more complicated to
prove the existence of a so-called decomposition tree that provides a sufficiently good approximation. Furthermore, a more
intricate smooth polynomial integer program is needed to be able to represent input constraints of types 2, 3, and 4. The
details are given below. For completeness, we repeat certain key arguments from [18] in adapted form.

4.1. Preliminaries

Let k ≥ 3 be a positive integer. Similarly to [18], we first show that any rooted phylogenetic tree T has a decomposition
tree Tk, here defined as a rooted, unordered tree whose leaves are distinctly labeled by Λ(T ) and with the following
properties:

• For each internal node u in Tk, either all children of u are leaves (in this case, u is called a bin root) or all children of u
are internal nodes.

• The number of bin roots in Tk is at most k and the number of leaves attached to each bin root is at most 8n/k.
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Fig. 6. An algorithm for constructing a decomposition tree Tk for a phylogenetic tree T .

• For every {a, b, c} ⊆ Λ(T ) attached to three different bin roots in Tk, it holds that any triplet constraint of type 1, 2, 3,
or 4 over {a, b, c} is satisfied by T if and only if it is satisfied by Tk.

In particular, note that the last property guarantees that if one replaces T by Tk then every triplet constraint over three leaf
labels attached to three different bin roots is preserved. For any phylogenetic tree T , let γ (T ) be the set of all constraints
of type 1, 2, 3, or 4 over Λ(T ) that are satisfied by T . The next lemma, corresponding to Lemma 2.4 in [18], shows that a
decomposition tree for T satisfies many of the constraints in γ (T ) and therefore motivates the definition above.

Lemma 3. Suppose that T is an optimal solution to an instance of MTC and that Tk is a decomposition tree for T . The number of
triplet constraints from R satisfied by Tk is |γ (Tk) ∩ R| ≥ |γ (T ) ∩ R| −

122
k · n3.

Proof. Every triplet constraint in γ (T ) \ γ (Tk) has at least two of its three leaves attached to the same bin root in Tk
(otherwise, it belongs to both γ (T ) and γ (Tk) by the definition of Tk). The number of such triplet constraints is at most
k · (8n/k)2 ·

1
2 ·n + k · (8n/k)3 ·

1
6 < 61

k ·n3 since k ≥ 3, and for each one, the inputR contains at most two triplet constraints
that are satisfied by T but not by Tk. Hence, |γ (Tk) ∩ R| ≥ |γ (T ) ∩ R| −

122
k · n3. □

A bin root is called small if ≤ 4n/k leaves are attached to it, and large otherwise. To prove that Tk always exists, consider
the algorithm in Fig. 6 which constructs a decomposition tree for any given phylogenetic tree. It is a variant of Algorithm
k-Bin Decomposition in [18]. The difference between the old algorithm and our new one is that the rule for how to merge
small bin roots has been expanded to work for non-binary trees. Below, the new algorithm is named Algorithm 2.

Lemma 4. Algorithm 2 outputs a decomposition tree for T having at most k bin roots.

Proof. To derive an upper bound on the number of bin roots, let s and l denote the number of small and large bin roots in the
output tree, respectively. For any node u in the output tree, denote the number of small and large bin roots in the subtree
rooted at u by su and lu, and let Child(u) be the set of children of u. Due to step 3, Child(u) contains at most one small bin root
for every node u.

We use induction on the internal nodes’ heights to show that s ≤ 3l − 2 (cf. the proof of Lemma 2.3 in [18]). First of all,
the inequality is true for the subtree rooted at any internal node u at height 2 (the base case) since Child(u) consists of at
most one small bin root and at least one large bin root, giving s ≤ 1 and l ≥ 1 and thus s ≤ 3l − 2. Next, in the general case,
u is an internal node at height ≥ 3 and one of the following situations holds, where C = Child(u) \ {v : v is a small bin root}.

• |C | ≥ 2: Then the inequality follows directly from the induction hypothesis after using the fact that at most one child
of u is a small bin root and writing su ≤ (

∑
v∈C sv) + 1 ≤

∑
v∈C (3lv) − 2|C | + 1 < 3lu − 2.

• |C | = 1: Then Child(u) consists of a small bin root a and a node v of height at least 2. See Fig. 7. The set Child(v) contains
at least two elements but it is not possible for it to consist of a small bin root b and exactly one other node because
step 4 would have merged a and b in this case. Thus, |D| ≥ 2, where D = Child(v) \ {w : w is a small bin root}. By the
induction hypothesis, su ≤ (

∑
w∈D sw) + 1 + 1 ≤

∑
w∈D(3lw) − 2|D| + 2 ≤ 3lu − 2.

By the principle of mathematical induction, s ≤ 3l − 2. Finally, by definition, each large bin root has at least 4n/k leaves, so
l ≤ k/4. This means that the total number of bin roots is s + l < 3l + l ≤ k.
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Fig. 7. In the case |C | = 1 in the proof of Lemma 4, Child(u) = {a, v}, where a is a small bin root and v is a node of height at least 2. If Child(v) contains a
small bin root b then |Child(v)| ≥ 3 because of step 4 in Algorithm 2. The siblings of b may be large bin roots or non-bin roots.

It is straightforward to verify that the output of the algorithmhas all of the other properties required to be adecomposition
tree. □

4.2. The PTAS

By Lemma 4, an optimal solution T opt to any given instance (S,R) of MTC has a decomposition tree T opt
k for any positive

integer k ≥ 3. Moreover, by Lemma 3, if one could find T opt
k then it would be an approximation, whose quality depends on k,

of T opt . Importantly, removing all leaves from T opt
k yields an unlabeled tree with k leaves corresponding to the k bin roots,

and this tree can be found in polynomial time by enumeration when k is constant. Based on this observation, the PTAS of
Jiang et al. [18] modified to MTC for complete instances works as follows.

Let (S,R) be a complete instance of MTC and 0 < ϵ < 1 a specified constant. Generate all unlabeled, unordered rooted
trees having k leaves and no degree-1 nodes, where k ≥ 3 is a positive integer that depends on 1/ϵ (how to set k will be
addressed later). For each such tree K , henceforth called a kernel tree, interpret the leaves of K as initially empty bin roots
and try to attach the leaf labels in S to bin roots so that as many triplet constraints as possible fromR are satisfied. The latter
problem is formalized as the label-to-bin assignment problem (LBA): given a set S of leaf labels, a set R of triplet constraints
on S, and a kernel tree K with k bin roots, attach the elements of S to the bin roots of K so that each bin root gets at most
8n/k elements and the maximum number of triplet constraints inR are satisfied. Solve each instance of LBA approximately
by applying the PTAS of Arora et al. [2] for smooth polynomial integer programs. Finally, among all the found approximate
LBA-solutions, output one that is a best solution to MTC.

Observe that there are two separate approximations involved here: approximating an optimal solution to the given
instance of MTC by a decomposition tree for the given k (Lemma 3) and approximating an optimal decomposition tree,
represented as an instance of LBA, by using Arora et al.’s PTAS (Lemma 5 below).

We now explain how to solve LBA approximately. Jiang et al. [18] demonstrated that although LBA is NP-hard even when
R consists of type-1 constraints only, it admits a PTAS in this setting, obtained by formulating the problem as a smooth
polynomial integer program and applying a PTAS by Arora et al. [2]. We need to handle more types of constraints, so we
modify their formulation of LBA accordingly. Let γ (K ) be the set of all constraints of type 1, 2, 3, or 4 over the bin roots that
are satisfied by K . Introduce a 0/1-variable xsb for every s ∈ S and every bin root b in K ; in the final solution, xsb = 1 if and
only if s is attached to b. First, for every resolved triplet ab|c in R, define the polynomial:

pab|c(x) =

∑
ij|k∈γ (K )

xaixbjxck + xbixajxck

Next, for every fan triplet a|b|c inR, define the following polynomial, where Permute(a, b, c) stands for the set of all bijections
from {a, b, c} to {a, b, c}:

pa|b|c(x) =

∑
i|j|k∈γ (K )

∑
δ∈Permute(a,b,c)

xδ(a)ixδ(b)jxδ(c)k

For every forbidden resolved triplet ¬(ab|c) in R, define the polynomial:

p¬(ab|c)(x) = pac|b(x) + pbc|a(x) + pa|b|c(x)

In the same way, for every forbidden fan triplet ¬(a|b|c) in R, define the polynomial:

p¬(a|b|c)(x) = pab|c(x) + pac|b(x) + pbc|a(x)

Finally, define:

p(x) =

∑
ab|c∈R

pab|c(x) +

∑
a|b|c∈R

pa|b|c(x) +

∑
¬(ab|c)∈R

p¬(ab|c)(x) +

∑
¬(a|b|c)∈R

p¬(a|b|c)(x)
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This way, p(x) counts the number of input triplet constraints satisfied by a 0/1-assignment to the xsb-variables. To ensure
that each leaf label is attached to exactly one bin root and that no bin root gets too many leaf labels, the statement of LBA
becomes:

Maximize p(x) subject to

xsb ∈ {0, 1} for each s ∈ S and bin root b,
k∑

b=1

xsb = 1 for each s ∈ S, and

n∑
s=1

xsb ≤ 8n/k for each bin root b.

The resulting polynomial integer program is an O(1)-smooth degree-3 polynomial integer program according to the
following definition from [2]: An O(1)-smooth degree-d polynomial integer program is to maximize p(x1, . . . , xn) subject to
xi ∈ {0, 1} for all 1 ≤ i ≤ n, where p(x1, . . . , xn) is a degree-d polynomial in which the absolute value of the coefficient of each
degree-i term is O(nd−i). Arora et al.’s PTAS for smooth polynomial integer programs [2] can thus be applied, after the minor
modification described next. The original PTAS solves the fractional version of the problem and then rounds the obtained
fractional value for each variable individually in order to obtain an integer solution. However, this does notworkhere because
of the condition

∑k
b=1 xsb = 1 for each s ∈ S. Following [18], we instead set xsb = 1 and xsa = 0 for all a ̸= bwith probability

equal to the fractional value for xsb so that exactly one of xs1, . . . , xsk is 1 and the rest 0. The method can be derandomized
as in [2]. In analogy to Theorem 2.6 in [18], we have:

Lemma 5. For every constant 0 < ϵ′ < 1, there is a polynomial-time algorithm that for any instance of LBA specified by
a set S of leaf labels, a set R of triplet constraints for MTC over S, and a kernel tree K , produces a phylogenetic tree T ′ with
|γ (T ′) ∩ R| ≥ |γ (T ) ∩ R| − ϵ′

· n3, where T is an optimal LBA solution.

In summary, we obtain the next theorem, which states that the method outputs a phylogenetic tree satisfying at least
a fraction of (1 − ϵ) of the maximum possible number of input constraints and that it runs in polynomial time as long as
|R| = Ω(n3).

Theorem 5. For any specified constants 0 < ϵ < 1 and c > 0, there is a polynomial-time algorithm for MTC restricted to
instances with |R| ≥ c · n3 that produces a tree T ′′ approximating an optimal solution T opt in such a way that |γ (T ′′) ∩ R| ≥

(1 − ϵ) · |γ (T opt ) ∩ R|.

Proof. Choose any constant integer k ≥
976
ϵ·c and any constant 0 < ϵ′

≤
ϵ·c
8 , and apply the method just described in this

subsection to obtain T ′′. That is, for each possible kernel tree K with at most k bin roots, find an approximate LBA-solution
by using the modified PTAS of Arora et al., and then, among all the approximate solutions found, let T ′′ be one giving a best
solution to MTC. Since k is constant, the running time is polynomial in the input size.

First note that by Corollary 1, |γ (T opt ) ∩ R| ≥
1
4 · |R|. Thus, n3

≤
4
c · |γ (T opt ) ∩ R|.

Next, let T opt
k be a decomposition tree for T opt . By Lemma 5, |γ (T ′′) ∩ R| ≥ |γ (T opt

k ) ∩ R| − ϵ′
· n3, and by Lemma 3,

|γ (T opt
k ) ∩ R| ≥ |γ (T opt ) ∩ R| −

122
k · n3. This yields |γ (T ′′) ∩ R| ≥ |γ (T opt ) ∩ R| −

122
k · n3

− ϵ′
· n3

≥ |γ (T opt ) ∩ R| · (1−
122
k ·

4
c − ϵ′

·
4
c ) ≥ |γ (T opt ) ∩ R| · (1 −

488·ϵ·c
976·c −

ϵ·c·4
8·c ) = |γ (T opt ) ∩ R| · (1 − ϵ). □

In particular, Theorem 5 implies a PTAS for complete MTC:

Corollary 2. For any specified constant 0 < ϵ < 1, there is a polynomial-time algorithm for MTC restricted to complete instances
that produces a tree T ′′ approximating an optimal solution T opt in such a way that |γ (T ′′) ∩ R| ≥ (1 − ϵ) · |γ (T opt ) ∩ R|.

Proof. Since the instance is complete, |R| =
(n
3

)
≥

1
7 · n3, assuming without loss of generality that n ≥ 21. Set c =

1
7 and

apply Theorem 5. □

5. The complexity of MTC restricted to constraints of types 2 and 4

Here, we study the computational complexity of another special case of MTC, namely the restriction of MTC to triplet
constraints of type 2 and type 4.

Recall from the literature that the NP-hardMAX CUT problem (see, e.g., [8]) takes as input an undirected graph G = (V , E)
and asks for a partition of V into two disjoint subsets (V1, V2) (any such partition is called a cut) that maximizes the number
of edges in E having one endpoint in V1 and one endpoint in V2 (this is called the size of the cut).

Theorem 6. MTC is NP-hard, even if restricted to constraints of types 2 and 4.
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Fig. 8. The construction in point 2. in the proof of Theorem 6. Dotted lines represent zero or more edges.

Fig. 9. The construction in point 3 in the proof of Theorem 6. The nodes cu and cv belong to the set {c2, . . . , cℓ}.

Fig. 10. Illustrating the definition of Qi . In this example, Qu = {u(2), u(4)
} and Qv = {v(2), v(3)

}.

Proof. We give a polynomial-time reduction from MAX CUT. Let G = (V , E) be any given instance of MAX CUT and denote
V = {v1, v2, . . . , vp} and q = |E|. Define a set of p(2q + 1) + 1 leaf labels by S = V ∪ {w} ∪ {v(1), v(2), . . . , v(2q)

: v ∈ V };
henceforth, leaf labels of the form v(i) are referred to as copies of v. Let R = RA ∪ RB ∪ RC , where:

• RA = {u|v|w : {u, v} ∈ E} [type 2],
• RB = {v|v(i)

|w : v ∈ V and 1 ≤ i ≤ 2q} [type 2],
• RC = {¬(x|y|z) : x, y, z ∈ S \ {w}} [type 4].

For convenience, write R′
= RB ∪ RC and f = |R′

|.
Suppose T is a phylogenetic tree with Λ(T ) = S that satisfies at least f constraints in R. Since |RA| = q, T satisfies at

least f − q constraints in R′. For every v ∈ V , define rv = lcaT (v, w). We first show that T must have a specific branching
structure.

1. The degree of rv , where v ∈ V , cannot be equal to 2 because if so, 2q constraints in RB of the form v|v(i)
|w cannot

be satisfied, contradicting that T satisfies at least f − q constraints in R′. Thus, the degree of rv is at least 3 for every
v ∈ V .

2. Suppose that ru ̸= rv for some u, v ∈ V and that rv is a proper descendant of ru. Denote the children of ru
by c1, c2, . . . , cℓu and the children of rv by d1, d2, . . . , dℓv . By point 1., ℓu, ℓv ≥ 3. Assume without loss of generality
that c1 and d1 are ancestors of w and that c2 and d2 are ancestors of u and v, respectively. Let x be any leaf that is
a descendant of d3. For an illustration, see Fig. 8. At least q of the constraints of the form u|u(i)

|w in RB have to be
satisfied, so at least q of the copies of u are leaves of one or more of the subtrees of T rooted at c3, . . . , cℓu . This implies
that at least q constraints of the form ¬(u|u(i)

|v) as well as at least q constraints of the form ¬(u|u(i)
|x) from RC are

not satisfied, which is impossible. We conclude that ru = rv for every u, v ∈ V ; in the rest of the proof, this node is
denoted by r .

3. The degree of r (defined in point 2.) is 3. To prove the claim, let c1, c2, . . . , cℓ be the children of r , where c1 is the
ancestor of w, and suppose that ℓ ≥ 4. Consider any two u, v ∈ V . According to point 2., lcaT (u, w) = lcaT (v, w) = r ,
so c1 cannot be an ancestor of u or v. Let cu ∈ {c2, . . . , cℓ} be the ancestor of u and cv ∈ {c2, . . . , cℓ} the ancestor
of v, possibly with cu = cv . For i ∈ {u, v}, denote the set of all copies of i that belong to the subtrees rooted at
{c2, . . . , cℓ} \ {ci} by Qi. See Figs. 9 and 10. As in point 2., |Qu| ≥ q and |Qv| ≥ q hold. Now, for any allocation of at least
2q + 2 balls (corresponding to {u, v} ∪ Qu ∪ Qv) to at least 3 bins (corresponding to c2, . . . , cℓ) so that no bin is left
empty, there are at least q + 1 ways of selecting a triple of balls, one from each bin. Each such triple corresponds to a
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constraint in RC that will not be satisfied, contradicting that T satisfies f − q constraints in R′. Thus, the degree of r
is 3.

Note that r may or may not be the root of T . Also note that it does not matter where in T the (at most q) copies of u not
belonging to Qu are located. The crucial point is that w belongs to one of the subtrees rooted at the three children of r and
that each leaf label in V belongs to one of the other two such subtrees.

Next, we shall show that G has a cut of size at least k if and only there exists a phylogenetic tree T with Λ(T ) = S that
satisfies at least k + f constraints in R.

(⇒) Let (V1, V2) be a cut of G of size at least k. Construct two arbitrary binary phylogenetic trees T1 and T2 with
Λ(T1) = V1 ∪ {v(1), v(2), . . . , v(2q)

: v ∈ V2} and Λ(T2) = V2 ∪ {v(1), v(2), . . . , v(2q)
: v ∈ V1}. Let T be the phylogenetic

tree consisting of a root node with three children: a leaf labeled w, the root of T1, and the root of T2. Clearly, Λ(T ) = S and T
satisfies all f constraints in R′. In addition, for every {u, v} ∈ E that contributes to the size of the cut (V1, V2), T satisfies the
constraint u|v|w in RA. In total, T satisfies at least k + f constraints in R.

(⇐) Let T be a phylogenetic tree with Λ(T ) = S that satisfies at least k + f constraints in R. Since at least f constraints
are satisfied, T has the branching structure described in points 1., 2., and 3. above. Denote the three subtrees of T rooted at
the children of r by T1, T2, T3, where w ∈ Λ(T1) and v ∈ Λ(T2) ∪ Λ(T3) for every v ∈ V . Furthermore, |RB ∪ RC | = f by
definition, so T satisfies at least k constraints inRA. Then there are at least k pairs {u, v} of leaf labels from V forming an edge
in G such that u and v are not both in the same subtree T2 or T3, which means (V ∩ Λ(T2), V ∩ Λ(T3)) is a cut of G of size at
least k. □

Finally, we note that this problem variant has a very simple approximation algorithm:

Theorem 7. MTC restricted to constraints of types 2 and 4 admits a polynomial-time 1/2-approximation algorithm.

Proof. For i ∈ {2, 4}, let Ri be the subset of R of all triplet constraints of type i. If |R2| ≥ |R4| then output a phylogenetic
tree consisting of a root node to which every element in S is directly attached; otherwise, output any binary phylogenetic
tree T with Λ(T ) = S. In both cases, at least half of the triplet constraints are satisfied. □

6. Extensions to weighted instances of MTC

Having input triplet constraints in the form of rooted triplets and forbidden rooted triplets, it is natural to assign
nonnegative real weights to them. These weights can reflect the importance or certainty of the constraints. Consequently,
MTC generalizes to the maximum weighted rooted triplets consistency problem (MWTC), where the input is a set S of leaf
labels and R is a set of nonnegatively weighted triplet constraints, and the objective is to construct a phylogenetic tree T
with Λ(T ) = S that maximizes the total weight of the satisfied triplet constraints from R.

In the proof of Theorem 1 in Section 2, if we take the total weight of the constraints in each considered subset of triplet
constraints instead of its cardinality (e.g., redefine m as the total weight of all constraints in R) and use an approximation
algorithm for the weighted version of MRTC in step 2 of Algorithm 1, then the approximation ratio analysis still holds. As
shown in [10], the polynomial-time approximation algorithm for MRTC in [10, Section 5.1] with f = 1/3 also works for the
weighted case, and we directly obtain:

Corollary 1′. In polynomial time, one can find an approximate solution to MWTC whose total weight of satisfied input triplet
constraints is at least m/4.

Similarly, the exact algorithm for MTC in Section 3 where the output phylogenetic tree has to be k-ary generalizes to
MWTC by using the sums of the weights of respective triplet constraints instead of their cardinalities in the definitions
of w2(P), w3(P), wf 2(P), and wf 3(P). This gives the following generalization of Theorem 2.

Theorem 2′. Let k ≥ 2 be a given integer. For any instance of MWTC, one can find a k-ary phylogenetic tree T withΛ(T ) = S that
maximizes the total weight of the satisfied triplet constraints inR among all k-ary phylogenetic trees using O((k+1)n+1

· (m+n))
time.

For the ETAS for MTC in Section 3 and the PTAS for MTC restricted to complete instances in Section 4, the situation
requires an additional adjustment. Let Wmin and Wmax denote the minimum and the maximum weights among all triplet
constraints in R. In Theorem 3 and Lemma 3, some of the input triplet constraints in T and Topt may be lost in T ′ and Tk,
respectively, and we have to consider the worst case where each such lost constraint has weightWmax. In order to generalize
our approximation schemes to theweighted case, we shall therefore require thatWmax is atmostO(1) times larger thanWmin.
To extend the ETAS, we need the following generalization of Theorem 3.

Theorem3′. For any integer k ≥ 13·
Wmax
Wmin

and any phylogenetic tree T , there exists a k-ary phylogenetic tree T ′ withΛ(T ′) = Λ(T )
that satisfies a subset of the input triplet constraints whose total weight is at least a fraction of (1−

12·Wmax
k·Wmin

) of the total weight of
all input triplet constraints satisfied by T .
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The proof of Theorem 3′ can be obtained from that of Theorem 3 by multiplying each contribution of a satisfied
constraint by its weight. The only difference is that when estimating the fraction of the total weight of constraints lost
in the approximation by a k-ary tree, we need to assume the worst-case situation where the lost constraints are of weight
Wmax while those preserved of weightWmin. This increases the fraction from the unweighted case by the factor Wmax

Wmin
.

By combining Theorems 2′ and 3′, we obtain an ETAS for MWTC:

Theorem4′. For any instance ofMWTCwithWmax = O(Wmin) and any specified constant 0 < ϵ < 1, one can build a phylogenetic
tree satisfying a subset of the input triplet constraints whose total weight is at least a fraction of (1 − ϵ) of the optimum in
O((⌈ 12

ϵ
⌉ + 1)n+1

· (m + n)) time.

Finally, we explain how to extend the PTAS in Section 4. For any R′
⊆ R, let W (R′) be the total weight of all elements

in R′. To start with, we need the following generalization of Lemma 3.

Lemma 3′. Suppose that T is an optimal solution to an instance of MWTC and that Tk is a decomposition tree for T . The total
weight of the triplet constraints from R satisfied by Tk is W (γ (Tk) ∩ R) ≥ W (γ (T ) ∩ R) −

122·Wmax
k · n3.

The proof of Lemma 3′ is the same as that of Lemma 3, except that in the last step, we need to multiply the upper bound
on the number of constraints lost (i.e., those in (γ (T ) \ γ (Tk)) ∩ R) byWmax in order to obtain a worst-case upper bound on
the total weight of constraints in (γ (T ) \ γ (Tk)) ∩ R.

Next, we modify the smooth polynomial integer program for the LBA problem to include constraint weights by
multiplying the polynomials corresponding to the constraints by the weights assigned to the constraints in the program.
In analogy to Lemma 5, we obtain the following generalization.

Lemma 5′. For every constant 0 < ϵ′ < 1, there is a polynomial-time algorithm that for any instance of LBA specified by a set S
of leaf labels, a set R of weighted triplet constraints for MWTC over S, and a kernel tree K , produces a phylogenetic tree T ′ with
W (γ (T ′) ∩ R) ≥ W (γ (T ) ∩ R) − ϵ′

· n3, where T is an optimal LBA solution.

By using Lemma 3′ and 5′, we thus obtain a PTAS for the complete version of MWTC:

Corollary 2′. For any specified constant 0 < ϵ < 1, there is a polynomial-time algorithm for MWTC restricted to complete
instances with Wmin ≥ 1 and Wmax = O(1) that produces a tree T ′′ approximating an optimal solution T opt in such a way that
W (γ (T ′′) ∩ R) ≥ (1 − ϵ) · W (γ (T opt ) ∩ R).

Proof. Choose any constant integer k ≥
56·122·Wmax

ϵ
and any constant ϵ′

≤
ϵ
56 . As in the proof of Theorem 5, apply the

generalized approximate LBA-method to obtain T ′′. Next, follow the proofs of Theorem 5 and Corollary 2 to infer that
n3

≤ 28 · |γ (T opt ) ∩ R|. By our assumptions onWmin, this yields n3
≤ 28 · W (γ (T opt ) ∩ R).

Let T opt
k be a decomposition tree for T opt . By Lemma 5′, W (γ (T ′′) ∩ R) ≥ W (γ (T opt

k ) ∩ R) − ϵ′
· n3, and by Lemma 3′,

W (γ (T opt
k ) ∩ R) ≥ W (γ (T opt ) ∩ R) −

122·Wmax
k · n3. This yieldsW (γ (T ′′) ∩ R) ≥ W (γ (T opt ) ∩ R) −

122·Wmax
k · n3

− ϵ′
· n3

≥

W (γ (T opt ) ∩ R) · (1 −
28·122·Wmax

k − 28ϵ′) ≥ W (γ (T opt ) ∩ R) · (1 −
28·122·Wmax·ϵ
56·122·Wmax

− 28 ·
ϵ
56 ) = W (γ (T opt ) ∩ R) · (1 − ϵ). □

7. Open problems

MTC is APX-hard by the APX-hardness of MRTC [4] and Corollary 1. An open problem is to improve the polynomial-time
approximation ratios 1/3 and 1/4 for MRTC and MTC. According to Theorem 1, an f -approximation for the former would
give an f

1+f -approximation for the latter.

Algorithm 1 can be viewed as a derandomization of an algorithm that randomly assigns the leaf labels to the leaves
of a rooted star tree (where the permutation of the leaf labels does not matter) and to an arbitrary binary tree (where
the permutation of the leaf labels is significant), and then returns the better of the two obtained solutions. An interesting
question is whether there exists a single tree shape for which randomly assigning the leaf labels to the leaves always yields
an approximation ratio of 1/4 for MTC.

Another open problem is to design an exact algorithm for MRTC that is faster than O∗(3n). Is O∗(2n) time complexity
achievable, and if so, can that algorithm be extended to MTC?

On the positive side, it was shown in [9] that MRTC can be solved in polynomial time if the input also contains a specified
left-to-right ordering O of S and the output phylogenetic tree is required to be an ordered tree in which the left-to-right
sequence of leaf labels equals O. Does MTC become polynomial-time solvable in this setting as well?
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Addendum

Theorem 6 was recently strengthened in [J. Jansson, A. Lingas, R. Rajaby, W.-K. Sung, Determining the consistency of
resolved triplets and fan triplets, Journal of Computational Biology 25 (7) (2018) 740-754.].
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