Fundamenta Informaticae 56 (2003) 105-120 105
10S Press

A Fast Algorithm for Optimal Alignment between
Similar Ordered Trees*

Jesper Janssoh

Department of Computer Science
Lund University, Box 118

SE-221 00 Lund, Sweden
Jesper.Jansson@cs.lth.se

Andrzej Lingas

Department of Computer Science
Lund University, Box 118

SE-221 00 Lund, Sweden
Andrzej.Lingas@cs.lth.se

Abstract. We present a fast algorithm for optimal alignment betweemgimilar ordered trees with
node labels. Lef andT be two such trees withS| and|T’| nodes, respectively. If there exists an
optimal alignment betweesi and7" which uses at most blank symbols and is known in advance,

it can be constructed i@ (n logn - (maxdeg)? - d*) time, wheren = max{|S|,|T|} andmazdeg

is the maximum degree of all nodes$handT'. If d is not known in advance, we can construct an
optimal alignment irO(n log n- (mazdeg)?- f?) time, wheref is the difference between the highest
possible score for any alignment between two trees haviogehdf |S| + |T'| nodes and the score

of an optimal alignment betweehandT', if the scoring scheme satisfies some natural assumptions.
In particular, if the degrees of both input trees are bouriea constant, the running times reduce
to O(nlogn - d*) andO(nlogn - f?), respectively.

1. Introduction

Let R be a rooted treeR is called alabeled treaf each node ofR is labeled by a symbol from a fixed
finite set>.. R is anordered tredf the left-to-right order among siblings iR is given.

*A preliminary version of this article appeared in [3].
tAddress for correspondence: Department of Computer Sejénmd University, Box 118, SE-221 00 Lund, Sweden

106 J. Jansson and A. Lingas/A Fast Algorithm for Optimal Aligmirbetween Similar Ordered Trees

The problem of determining the similarity between two l&lketrees occurs in several different ar-
eas of computer science. For example, in computationabdpyplmethods for measuring the similarity
between ordered labeled trees of bounded degree can bewtkeccbomparison of RNA secondary struc-
tures [4, 6, 10]. The problem also occurs in evolutionarggreomparison, organic chemistry, pattern
recognition, and image clustering [4, 6, 9, 14].

The similarity between two labeled trees can be defined iilowarways analogous to the ways of
defining the similarity between two strings [7, 9]. For exdmmne can look for the largest maximum
agreement subtree, the largest common subgraph, the shrallemon supertree, the minimum tree edit
distancegetc.[4, 5, 6, 11, 14].

Jiang, Wang, and Zhang [4] generalized the concept of amrakgt between strings to include
labeled trees as follows. Aimsert operationon a labeled tree adds a new naddabeled by a blank
symbol '—’ which does not belong t&. The operation either (1) turns the current root of the tree i
a child of u and letsu become the new root, or (2) makesthe parent of a subset of (if the tree is
unordered) or consecutive subsequence of (if the tree esed)l childref of an existing node, andu a
child of v. See Figure 1.

a a
/\ . _
b c d e b

c d e

Figure 1. An insert operation of type (2). The new node bethe parent of a consecutive subsequence of
children of the node labeled kay and then becomes a child of that node.

An alignment between two labeled trésobtained by performing insert operations on the two trees
so they become isomorphic when labels are ignored, and thextaging the first augmented tree on the
other one. Thecoreof the alignment is the sum of the scores of all matched péilsbels, where the
score of a pair of labels is defined by a given function (X U {—}) x (XU {-}) — Z. An optimal
alignmentbetween a pair of labeled trees is an alignment between tobieving the highestpossible
score using:. See Figure 2 for an example.

In [4], Jianget al. presented an algorithm for computing an optimal alignmetivkeen two ordered
treesS andT with node labels irO(|S| - |T| - (mazdeg)?) time, where|S| and|T| are the number of
nodes inS and T, respectively, andnazdeg is the maximum degréeof all nodes inS and7. They
also provided a polynomial time algorithm for finding an opai alignment of twaunorderedtrees in
casemazdeg = O(1), and showed the latter problem to be MAX SNP-hard if at leastaf the trees is
allowed to have an arbitrary degree.

!Observe that subsets and consecutive subsequences cimt ebnsro elements.
2In [4], Jianget al. defined an optimal alignment as one with thevestpossible score.
3Thedegreeof a node is the number of its children.

J. Jansson and A. Lingas/A Fast Algorithm for Optimal Aligmirbetween Similar Ordered Trees 107

a a (Cl, Cl)

€ b (= e) (= b)

a c e (b,a) (c,c) (d,—) (e, e)

(a) (b) ()

Figure 2. LetE = {a,b,c,d, e} and define the scoring functignas follows: for everye,y € ¥ with z # y, let
w(z,z) =3, plr,y) = —1, andu(z,—) = pu(—,z) = u(—,—) = —2. Then the score of the alignment in (c)
between the two labeled trees shown in (a) and (b) is equal to 2

Inspired by the known fast method for an optimal alignmerntiveen similar strings (see Sec-
tion 3.3.4 in [9]), we present an algorithm for optimal aligent between two similar ordered trees
with node labels which is faster than the algorithm of Jiabgl. when the score of an optimal align-
ment between the two input trees is high and the scoring seteatisfies some natural assumptions.
If there is an optimal alignment between the two input orderees which uses at magtblank sym-
bols andd is specified in advance, then our algorithm called Algorithast Scorecomputes its score
in O(nlogn - (maxdeg)?® - d*) time, wheren = max{|S|,|T|}. Our more general algorithm called
Algorithm Unspecifiedd for when no upper bound othis provided computes the score of an optimal
alignment inO(n logn - (mazdeg)? - f?) time, where (assuming that the scoring scheme satisfiegircert
properties)f is the difference between the highest possible score foraliggment between two trees
having a total of S| + || nodes and the score of an optimal alignment betweand7'. Furthermore,
if there exists an optimal alignment betwe€randT" with b blank symbols and(b) node pairs of the
form (z,y), wherez # y, then (under some slightly stronger assumptions on thengcecheme) Al-
gorithm Unspecifiedd runs inO(nlogn - (mazxdeg)? - b?) time, even ifb is not known in advance. In
particular, if the degrees of both input trees are bounded bgnstant, the running times stated above
reduce taD(nlogn-d?), O(nlogn - f2), andO(n log n - b?), respectively. The algorithms can be modi-
fied to return an alignment corresponding to the optimaleseagthout increasing the asymptotic running
times in the same way as for the algorithm of Jian@l.

The rest of this paper is organized as follows. In Sectione€d®ascribe the algorithm of Jiang, Wang,
and Zhang from [4]. In Section 3, we introduce a new conceptallel-relevance, and in Section 4, we
show how to construci-relevant pairs of subtrees and subforests efficientlynTheSections 5 and 6,
we present and analyze AlgorithRast Scoreand AlgorithmUnspecified!.

2. The algorithm of Jiang, Wang, and Zhang

The algorithm of Jiang, Wang, and Zhang [4] for aligning tabéled, ordered trees is based on the
standard dynamic programming algorithm for the stringratignt problem which calculates the scores
of optimal alignments between pairs pfefixes(or symmetrically,suffixe$ of the two input strings in

108 J. Jansson and A. Lingas/A Fast Algorithm for Optimal Aligmirbetween Similar Ordered Trees

bottom-up order by using a two-dimensional table to stoeedbmputed scores, and then, when the
table is complete, performs a traceback to obtain an optatighment (see, e.g., [2, 7, 9, 13]). The
algorithm of Jianget al. computes and stores the scores of optimal alignments betpages ofordered
subtreesof S and7" and between pairs afrdered subforestef S and7 in a bottom-up fashion. After
the algorithm is finished, an actual optimal alignment betw& andT can also be recovered by doing
a traceback.

Some notation is necessary to describe the algorithm in ohetesl.

Definition 2.1. For an ordered tre& and a nodeu of S, let S[u] denote the ordered subtree §f
rooted atu (i.e., the minimal subgraph & which includesu and all of its descendants). Létg(u)
be the degree af, and denote the children efby w1, ..., uqeg(,) @ccording to their left-to-right order.
S(u,1, j) refers to the ordered subforesi;], ..., S[u;], andS(u) is short forS(u, 1, deg(u)). The num-
ber of nodes in a subtree or subfor§stis denoted byS,|. Finally, deg(S) is defined as the maximum
degree of all nodes if.

Thus, S(u) is thecomplete ordered forestbtained by removing and all edges incident te from
Slu]. Also observe tha$(u,,1) = S[u;].
Definition 2.2. The score of an optimal alignment between two subtrees ostsforestsS, andT is
denoted byD(S., T).

To obtain a bottom-up ordering of the subtrees and subfomestable for dynamic programming,
the nodes in an ordered tree withnodes are numbered throughn according to postorder so that
D(S[|S|], T[|T|]) will contain the score of an optimal alignment betweand7'. Henceforth© rep-
resents the empty tree apd(u) is the label of node numberin the labeled tre&.

The next lemma forms the basis of the algorithm of Jiahg|.

Lemma 2.1. Let S andT be two labeled ordered trees withe S andv € T'. Then
1. D(©,0) =0

D(S[ul. ©) = D(S(w),0) + u(gs(u).) D(S(u). ©) =d:gz(f)D<S[uq], 0)
D(©,T[v]) = D(O,7(v)) + (= 97(v)) D(6.7(v) =d:i(f)D<e,T[qu
2. D(S[u], T[v]) =
(D(S(), T(v) + plgs(w), g7 (v)
e 4 DIS[©) + | _max {D(S[ug), Tl ~ D(S[us). ©))

LD(G,T[U]) + 1523;33(”){17(5[“]@[%]) = D(©,T[vg)) }

J. Jansson and A. Lingas/A Fast Algorithm for Optimal Aligmirbetween Similar Ordered Trees 109

3. For anyj and! such thatl < j < deg(u) andl <1 < deg(v),
D(S(u,1,5),T(v,1,1)) =
(D(S(u, 1,5 = 1).T(v,1,)) + D(S[u;], ©)

D(S(u,1,7),T(v,1,1 — 1)) + D(O,T[v])

D(S(u,1,5 —1),T(v,1,l — 1)) + D(S[u,], T[v])

max

M(QS(uj)v _) + 1 mad‘x {D(S(ua lvj - 1)7T(Uv laq - 1)) + D(S(uj)’T(ana l))}
<q<deg(l)

-, V7)) + max
LN(gr(w)) 1<g<deg(j

){D(S(’LL, l,qg— 1)aT(Ua 17l - 1)) + D(S(uaqaj)vT('Ul))}

Proof:
See [4]. O

The algorithm of Jiangt al. (Algorithm Scorg is displayed in Figure 3. As the various values
of D(S,,Ty) are computed using the recurrences in Lemma 2.1, they asglstoa data structure which
allows them to be retrieved i@(1) time from then on.

Algorithm Scoreemploys an auxiliary procedure called Procedure 1 (not shusve) that takes as
input two subforests of the formf(u, i, deg(u)) andT (v, k, deg(v)), where at least one afandk is
equal tol, and then compute®(S(u,i,7),T(v,k,1)) for all j andl such that < j < deg(u) and
k <1 < deg(v) by repeatedly applying Lemma 2.1.3 in a straightforward mean

Each call to Procedure 1 is proved in [4] to také(deg(u) + deg(v)) - deg(u) - deg(v)) time, and
the total running time of the algorithm is shown to®@€ S| - |T| - (maxdeg)?).

Note that for every pair of subtreequ] and7’[v], although the algorithm computd3(S(u, i,),
T(v))foralll <i<j <deg(u)andD(S(u),T(v,k,1)) forall1 <k <[< deg(v), it doesnot need
to compute the values db(S(u,1,5), T(v, k1)) forall 1 <i < j < deg(u) andl < k <1 < deg(v).

By adding a traceback step at the end, the algorithm can le@aed to return an alignment cor-
responding to the optimal score without increasing the g@égtic running timé. Hence, Jiangt al.
proved the following result.

Theorem 2.1. An optimal alignment between two node-labeled, ordereskiteandT’ can be computed
in O(|S| - |T| - (maxdeg)?) time, wheremazdeg is the maximum degree of all nodesSrandT.

“An optimal alignment can be recovered by recalculating #iens on the right-hand side of Lemma 2.1 for each pair of
subtrees or subforests encountered during the tracebagd&téomine which of the possibilities that resulted in thghleist
score; alternatively, one can modify the algorithm to aksword information about how each vall¥ S., T%.) is obtained as it

is computed, e.g., by saving pointers.

110 J. Jansson and A. Lingas/ A Fast Algorithm for Optimal Aligminbetween Similar Ordered Trees

Algorithm Score
Input: Two labeled ordered treesandT'.

Output: The score of an optimal alignment SfandT'.

D(0,0):=0
for w:=1 to |S| do
Initialize D(S[u], ®) andD(S(u),®) according to Lemma 2.1.1.
endfor
for v:=1 to |T| do
Initialize D(©,T[v]) andD(0O, T'(v)) according to Lemma 2.1.1.
endfor
for u:=1 to |S| do
for v:=1to |T| do
for i:=1 to deg(u) do
Call Procedure 1 o5(u, i, deg(u)) andT (v).
endfor
for k:=1 to deg(v) do
Call Procedure 1 o5 (u) andT (v, k, deg(v)).
endfor
ComputeD(S[u], T'[v]) as in Lemma 2.1.2.
endfor
endfor
return D(S[|S|], T[|T]])

End Score

Figure 3. The algorithm of Jiang, Wang, and Zhang.

3. d-relevance

The main idea of our algorithm is to modify the dynamic pragnaing algorithm of Jiangt al. outlined
in Section 2 to only consider what we cdlrelevant pairs of subtrees and subforests.

3.1. d-relevant pairs of subtrees

In order to introduce our slightly technical conceptdafelevance, we need some definitions.

Definition 3.1. Let S be a labeled ordered tree andh node ofS. Whenw is not the root ofS, S[u]
stands for the ordered subtree®fesulting from removing|u] and the edge betweenand the parent
of w from S. Next, L(S[u]) denotes the set of leaveshthat are to the left of the leaves Sfu].

Now, we are ready to define the concept af-eelevant pair of subtrees as well as those ef-a
descendant and&ancestor.

Definition 3.2. Let d be a positive integer. For two ordered treégsnd T containing nodes andv
respectively, the pair of subtre¢§[u], T'[v]) is calledd-relevantif and only if both of the following
conditions hold:

J. Jansson and A. Lingas/A Fast Algorithm for Optimal Aligmirbetween Similar Ordered Trees 111

LAIS[u]l = IT[v][| < d
2. |IL(S[uD)| = [L(T[v])]| < d

Definition 3.3. Let d be a positive integer, and I&t be an ordered tree containing two nodeandw.
T|w] is called ad-descendanof T'[v] if w is a descendant efand|T'[v]| — |T[w]| < d. Symmetrically,
T'[w] is called ad-ancestorof T'[v] if w is an ancestor of and|T[w]| — |T[v]| < d.

The definition ofd-relevance immediately yields the following lemma.

Lemma3.1. Let S and T be two labeled ordered trees, and 4etind v be two nodes inS and T
respectively. If there is an alignment betwegeandT which uses at most blank symbols and consists

of an alignment betweef[u] andT'[v] and an alignment betwee${u] andT'[v] then (S[u], T'[v]) is
d-relevant forS andT.

The next three lemmas will be useful for bounding the numlbeFm@levant pairs from above.

Lemma 3.2. If the pairs(S[u], T'[v]) and(S[u], T'[w]) ared-relevant for two ordered treesandT’, and
w is an ancestor (or, descendantyah 7', thenT [w] is a2d-ancestor (or2d-descendant) of[v].

Proof:

Since(S[u], T'[v]) is d-relevant, it holds tha{ S[u]| — |T[v]|| < d and hencéS[u]| — |T'[v]| < d, which
gives us—|S[u]|+|T[v]| > —d. Suppose thaf'[w] is not a2d-ancestor of '[v], i.e.,|T[w]|—|T'[v]| > 2d.
Then we haveT'[w]| — |S[u]| = |T[w]| — |T[v]| + |T[v]] — |S[u]| > 2d + (—d) = d, which contradicts
thed-relevance of S[u], T'[w]). O

Lemma 3.3. For a node of an ordered treé, the number ofl-ancestors ob|[u] is at mostd.

Proof:

Assume that the number dfancestors of[u] is greater tha. By the pigeonhole principle there exists
ad-ancestorS[u'] whose root/ is located at distance greater thafilom «. But then|S[u']|—|S[u]| > d,
which is a contradiction. O

Lemma 3.4. Let {(S[u], T[v:]) }._, be a sequence of distinéirelevant pairs in two ordered treSsand
T such that for any < 4,5 <, v; is not a descendant of. Then,! < 24 holds.

Proof:

We may assume without loss of generality that the sequermelésed according to the left-right order
in T. Since(S[u|,T[v]) is d-relevant,||L(S[u])| — |L(T[v])|| < d. On the other hand, we have
|L(T[o))| — |L(T[vol)| > L. Thus, ifl > 2d then| L(S[ul)| — |L(T[vo])| = |L(S[u)| — |L(T[wi))] +
|L(T[v])| — |L(T[vo])| > (—d) + 2d = d, which contradicts thé-relevance of S[u|, T'[v¢]). O

By combining the three lemmas above, we obtain an upper bonrtde number ofl-relevant pairs
of subtrees.

Theorem 3.1. For two ordered treeS andT' and a node: of S, the number of distinci-relevant pairs
of subtrees in which participates i€ (d?).

112 J. Jansson and A. Lingas/A Fast Algorithm for Optimal Aligmirbetween Similar Ordered Trees

Proof:

Let {(S[u], T[v;])}_, be a maximal sequence of distintrelevant pairs of subtrees for two ordered
treesS and 7' such that for eacl) < 7 < [there is nod-relevant pair(S[u|, T[v]), wherev is a
descendant of;. It follows from Lemma 3.2 that for eacfrrelevant pair(S{u|, T'[w)), it either belongs
to the sequence d@F[w] is a2d-ancestor of a member in the sequence. Hence, the numberetévant
pairs in whichu participates is at mog2d + 1) - (I + 1) by Lemma 3.3. Now, it is sufficient to observe
that/ cannot exceeld by Lemma 3.4. O

Corollary 3.1. There areD(m - d?) d-relevant pairs of subtrees férandT, wherem = min{|S|, |T|}.

3.2. d-relevant pairs of subforests

The algorithm of Jian@t al. computes scores not only between pairs of subtrees of the irges, but
also between certain pairs of subforests of the trees. Tdreren order to modify the algorithm, we have
to generalize the conceptsdtelevanced-descendants, arbancestors for pairs of nodes inducing full
subtrees to include pairs of subforests of the foftw, i, 5), T'(v, k,1)).

Definition 3.4. Let S(u,1,j) be an ordered forest in an ordered ti®eWhenuw is not the root ofS,
S(u,1,7) stands for the ordered subtree$bbtained by removing(u, 7, j) and all edges incident to
S(u,1,7) fromS. L(S(u,1,7)) denotes the set of leavesSithat are to the left of the leaves 8fu, i, 7).

Definition 3.5. Let d be a positive integer. For two ordered tréesandT containing nodes andv
respectively, the pair of ordered subfore&®§u, i, 7), T'(v, k., 1)) is calledd-relevantif and only if both
of the following conditions hold:

L. [[S(u,i,5)] — IT(o, k. D)|| < d
2. [|L(S(u, i,)| — [L(T (v, k,1)]| < d

Definition 3.6. Let d be a positive integer, and 18t be an ordered tree containing two nodeand
w. T(w,k',l") is called ad-descendanbf T'(v,k,l) if w is a descendant aof, T'(w, k',l") is con-
tained inT(v,k,1), and|T (v, k,l)| — |T(w,k",I")] < d. Symmetrically,T(w, k’,l") is called ad-
ancestorof T'(v, k, 1) if w is an ancestor of, T'(v, k,) is contained ifl"(w, k', 1'), and|T(w, k', I')| —
T (v, k,1)| < d.

The definition ofd-relevance of subforests yields the following lemma anailsgto Lemma 3.1.

Lemma 3.5. Let S andT be two labeled ordered trees, anddét:, i, j) andT (v, k,) be ordered forests
in .S andT respectively. If there is an alignment betweg@and7" which uses at most blank symbols
and consists of an alignment betwe&u, i, j) andT'(v, k,1) and an alignment betweef(u, i, j) and
T(v,k,1) then(S(u,1,7),T(v,k,1)) is d-relevant forS andT.

The next three lemmas will be useful for bounding the numberm@levant pairs of subforests from
above. Their proofs are analogous to the correspondingpodd.emmas 3.2-3.4.

Lemma 3.6. If the pairs(S(u,i,5),T(v)) and(S(u,i,5),T(w)) ared-relevant for two ordered trees
andT, andw is an ancestor (or, descendantpah 7', thenT'(w) is a2d-ancestor (or2d-descendant) of
T(v).

J. Jansson and A. Lingas/A Fast Algorithm for Optimal Aligmirbetween Similar Ordered Trees 113

Lemma 3.7. For a nodeu of an ordered tree, the number ofi-ancestors of the forn$(w) of the
forestS(u) is at most.

Lemma 3.8. Let {(S(u,1,5), T (vq) 2:0 be a sequence of distindtrelevant pairs in two ordered trees
S andT such that for any < ¢, ¢" <, vy is not a descendant of». Then,! < 2d holds.

By combining Lemmas 3.6-3.8, we obtain an upper bound onuhwber ofd-relevant pairg.S(u),
T(v,k,1)) and(S(u,1,j),T(v)) like in Theorem 3.1.

Theorem 3.2. For two ordered treeS andT' and a node: of S, the number of distinad-relevant pairs
of the form (S(u, i, j), T(v)) is O(d? - (deg(S))?). Symmetrically, for a node of T, the number of
distinctd-relevant pairs of the formaS(u), T'(v, k, 1)) is O(d? - (deg(T))?).

Corollary 3.2. There are)(n-d?-(mazdeg)?) d-relevant pairs of subforests of the fo(ii(u), T'(v, k, 1))
and(S(u,1,j),T(v)) for S andT', wheren = max{|S|, |T|}.

4. Constructing the d-relevant pairs

The test ford-relevance for a pair of subtrees can easily be accomplisheshstant time after appropri-
ate preprocessing. However, in order to speed up the gimtraé algorithm of Jiangt al., we cannot
afford testing each possible pair of subtreesdfoelevance. Instead, we proceed as follows.

First, we compute all vector§T'[v]|, |L(T[v]|), wherev € T'. Figure 4 demonstrates how this can
be done recursively i@ (|7T'|) time by using the Euler tour technique [12]. The algorithnstarted by
calling Euler Tour (root,0). We assume that as the valuegBfv]| and|L(T[v])| for various nodes
are computed, they are stored in a tf#ewhich is isomorphic tdl’ and equipped with the necessary
auxiliary data fields.

We then fetch the vector§T'[v]|,|L(T[v]|) one at a time by traversing’, and insert them into a
standard data structure for two-dimensional range seatgh, a layered range tree [8]. The construc-
tion of the data structure take&s(|7'| - log|7’|) time. Then, for allu in S we compute the vectors
(|STu]|, |IL(STu])]) in linear time in the same way as above. For ea¢h S, we query the range search
data structure with the square centered|&fu]|, |L(S[u])|) having side lengti2d. Each query takes
O(log|T| + r) time, wherer is the number of reported vectors. Since each of the retwaetbrs is
in one-to-one correspondence with a nedguch that the paifu, v) is d-relevant, = O(d?) holds by
Theorem 3.1.

Putting everything together, we obtain the following theror

Theorem 4.1. For two ordered trees on at meshodes each and a non-negative inte@eall d-relevant
pairs of subtrees can be reportedifn - (log n + d?)) time.

We can use the same technique to precompute all paidsrefevant subforests. In fact, for our
purposes it is sufficient to report all pairs @felevant subforests where at least one of the subforests is
complete, i.e., is of the form§(u) or T'(v). To report alld-relevant pairs of the forndS(u), T'(v, k,1)),
the number of vectors to insert into the layered range tréq &) - (maxzdeg)?) sinceO((mazxdeg)?)
ordered forests of the foril'(v, k,1) originate from each node in 7. Thus, the construction time
becomesO(|T| - (maxdeg)? - log(|T| - (mazdeg)?)) = O(n - (mazdeg)? - logn). The number of

114 J. Jansson and A. Lingas/A Fast Algorithm for Optimal Aligmirbetween Similar Ordered Trees

Algorithm Euler Tour
Input: Nodew, integerleft.

Output: IntegersumN odes, integersum Leaves.

IL(T[o])] = left
sumNodes := 1
if visaleafthen
sumLeaves := 1
else
sumLeaves := 0
for all childrenw of v in left-to-right order do
sN,sL := Euler Tour (w, left + sumLeaves)
sumLeaves := sumLeaves + sL
sumNodes := sumNodes + sN
endfor
endif
|T[v]| := sumNodes
return sumNodes, sumLeaves
End Euler Tour

Figure 4. The Euler tour algorithm for computing the vec(@iv]|, |L(T'[v]|), wherev € T

queries to the data structure(|S|), and the query time i© (log(|T|- (mazdeg)?)+7) = O(log n+7)
time, where the sum of thes over S is O(n - d? - (maxdeg)?) by Corollary 3.2. The reporting af-
relevant pairs of the formiS(u, 4, j), T'(v)) can be done symmetrically within the same (in terms pf
preprocessing and query time bounds.

Summing up, we obtain:

Theorem 4.2. For two ordered trees on at meshodes each and a non-negative intefjell d-relevant
pairs of subforests, where at least one subforest is commian be reported i (n- (mazdeg)?- (log n+
d?)) time.

5. Algorithm Fast Score

Our AlgorithmFast Scordor computing the score of an optimal alignment between tbeled, ordered
treesS and T is displayed in Figure 5. It works under the assumption thatd exists an optimal
alignment which uses at magtblank symbols, for some specified positive inteder

First, we compute ali-relevant pairs of subtrees §fandT’, and as each-relevant pair is reported,
we insert it into a balanced binary search tige Next, all d-relevant pairs of subforests in which at
least one subforest is complete are computed and insettethio balanced binary search tre@sand
Bs. According to Corollaries 3.1 and 3.2, there @@ - d* - (mazdeg)?) d-relevant pairs of subtrees or
subforests where at least one subforest is complete, sorépsocessing takes(n- (mazdeg)?- (log n+
d?) +n-d?- (mazdeg)?) -log(n-d?- (maxdeg)?)) = O(nlogn-(mazdeg)?-d?) time by Theorems 4.1

J. Jansson and A. Lingas/A Fast Algorithm for Optimal Aligmirbetween Similar Ordered Trees 115

Algorithm Fast Score
Input: Two labeled ordered treegsandT’, positive integer!.

Output: The score of an optimal alignment Sfand7' (assuming there exists an optimal alignment with at
mostd blank symbols).

Compute alli-relevant pairs of subtrees SfandT" as described in Section 4.
As eachd-relevant pair is reported, insert it into a balanced birsmagrch treds; .

Compute alli-relevant pairs of subforests SfandT of the form(S(u, 1, j), T'(v)) and(S(u), T (v, k, 1)),
and insert them into two balanced binary search tteand5;.

D(©,0):=0
for u:=1 to |S| do
Initialize D(S[u],®) andD(S(u),®) according to Lemma 2.1.1.
endfor
for v:=1 to |T| do
Initialize D(©, T[v]) andD(0O, T'(v)) according to Lemma 2.1.1.
endfor
for all d-relevant pairs of subtre¢s|u], T'[v]), determined by doing an inorder traversalff do
for i:=1 to deg(u) do
if (S(u,i,deg(u)),T(v)) isd-relevant (i.e., belongs t8,) then
Call Procedurelon S(u, i, deg(u)) andT (v).
endif
endfor
for k:=1 to deg(v) do
if (S(uw),T(v,k,deg(v))) isd-relevant (i.e., belongs t8;) then
Call Procedure’lon S(u) andT (v, k, deg(v)).
endif
endfor

ComputeD(S[u], T[v]) as in Lemma 2.1.2, only consideridgrelevant pairs of subtrees on the right
hand side of the expression.

endfor
return D(S[|S|], T[|T])

End Fast Score

Figure 5. The fast algorithm for computing the score of arinoalt alignment between two ordered trees which
uses at most blank symbols.

and 4.2. The scores for pairs containing an empty subtregbéoiest are also precomputed, which takes
O(|S| +|T]) = O(n) time.

We then modify the algorithm of Jiareg al. to only evaluate scores fdrrelevant pairs of subforests
and scores for pairs of subforests where one of the subsoiesimpty. Whenever one of the formulas
in Lemma 2.1.2 or Lemma 2.1.3 is to be applied, we test eacheofdmponents of the right hand side
which is not a pair containing an empty subtree or an emptjosest for membership i, B, or Bs.
Such a membership query tak@glog n) time. If the test is positive, we fetch the score for the argntm

116 J. Jansson and A. Lingas/ A Fast Algorithm for Optimal Aligminbetween Similar Ordered Trees

pair which should be evaluated by this time, otherwise wélsgtscore to minus infinity. We conclude
that the cost of determining the score foti-eelevant pair on the left hand side in Lemma 2.1 from the
scores ford-relevant pairs occuring on the right hand side does notezktiee cost of determining the
score for that pair based on the scores of pairs occuringeright hand side multiplied bg (logn).
Procedure ‘Ireferred to in Figure 5 is the same as Procedure 1 with suthftasi-relevance included.
Therefore, each call to ProceduretdkesO(log n - (deg(u) + deg(v)) - deg(u) - deg(v)) time. Below,
we denote the running time of one call to ProcedureylPY?.

For eachd-relevant pair of subtreesS[u], T'[v]), the algorithm testgleg(u) and thendeg(v) pairs
of subforests ford-relevance and makes at most this many calls to Proceduréléxt, it evaluates
D(S[u], T[v]) by testingdeg(u) + deg(v) pairs of subtrees and one pair of subforests on the right hand
side of the relation in Lemma 2.1.2 fdrrelevance. Thus, eachrelevant pair of subtrees contributes
O(deg(u) - (logn + PT) + deg(v) - (logn + PY) + (deg(u) + deg(v)) - logn) = O(logn - (deg(u) +
deg(v))? - deg(u) - deg(v)) to the total running time. Summing over aHlrelevant pairs of subtrees, we
see that the entire main loop takes

> O(logn - (deg(u) + deg(v))? - deg(u) - deg(v))
d-relevant pairs of
subtreeg S[u], T[v])

= O(logn - (mazdeg)?® - > deg(u))
d-relevant pairs of
subtrees S[u], T[v])

= O(logn - (mazdeg)? - 3" > deg(u))
ueS v € T and
(S[ul], T[v])
is d-relevant

= O(logn - (maxdeg)® - 3" d? - deg(u))
u€sS

= O(nlogn - (mazdeg)? - d?)

time by using Theorem 3.1 and the fact tha} deg(u) = n.
u€eS
Including the preprocessing, the algorithm’s running tig@(n log n- (mazdeg)?-d?>+n+nlogn-
(maxdeg)? - d*) = O(nlogn - (mazdeg)? - d*), which gives us the following theorem.

Theorem 5.1. If there exists an optimal alignment betwegandT which uses at most blank symbols
andd is given, we can compute its score({n logn - (mazdeg)? - d*) time.

We remark that Algorithnirast Scorecan be modified to return an optimal alignment without insfea
ing the asymptotic running time by adding a traceback stsylike for the algorithm of Jiangt al. (see
Section 2). Thus, we can construct an optimal alignment&etw andT in O(n log n- (mazdeg)? - d?)
time if there exists an optimal alignment betweeandT" which uses at most blank symbols and is
known in advance.

Also note that ifnazdeg = O(1), the running time of Algorithnirast Scordoecomes) (n log n-d?).

J. Jansson and A. Lingas/A Fast Algorithm for Optimal Aligmirbetween Similar Ordered Trees 117

6. Algorithm Unspecifiedd

Here, we extend Algorithnirast Scorefrom Section 5 to compute the score of an optimal alignment
between the two input trees even if no upper bound on the nuwflelank symbols in an optimal
alignment is given. We show that under some natural assangptin the scoring scheme, the resulting
method is faster than the algorithm of Jiaegal. for problem instances consisting of similar trees
(i.e., instances in which the score of an optimal alignmghigh). The technique we employ stems from
Section 3.3.4in [9], where it is applied to compute the sob@n optimal alignment between two strings
of equal length by using an algorithm which only evaluatesiadbof specified width around the main
diagonal of the dynamic programming matrix.

Write m = min{|S|, |T'|} andn = max{|S|,|T|}. The algorithm of Jiangt al. runs inO(m - n -
(mazdeg)?) time, regardless of the number of insertions required byptimal solution (see Section 2).
On the other hand, by Theorem 5.1, Algorithfast Scoreruns inO(nlogn - (mazdeg)? - d?) time,
whered is the maximum number of insertions allowed. Thus, AlgonitRast Scords asymptotically
faster than the algorithm of Jiarag al. if d is smalP. The drawback is that AlgorithrRast Scoreneeds
a value ofd to be specified beforehand; the running time may be much wbesethat of the algorithm
of Jianget al. if no sufficiently strong upper bound ahis knowrf. One way to overcome this difficulty
is by running AlgorithmFast Scorewith successively larger values @funtil a certain stop condition is
satisfied, as explained below.

Let M be the maximum value ¢f(s, t) over all pairs of symbolgs, ¢) belonging toX x ¥, and let
B be the maximum value qf(s, t) over all pairs(s,t) in (X x {—}) U ({—} x X), i.e., all pairs where
precisely one of andt is equal to the blank symbol. Assume thidt> 0 and B < 0.

Lemma 6.1. For any positive integed, if an alignment betwee andT" uses at leasi + 1 blank
symbols then its score is at mdgt+ 1)-B + "””%(‘HI)-M.

Proof:

Let A be an alignment betwee$i andT with at leastd + 1 blank symbols. Then the total number of
nodes inS and7" which can be paired off with each other is at m@gt+ | 7| — (d + 1). The maximum
possible score ofi is achieved when all such pairs of nodes have sddrehus, the score ofl is at
most(d + 1)-B + SHIZEED a7, 0

For any positive integed, let D, be the value returned by Algorithfrast Scoreon input(S, T, d).
AsdincreasesD, increases or remains the same while the valu@ ef1)-B + m”%d“)-M decreases
becauseB < 0 andM > 0. Thus, by gradually increasinfy D, eventually becomes larger than or equal
to(d+1)-B + mn%‘”l)-M. This yields a useful stop condition because when it ocdigsyma 6.1
ensures that all alignments containing more blank symlitals the current value af will have scores
which are lower than or equal 9, and therefore do not need to be considered.

SMore precisely, ifd = o(, /m).

®For example, just plugging in the trivial upper bouiid= |S| + |T'| < 2n does not help here.

118 J. Jansson and A. Lingas/ A Fast Algorithm for Optimal Aligminbetween Similar Ordered Trees

The algorithm is called Algorithmnspecifiedd and is listed in Figure 6. Initially, it setg to
(n —m) + 1 since all alignments betweehandT use at least — m blank symbols. It then finds the
score of an optimal alignment by doublidguntil the stop condition is satisfied.

Algorithm Unspecifiedi
Input: Two labeled ordered treesandT'.

Output: The score of an optimal alignment betwegandT'.

d=n—-—m+1
D, := Fast ScoréS, T, d)
while Dy < (d+1)-B + Wn%(dﬂ).M do

d:=d-2

D, := Fast ScoréS, T, d)
endwhile
return Dy

End Unspecified!

Figure 6. An algorithm for computing the score of an optiméaranent between two ordered trees when no
upper bound on the number of blank symbols is provided.

We now analyze the running time of Algorithumspecifiedi. Denote the algorithm’s final value df
by d. The first call to AlgorithmFast ScorgakesO (n logn - (mazdeg)? - (n —m+1)?) time, the second
oneO(nlogn - (mazdeg)® - (2(n — m + 1))?) time, etc., and the last or@(n logn - (mazdeg)? - d?)
time. Since

24 (20)2 + (A0) 4+ (822 4+ = 22 Y (2)2 = 2T
=0

the running time i€)(nlogn - (mazdeg)? - (d*> — (n — m + 1)?)).

We then proceed as in [9] to obtain a nontrivial upper bound amterms ofm, n, M, B, ands,
wheres is the score of an optimal alignment betwegand7'. When the algorithm stops, there are two
possibilities:

If D= D, thens = D;,,. The i lityD q41).5 4+ ™G (g h

. i=Dj,thens = D;,. TheinequalityD;, < (5 +1)-B + ——*—M (due to the

df2
. s ~ 2A(m4n)M—4
algorithm not finishing in the previous iteration) then ifeglthatd < 2mtmM—ts _ o

o If D; > Dd~/2 then any optimal alignment contains g blank symbols so that by Lemma 6.1,

m—l—n—(g—i—l)

s < (241)-B + . 2AmAn)M—ds _ o

-M. Rearranging gives ug < 2™

Thus, in both cases we have the upper bound

- (m+n)M —2s
p(mamito) 0

J. Jansson and A. Lingas/A Fast Algorithm for Optimal Aligmirbetween Similar Ordered Trees 119

The score of an optimal alignment betwegrandT is at mostm - M. Therefore,s < ’"T*"-M.
By inequality (1), if the score of an optimal alignment beénes and7" is high (so thats is close to
mT*”-M) thend is small. Assuming thad/ — 2B is a constant, we can express the running time of
Algorithm Unspecified] as follows.

Theorem 6.1. If M — 2B is a constant an® < 0, M > 0 then AlgorithmUnspecifiedd computes
the score of an optimal alignment betwegrandT" in O(nlogn - (mazdeg)?® - f?) time, wheref =

m;" -M — s ands is the score of an optimal alignment betweeandT.

We also note the following:

Corollary 6.1. If there exist constanta, (3, and+y such thate > 0, 8 < 0, v < « and for every
z,y € ¥ with z # y it holds thatu(z,z) = «, pu(z,—) = p(—,z) = B, andu(z,y) = v, and if
there exists an optimal alignment betwegrand7" with b blank symbols and)(b) node pairs of the
form (x,y) with z # v, then AlgorithmUnspecified! runs inO(nlogn - (maxdeg)? - b%) time.

Proof:
Writes = b-8 + q-v + m*”%b_?q -, whereg is the number of node paifs;, y) with z # y and

#,y € ¥. Combining this with inequality (1) yieldd < 2 (% _ 1). Now, ¢ = O(b)

a—

implies thatd = O(b). O

In particular, ifmazdeg = O(1) then the running times given in Theorem 6.1 and Corollary 6.1
reduce taD(nlogn - f2) andO(nlogn - b?), respectively.

Finally, as mentioned at the end of Section 5, it is possiblenbdify Algorithm Fast Score(and
hence also Algorithnnspecifiedd) to return an optimal alignment by performing a tracebactwib
increase in the asymptotic running time.

7. Final remarks

An optimal alignment between two strings whose score is atmhapart from that of a perfect align-
ment between the first string and its copy can be constructéd{sid) time [9]. Since a string can be
interpreted as a line ordered tree with node labels, a dajuestion arises: is it possible to lower the
time complexity of our method, especially the exporof d?

Our method does not seem to generalize to include unorderes directly. For example, the proof
of Lemma 3.4 relies on the ordering of the trees (i.e., on ¢telq)). Itis an interesting open problem
whether a substantial speed-up in the construction of amapalignment between similar unordered
trees of bounded degree is achievable.

In the construction of thé-relevant pairs, we could use more sophisticated and mgrestically
efficient data structures for two dimensional range seancdndinteger grid [1]. However, this would not
lead to an improvement of the asymptotic total time compyead our alignment algorithm.

120 J. Jansson and A. Lingas/ A Fast Algorithm for Optimal Aligminbetween Similar Ordered Trees

References
[1] Alstrup, S., Brodal, G., Rauhe, T.: New Data Structu@sdrthogonal Range Searchirigroceedings of the
41t Annual Symposium on Foundations of Computer Sci@fo€S 2000), 2000.

[2] Gusfield, D.:Algorithms on Strings, Trees, and Sequences : Computen@&cand Computational Biology
Cambridge University Press, 1997.

[3] Jansson, J., Lingas, A.: A Fast Algorithm for Optimal gdiment between Similar Ordered Tre&pceed-
ings of the 12* Annual Symposium on Combinatorial Pattern Match{@§M 2001), 2001.

[4] Jiang, T., Wang, L., Zhang, K.: Alignment of trees — areatitive to tree edit, Theoretical Computer
Sciencel143 1995, 137-148, A preliminary version appeare®inceedings of the!5 Annual Symposium
on Combinatorial Pattern MatchinfCPM’94), pages 75—-86, 1994.

[5] Keselman, D., Amir, A.: Maximum agreement subtree in taeevolutionary trees — metrics and efficient
algorithms, Proceedings of the 35 Annual Symposium on Foundations of Computer Sci¢ROES '94),
1994,

[6] Le, S.-Y., Nussinov, R., Maizel, J.: Tree graphs of RNAmedary structures and their compariso@&m-
puters and Biomedical Resear@®, 1989, 461-473.

[7]1 Pevzner, P.Computational Molecular Biology : An Algorithmic Approgchhe MIT Press, Massachusetts,
2000.

[8] Preparata, F., Shamos, MComputational GeometnSpringer-Verlag, New York, 1985.

[9] Setubal, J., Meidanis, Jintroduction to Computational Molecular BiologyPWS Publishing Company,
Boston, 1997.

[10] Shapiro, B.: An algorithm for comparing multiple RNAamdary structuresComputer Applications in the
Biosciences4, 1988, 387-393.

[11] Tai, K.-C.: The tree-to-tree correction probledgurnal of the ACM26(3), 1979, 422-433.

[12] Tarjan, R., Vishkin, U.: An efficient parallel biconn@gty algorithm, SIAM Journal on Computind.4(4),
1985, 862-874.

[13] Waterman, M.Introduction to Computational Biology : Maps, Sequencasl @enomesChapman & Hall,
London, 1995.

[14] zhang, K., Shasha, D.: Simple fast algorithms for thitiregl distance between trees and related problems,
SIAM Journal on Computind.8(6), 1989, 1245-1262.

