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a b s t r a c t

The Robinson–Foulds distance, a widely used metric for comparing phylogenetic trees, has
recently been generalized to phylogenetic networks. Given two phylogenetic networks N1,
N2 with n leaf labels and at most m nodes and e edges each, the Robinson–Foulds distance
measures the number of clusters of descendant leaves not shared by N1 and N2. The fastest
known algorithm for computing the Robinson–Foulds distance between N1 and N2 runs in
O(me) time. In this paper, we improve the time complexity to O(ne/log n) for general phy-
logenetic networks and O(nm/log n) for general phylogenetic networks with bounded
degree (assuming the word RAM model with a word length of dlogne bits), and to optimal
O(m) time for leaf-outerplanar networks as well as optimal O(n) time for level-1 phyloge-
netic networks (that is, galled-trees). We also introduce the natural concept of the mini-
mum spread of a phylogenetic network and show how the running time of our new
algorithm depends on this parameter. As an example, we prove that the minimum spread
of a level-k network is at most k + 1, which implies that for one level-1 and one level-k phy-
logenetic network, our algorithm runs in O((k + 1)e) time.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The Robinson–Foulds distance, introduced in [24], has been the most widely used metric for almost three decades for
comparing phylogenetic trees. It measures the dissimilarity between any two given phylogenetic trees by counting the num-
ber of so-called clusters that are not shared by the two trees, where each set of leaf labels in the subtree rooted at one node
constitutes one cluster. In addition to satisfying a number of nice mathematical properties [10,24], the Robinson–Foulds dis-
tance between trees can be computed very quickly [10,22]. However, recent evidence indicates that the evolutionary history
of life (in particular, the evolutionary history of bacteria) cannot be properly represented as a phylogenetic tree [3,11,25], and
phylogenetic networks have emerged as the representation of choice for incorporating reticulate evolutionary events such as
recombination, hybridization, or lateral gene transfer in an evolutionary history [23].

Essentially, a phylogenetic network is a generalization of a phylogenetic tree in which certain internal nodes are allowed
to have more than a single parent. A straightforward extension of the definition of the Robinson–Foulds distance to
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phylogenetic networks, along with an algorithm to compute it, was given in [6]. In this paper, we develop new techniques for
computing the Robinson–Foulds distance between two input phylogenetic networks more efficiently.

1.1. Basic definitions

A phylogenetic network is a connected, rooted, simple, directed acyclic graph with two types of nodes: tree nodes (having at
most one parent) corresponding to point mutation events, and hybrid nodes (with more than one parent) corresponding to
reticulate evolutionary events. Without loss of generality, no node has both indegree 1 and outdegree 1. As in the case of
phylogenetic trees, nodes with outdegree 0 are called leaves, and we require that the leaves in a phylogenetic network
are distinctly labeled.

Let N = (V, E) be a phylogenetic network. For any nodes u, v 2 V, v is called a descendant of u if v is reachable from u in N. For
convenience, every node is considered to be a descendant of itself. For any v 2 V, define the cluster of v (denoted by C(v)) as
the set of all leaves that are descendants of v, and let the cluster collection of N be the multiset C(N) = {C(v): v 2 V}. If v is a
descendant of u with v – u then v is a proper descendant of u.

Next, the Robinson–Foulds distance dRF(N1, N2) between two phylogenetic networks N1, N2 is defined as the cardinality of
the symmetric difference between their two cluster collections, divided by two:
dRFðN1;N2Þ ¼
jCðN1Þ n CðN2Þj þ jCðN2Þ n CðN1Þj

2

The value of dRF(N1, N2) depends on the number of clusters present in one of the two networks but not in the other. Thus, dRF

measures the dissimilarity between N1 and N2. Note that the above definition generalizes the Robinson–Foulds distance be-
tween rooted phylogenetic trees from [24].

Example 1. The phylogenetic network in Fig. 1 has the following cluster collection, where trivial clusters (for the leaves) are
omitted:
Cðv1Þ ¼ fv2;v10; v12; v14;v18;v20;v22; v23;v25;v26;v27; v28; v33;v34;v36;v37; v42; v43;v45;v46;v47g
Cðv3Þ ¼ fv10;v12;v14; v18; v20;v22;v23;v25; v26; v27;v28;v33;v34; v36;v37;v42;v43;v45; v46;v47g
Cðv4Þ ¼ fv10;v12;v20; v22; v23;v27;v28;v33; v34; v36;v37;v42;v43; v45;v46;v47g
Cðv5Þ ¼ fv14;v18;v25; v26; v33;v34;v36;v37; v42; v43;v45;v46;v47g
Cðv6Þ ¼ fv10;v20;v27; v28; v34;v42;v43;v45; v46; v47g
Cðv7Þ ¼ fv12;v22;v23; v33; v34;v36;v37;v42; v43; v45;v46;v47g
Cðv8Þ ¼ fv14;v18;v25; v26g
Cðv9Þ ¼ fv20;v27;v28; v34; v42;v43;v45;v46; v47g
Cðv11Þ ¼ fv22;v23;v33;v34;v36; v37;v42;v43;v45; v46; v47g
Cðv13Þ ¼ fv18;v25;v26g
Cðv15Þ ¼ fv20;v27;v28g
Cðv16Þ ¼ fv22;v23g
Cðv17Þ ¼ Cðv24Þ ¼ fv33;v34;v36;v37;v42; v43;v45;v46;v47g
Cðv19Þ ¼ fv25;v26g
Cðv21Þ ¼ fv27;v28g
Cðv29Þ ¼ Cðv31Þ ¼ fv34;v42;v43;v45;v46; v47g
Cðv30Þ ¼ fv33;v36;v37g
Cðv32Þ ¼ fv36;v37g
Cðv35Þ ¼ Cðv38Þ ¼ fv42;v43;v45;v46;v47g
Cðv39Þ ¼ fv42;v45g
Cðv40Þ ¼ fv43;v46;v47g
Cðv41Þ ¼ fv45g
Cðv44Þ ¼ fv46;v47g
1.2. Previous Work

According to the definitions above, the Robinson–Foulds distance can be computed easily if the cluster collections of the
two networks are known; see Section 5 for details. Fast methods exist for computing the cluster collection of a phylogenetic
tree; for example, a classic algorithm by Day [10] computes C(T) for any tree T containing n leaves in O(n) time using O(nlogn)
bits space. On the other hand, the only known method for computing the cluster collection of a phylogenetic network with n
leaves, m nodes, and e edges is a simple algorithm by Cardona et al. [6] that performs a breadth-first search from each node v
to find its cluster C(v), using a total of O(me) time and O(nm) bits space.



Fig. 1. (Left) An example of a phylogenetic network, adapted from [32]. This is the smallest level-2 phylogenetic network consistent with 1,330 rooted
triplets constructed from 21 different isolates of the yeast Cryptococcus gattii. (Right) Non-trivial biconnected components.
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Two generalizations of the Robinson–Foulds distance between phylogenetic networks are known. In the tripartitions dis-
tance, introduced by Moret et al. [19] and subsequently improved by Nguyen et al. [20], the descendant leaves of each node
in a phylogenetic network are further divided into strict and non-strict descendants. In the path-multiplicity distance (l-dis-
tance), introduced by Cardona et al. [7] and also studied in [5,6], the descendant leaves of each node are instead represented
by the number of paths from the node to each of the leaves. As a result, both the tripartitions distance and the l-distance
allow for finer distinctions than the Robinson–Foulds distance [6].

1.3. New results

We present an improved algorithm for computing the Robinson–Foulds distance between two input phylogenetic net-
works. For general phylogenetic networks, we first reduce the time complexity of the algorithm of Cardona et al. [6] by fol-
lowing a bottom-up approach similar in spirit to the algorithm proposed in [7] for computing the path-multiplicity
representation of a phylogenetic network. Next, by using a compressed representation of the characteristic vectors, we ob-
tain an algorithm for computing the Robinson–Foulds distance between two phylogenetic networks with at most n leaves, m
nodes, and e edges each, in O(ne/log n) time and O(nm/log n) words, assuming the word RAM model1 with a word length of
dlog ne bits; see [15]. For phylogenetic networks of bounded degree, this reduces to O(nm/log n) time.

In the case of level-k phylogenetic networks (see Section 4.2 for a definition), we further improve the time complexity by
using a representation of each cluster of descendant leaves as an interval of consecutive integers, which allows us to com-
pute the Robinson–Foulds distance between a level-1 and a level-k phylogenetic network in O((k + 1)e) time. For this pur-
pose, we introduce a new parameter that we call the minimum spread of a phylogenetic network, and prove that every
level-k network has minimum spread at most k + 1. For special cases of bounded-level phylogenetic networks such as
leaf-outerplanar phylogenetic networks and galled-trees [13,14], we show that the minimum spread is 1, which means that
our algorithm can be implemented to run in optimal O(e) time.

1.4. Organization of the paper

The first part of the paper (Sections 2–4) describes different ways to represent the cluster collection C(N) of a given
phylogenetic network N. To be more precise, Section 2 explains the naive cluster representation and how to speed up the
algorithm of Cardona et al. [6]. Section 3 studies the cluster representation by characteristic vectors. Section 4 considers the
cluster representation by interval lists and defines the minimum spread of a phylogenetic network. Sections 4.1 and 4.2
1 In this paper, we adopt the standard word RAM model; in this model, the number of operations is proportional to the running time. Hence, arguments are
simplified in this model.
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investigate efficient ways to represent C(N) when N is a leaf-outerplanar or a level-k phylogenetic network by deriving upper
bounds on the minimum spread for these types of networks.

Next, Section 5 presents an algorithm (Algorithm 3) for computing the Robinson–Foulds distance that takes advantage of
our compact cluster representations. In Section 6, empirical results are shown that confirm the theoretical analysis of the
algorithm under the different cluster representations. Finally, some open problems are discussed in Section 7.

2. Naive cluster representation

Let N = (V, E) be a given phylogenetic network with n leaves, m nodes, and e edges. Recall that for any v 2 V, the cluster of v
(denoted by C(v)) is the set of all leaf descendants of v, and the cluster collection of N (denoted by C(N)) is the multiset of all
clusters in N.

The naive cluster representation of N stores the multiset C(N) explicitly, listing every element in every set C(v) belonging to
C(N). Cardona et al. [6] described an algorithm for constructing the naive cluster representation of N by doing a breadth-first
search from each node in turn to find its set of descendant leaves. Since each of the m breadth-first searches takes O(e) time,
the method runs in O(me) time and O(nm) space.

We first observe that the time complexity can be reduced by replacing the m top-down searches by n bottom-up searches.
This leads to a significant improvement in many cases because the value of m can be arbitrarily large for a phylogenetic net-
work with n leaves.2 The following lemma is the basis of such an improvement.

Lemma 1. Let v 2 V be a node of a phylogenetic network N = (V, E). Then, C(v) = {v} if v is a leaf, and C(v) = C(v1) [ � � � [ C(vk) if v is
an internal node with children {v1, . . . , vk}.
Algorithm 1. Compute the naive cluster representation C of a phylogenetic network N

procedure naive_cluster_representation (N, C)
for each node v of N do

if v is a leaf then
C(v) {label(v)}
enqueue(Q, v)

else
C(v) ;

while Q is not empty do
v dequeue(Q)
mark node v as visited
for each parent u of node v do

C(u) C(u) [ C(v)
if all children of u are visited then

enqueue(Q, u)
Proof. Trivially, the only descendant of a leaf in N is the leaf itself. For any internal node v and any leaf ‘in N, if ‘is a descen-
dant of some child of v then ‘must be a descendant of v as well; conversely, if ‘is a descendant of v then there exists a path in
N from v to ‘, and such a path must pass through at least one child of v. h

Lemma 1 suggests a standard bottom-up traversal for computing the naive cluster representation of N in polynomial time.
The pseudocode is listed in Algorithm 1. The algorithm computes all clusters in N during a single bottom-up traversal of N
with the help of a queue Q that stores nodes temporarily. Initially, Q contains all leaves of N. The main loop dequeues the
node v currently first in Q and copies the elements in C(v) to the (initially empty) set C(u) for every parent u of v. The last
if–then-statement guarantees that for any internal node u, the leaf descendants of all children of u have always been in-
cluded in C(u) before u is enqueued, so that the correct value of C(u) is passed on upwards towards the root.

Theorem 1. Let N be a phylogenetic network with n leaves, m nodes, and e edges. The naive cluster representation of N can be
computed in O(ne) time using O(nm) bits.
Proof. Every node is enqueued and dequeued only once, and every parent of each dequeued node v is visited only once from
v. The union operation of two subsets of an n-element set, which takes O(n) time, is performed O(e) times. h
2 Even in the special case of a tree-child time-consistent phylogenetic network (see Section 7 for the definition), although it holds that m 6 (n + 4)(n � 1)/2,
this bound is tight [6, Proposition 1].
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3. Cluster representation by characteristic vectors

The cluster collection of a network can be represented by bit vectors called characteristic vectors, formally defined as follows.
Let N = (V, E) be a phylogenetic network with n leaves. A leaf numbering function is a bijection from the set of leaf labels in

N to the set {1, 2, . . . , n}. For any leaf numbering function f and node v 2 V, the characteristic vector for v under f, denoted by
Cf[v], is a bit vector of length n such that for any i 2 {1, 2, . . . , n}, the ith bit equals 1 if and only if the leaf labeled by f�1(i) is a
descendant of v in N. Observe that Cf[r] = 111 . . . 1 for the root r of N, and Cf[‘] contains exactly one 1 for any leaf ‘of N.

Example 2. Consider the phylogenetic network in Fig. 1. Number the leaves according to the circular ordering v2, v20, v27, v28,
v34, v45, v42, v43, v46, v47, v10, v22, v23, v36, v37, v33, v12, v18, v25, v26, v14 along the outer face. This corresponds to a depth-first
search of the directed spanning tree obtained by removing one incoming edge (shown dotted in Fig. 1) for each node of
indegree 2 in the network, and it yields the characteristic vectors listed in Table 1.

Obviously, given any leaf numbering function f, the cluster representation of N by characteristic vectors under f can be
stored explicitly using a total of m � n bits. Furthermore, it can be constructed in O(ne) time by an algorithm analogous to
Algorithm 1, implementing the set union operation for two clusters by taking the bitwise OR of their two bit vectors. Our
next goal is to find more compact ways of storing the characteristic vectors as well as faster ways of computing them.
We first consider arbitrary leaf numbering functions for general phylogenetic networks in Section 3.1 and then focus on
some important special classes of phylogenetic networks in Section 4.

3.1. Cluster representation by compressed characteristic vectors

This subsection shows that if one assumes the word RAM model with a word length of x = dlog ne bits [15] then the time
complexity of Algorithm 1 can be improved by a log n-factor, giving the cluster representation of N by compressed characteristic
vectors.

The modified version of Algorithm 1 is presented in Algorithm 2. The overall structure of the algorithm is the same as
before. The new idea is to fix an arbitrary leaf numbering function f for the given phylogenetic network N, employ a char-
acteristic vector of length n to encode each cluster under f, and exploit the word-level parallelism of bitwise OR operations
in the word RAM model to compute all clusters quickly.

We now describe the details of Algorithm 2. In the pseudocode, xjy denotes the bitwise OR of two words x and y, and x� t
denotes the bitwise shift of a word x to the left by t positions. Define k ¼ 2n

x

� �
. Divide each characteristic vector Cf[v] into k

parts, each of size at most dx/2e bits, and store the parts in the first dx/2e bits of k words W1[v], . . . , Wk[v]. Then, every set
union operation on two clusters may be implemented by k bitwise OR operations on words. For added efficiency, also apply
preprocessing to compute and store the outcome of the bitwise OR operation between every possible pair of bit vectors of
Table 1
Characteristic vector representation of the clusters for the phylogenetic network in Fig. 1.

Node Characteristic vector of the cluster

v2 v20 v27 v28 v34 v45 v42 v43 v46 v47 v10 v22 v23 v36 v37 v33 v12 v18 v25 v26 v14

v21 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v15 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v41 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v39 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v44 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
v40 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
v38 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
v35 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
v31 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
v29 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
v9 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
v6 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
v16 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
v32 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
v30 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
v24 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0
v17 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0
v11 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0
v7 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0
v4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
v19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
v13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
v8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
v5 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1
v3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
v1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



Table 2
Compressed characteristic vectors of the phylogenetic network in Fig. 1.

Node v2 v20 v27 v28 v34 v45 v42 v43 v46 v47 v10 v22 v23 v36 v37 v33 v12 v18 v25 v26 v14

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
2ðx�1Þ

x

j k
þ 1 1 1 1 2 2 3 3 3 4 4 5 5 5 6 6 7 7 7 8 8 9
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length dx/2e in a table named OR. (The reason why we do not utilize all x bits of the words for storing characteristic vectors
is to prevent the number of entries in the resulting OR-table from becoming too large.)

In the initialization stage, immediately before enqueueing a leaf v, exactly one bit in the k words W1[v], . . . , Wk[v] (the bit
that represents v) will be set to 1 by bit shifting. Which word Wi[v] to apply the bit shift to is determined in accordance with
the formula in Lemma 2 below. After Algorithm 2 is finished, the characteristic vector Cf[v] for each node v in N is stored in
the k words W1[v], . . . , Wk[v].

Lemma 2. Let C be a bit vector of length n that has been divided into k ¼ 2n
x
� �

parts W1, W2, . . . , Wk in such a way that the sum of
the lengths of any two consecutive parts Wj and Wj+1 equals x and for each j 2 {1, 2, . . . , bk/2c}, the length of W2j is less than or

equal to the length of W2j � 1. Then, for x 2 {1, 2, . . . , n}, position x of C belongs to the part Wi, where i ¼ ðx�1Þ�2
x

j k
þ 1.
Example 3. To obtain the compressed characteristic vectors of the phylogenetic network in Fig. 1 under the leaf numbering
function f given by the circular ordering of the leaves from Table 1, first divide each characteristic vector of length n = 21 into
k = d2n/xe = 9 parts according to Lemma 2, where x = dlog ne = 5; see Table 2. Then, for each node, 9 words are used to store
the 9 parts of its characteristic vector. For example, the characteristic vector of node v7 is 000 01 111 11 011 11 110 00 0, and
its compressed characteristic vector is then 017333600. Consider also leaf v22. It is the 12th leaf in the circular ordering (that is,
f(v22) = 12). According to Lemma 2, the bit representing v22 will be packed into the same word as the bits that represent leaves
v10 and v23.

This yields:

Theorem 2. Let N be a phylogenetic network with n leaves, m nodes, and e edges. Assuming the word RAM model with a word
length of x = dlog ne bits, the cluster representation of N by compressed characteristic vectors can be computed in O(ne/log n) time
using O(nm/log n) words.
Proof. The OR-table may be precomputed in O(n) time and stored in O(n) words since it contains 2dx=2e � 2dx=2e ¼
Oð

ffiffiffi
n
p
�
ffiffiffi
n
p
Þ ¼ OðnÞ entries. After the preprocessing, every node is enqueued and dequeued only once, and every parent of

each dequeued node v is visited only once from v, as in the proof of Theorem 1. Each one of the O(e) set union operations
is implemented by k ¼ 2n

x

� �
¼ Oðn= log nÞ bitwise OR operations, each of which takes O(1) time to perform by a look-up in

the OR-table, and therefore takes O(n/log n) time. The total running time is O(n + ek) = O(ne/log n). The resulting cluster rep-
resentation is stored as a compact table with m rows and O(n/log n) columns using O(nm/log n) words. h

Notice that the OR-table is precomputed only up to the maximum number of leaves that will fit in a given

Algorithm 2. Compute the cluster representation C by compressed characteristic vectors of a phylogenetic network N

procedure compressed_cluster_representation (N, C)
n number of leaves of N
x dlog ne
k 2n

x
� �

for x 0; . . . ; x
2

� �
� 1 do

for y 0; . . . ; x
2

� �
� 1 do

OR[x, y] xjy
for each node v of N do

W1[v], . . . , Wk[v] 0
if v is a leaf then

i ðf ðvÞ�1Þ�2
x

j k
þ 1

Wi½v �  1� x�i
2

� �
� f ðvÞ

enqueue(Q, v)
while Q is not empty do
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v dequeue(Q)
mark node v as visited
for each parent u of node v do

for i 1, . . . , k do
Wi[u] OR[Wi[u], Wi[v]]

if all children of u are visited then
enqueue(Q, u)

for each node v of N do
C[v] W1[v], . . . , Wk[v]

word. For further details about word-level parallelism and the word RAM model, see [15].
4. Cluster representation by interval lists

Given a phylogenetic network N = (V, E) with n leaves, m nodes, and e edges, and a fixed leaf numbering function f, the
cluster of any v 2 V can be expressed as the union of a number of intervals on {1, 2, . . . , n}. Storing the starting and ending
points of these intervals in sorted order for every node in N yields the cluster representation of N by interval lists. Below, we
consider restricted types of phylogenetic networks that admit ‘‘good’’ leaf numbering functions, in the sense that any result-
ing cluster contains a small number of intervals. Before investigating suitable leaf numbering functions, we first introduce a
few additional definitions.

A maximal consecutive sequence of 1’s in a bit vector is called an interval. For a given leaf numbering function f and node
v 2 V, let If(v) denote the number of intervals in Cf[v] and let the spread of f be If = maxv2VIf(v). The minimum spread of N is the
minimum value of If, taken over all possible leaf numbering functions f.

Intuitively, if the spread of f is small then using interval lists provides an efficient representation of the cluster collection
of N. More precisely:

Lemma 3. Given any leaf numbering function f, the total space needed to store all characteristic vectors under f using the interval
list representation is O(Ifm log n) bits.
Proof. The starting and ending positions of any interval can be stored in d2log ne bits. There are m nodes and each one has at
most If intervals, so the total space needed is O(Ifm log n) bits. h
Lemma 4. Given any leaf numbering function f, the interval lists for all clusters in N can be computed in O(If � e) time.
Proof. Apply the bottom-up technique from Algorithm 1. To implement the set union operation C(u) [ C(v), use O(If) time to
scan the two sorted interval lists for Cf[u] and Cf[v] while merging any intervals that overlap or are immediate neighbors. h

Next, we derive upper bounds on the minimum spread of two special classes of phylogenetic networks called leaf-outer-
planar phylogenetic networks and level-k phylogenetic networks, where k is a non-negative integer. From here on, we only con-
sider phylogenetic networks in which each node has either at most one parent (tree node) or exactly two parents (hybrid
node).

4.1. Leaf-outerplanar phylogenetic networks

For any phylogenetic network N, let UðNÞ be the undirected graph obtained by replacing every directed edge in N by an
undirected edge. A phylogenetic network N is called leaf-outerplanar if UðNÞ admits a non-crossing layout in the plane with
the root and all leaves lying on the outer face. See Fig. 2 for an illustration.

Leaf-outerplanar phylogenetic networks form an important class because they are output by certain popular phylogenetic
network construction methods such as Neighbor-Net [4] and QNet [12], and are often used to visualize a set of conflicting
phylogenetic trees in a single diagram.

Euler’s formula gives the relation e = O(m) for any leaf-outerplanar phylogenetic network. We immediately have:

Lemma 5. If N is a leaf-outerplanar phylogenetic network then a leaf numbering function f with If = 1 exists and can be computed
in O(m) time.
Proof. Join the root r and all leaves in N to a new vertex, and call the modified graph N0. Run the linear-time planar embed-
ding algorithm of Chiba et al. [8,21] to construct some planar embedding of N0. This gives a leaf-outerplanar embedding for
the original N where r and the leaves of N lie on the outer face. Starting at r, traverse the boundary of the outer face in one
direction while letting f assign 1, 2, . . . , n to the leaves of N consecutively in the order that they are visited.



Fig. 2. Two phylogenetic networks. The one on the left is leaf-outerplanar but the one on the right is not.
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Consider any node v in N. There are two cases:

� v is a leaf: Trivially, Cf[v] has a single interval.
� v is an internal node: Suppose u, w are children of v such that C(u) = {g, . . . , h}, C(w) = {k, . . . , ‘}, and i, . . . , j R C(v), but

f(g) 6 f(h) < f(i) 6 f(j) < f(k) 6 f(‘). A path from the root to a leaf in {i, . . . , j} may not pass through v; hence it crosses either
the path from v to h or the path from v to k, as shown in Fig. 3. Contradiction.

Therefore, Cf[v] has a single interval for every node v in N, and so If = 1.
The time complexity to compute f is O(e) = O(m). h

Lemma 5 together with Lemmas 3 and 4 yields:

Theorem 3. If N is a leaf-outerplanar phylogenetic network with n leaves, m nodes, and e edges, then the cluster representation of
N by interval lists can be computed in O(m) time using O(m log n) bits.
4.2. Level-k phylogenetic networks

As in the previous subsection, let UðNÞ for any phylogenetic network N denote the undirected graph obtained by replacing
every directed edge in N by an undirected edge. A biconnected component of an undirected graph is a connected subgraph that
remains connected after removing any single node and all edges incident to it. For any non-negative integer k, N is a level-k
phylogenetic network if, for every biconnected component B in UðNÞ, the subgraph of N induced by the set of nodes in B con-
tains at most k hybrid nodes. For example, the network in Fig. 1 is a level-2 network: the biconnected component shown at
the bottom right has one hybrid node, and the one shown at the top right has two hybrid nodes.

Choy et al. [9] introduced the level of a phylogenetic network as a parameter that indicates how tree-like the given net-
work is; the class of level-0 networks equals the class of phylogenetic trees, the class of level-1 networks corresponds to the
class of networks in which all underlying cycles are disjoint,3 the class of level-2 networks contains even more complex net-
works, etc. It is a useful parameter because several computational problems that are NP-hard for general phylogenetic networks
can be solved in polynomial time when the level is bounded [9,16,32,33], and moreover, it is easy to compute the level of any
given network.4

Lemma 6. If N is a level-k phylogenetic network then a leaf numbering function f with If 6 k + 1 exists and can be computed in
O(e) time.
Proof. Fix any directed spanning tree T of N. Let f be the leaf numbering function obtained by doing a depth-first search of T
starting at the root and assigning the numbers 1, 2, . . . , n to the leaves in the order that they are first visited. Clearly, this
takes O(e) time.

We now prove that f has spread k + 1. For every node v in N, define L(T[v]) as the set of all leaves in the subtree of T rooted
at v. The key observation is that the leaves in L(T[v]) must be visited consecutively by any depth-first search of T, and thus
form a single interval in Cf[v]. Next, consider any node u in N and let H be the set of hybrid nodes in N that belong to the same
biconnected component as u and which are proper descendants of u (the set H may be empty). Then, the set L(N[u]) of leaves
that are descendants of u in N can be written as:
3 Thi
4 In c
s particular type of phylogenetic network was first studied by Wang et al. in [34] and later termed galled-tree by Gusfield et al. [13,14].
ontrast, other parameters such as the treewidth that also measure the tree-likeness of a given (undirected) graph are NP-hard to compute [1].



Fig. 3. Illustrating the proof of Lemma 5.
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LðN½u�Þ ¼ LðT½u�Þ [
[
h2H

LðT½h�Þ
Since N is a level-k phylogenetic network, we have jHj 6 k, which together with the key observation above implies that Cf[u]
is the union of at most k + 1 intervals. It follows that If(u) 6 k + 1 for every node u in N. Hence, the spread of f is
If = maxu2VIf(u) 6 k + 1, where V is the set of nodes in N. h

The leaf relabeling scheme invented by Day [10] for phylogenetic trees corresponds to the special case k = 0 in Lemma 6
above. Here, If = 1, so the set of leaves in the subtree rooted at any node of N is represented by a single interval, and e = O(n).

Example 4. Consider again the phylogenetic network in Fig. 1. The leaf numbering in Example 2 gives the interval lists listed
in Table 3. The network is level-2 and its spread corresponds to the 3 disjoint intervals (v34, v47), (v36, v33), (v18, v14) of node
v5.

For level-1 networks (that is, galled-trees in the terminology of [13,14]), we can obtain a tighter upper bound on the min-
imum spread than the one implied by Lemma 6 as follows:

Lemma 7. If N is a level-1 phylogenetic network then N is leaf-outerplanar.
Proof. N can be embedded in the plane as follows. Let N0 be the graph obtained by, for each biconnected component Ci in
UðNÞ, contracting all nodes and edges in N that belong to Ci into a single node ci. Then N0 is a tree and we may draw N0 in
the plane. By the definition of a level-1 network, each biconnected component of UðNÞ forms a cycle. Reconstruct N from
N0 by replacing every node ci by a cycle consisting of the nodes and edges that were contracted in the original N to obtain
ci, while making sure that nothing ends up inside of the cycle. Now, if we consider a large circle enclosing the drawn N, it
is clear that every node of N can be reached from the circle without having to cross any edges of N, so the root of N and
all leaves of N may be moved to lie on this circle, that is, N is leaf-outerplanar. h

Lemma 7 and Euler’s formula imply that e = O(m) for any level-1 phylogenetic network. Also, Lemma 3 in [9] states that
for any level-1 phylogenetic network, the total number of nodes m is O(n), so in this case, e = O(n) as well as m = O(n).

Corollary 1. If N is a level-1 phylogenetic network then a leaf numbering function f with If = 1 exists and can be computed in O(n)
time.
Proof. Combine Lemmas 5 and 7 to get a leaf numbering function f with If = 1 in O(m) = O(n) time. h

In summary, we have:



Table 3
Interval list representation of the clusters for the phylogenetic network in Fig. 1.

Node Interval list Node Interval list Node Interval list

v21 (v27, v28) v29 (v34, v47) v7 (v34, v47), (v22, v12)
v15 (v20, v28) v9 (v20, v47) v4 (v20, v12)
v41 (v45, v45) v6 (v20, v10) v19 (v25, v26)
v39 (v45, v42) v16 (v22, v23) v13 (v18, v26)
v44 (v46, v47) v32 (v36, v37) v8 (v18, v14)
v40 (v43, v47) v30 (v36, v33) v5 (v34, v47), (v36, v33), (v18, v14)
v38 (v45, v47) v24 (v34, v47), (v36, v33) v3 (v20, v14)
v35 (v45, v47) v17 (v34, v47), (v36, v33) v1 (v2, v14)
v31 (v34, v47) v11 (v34, v47), (v22, v33)
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Theorem 4. If N is a level-k phylogenetic network with n leaves, m nodes, and e edges, then the cluster representation of N by
interval lists can be computed in O((k + 1)e) time using O((k + 1)m log n) bits. In particular, if N is a level-1 phylogenetic network
then its cluster representation by interval lists can be computed in O(n) time and O(n log n) bits.
Proof. Apply both of Lemmas 3 and 4 to Lemma 6 and Corollary 1, respectively. For the special case of level-1 networks, the
complexity becomes O(e) = O(n) time and O(m logn) = O(nlogn) bits. h
5. Computing the Robinson–Foulds distance

We now present the main algorithm of this paper, Algorithm 3, for computing the Robinson–Foulds distance between two
input phylogenetic networks N1, N2.

The algorithm first constructs the cluster collections C1 = C(N1) and C2 = C(N2). Next, the cardinality of the symmetric dif-
ference of C1 and C2 is obtained by radix sorting and then traversing them while using a variable c to count how many ele-
ments in C1 and C2 are the same. Finally, the algorithm outputs the Robinson–Foulds distance between N1 and N2. See [30,31]
for further details on simultaneous traversal algorithms on graphs.

The complexity of Algorithm 3 depends on how the cluster collections of N1 and N2 are represented, as we demonstrate in
Theorem 5 and Corollary 2 below. For i 2 {1, 2}, let mi and ei denote the number of nodes and edges of Ni, respectively. Also,
let L be the union of the leaf label sets of N1 and N2, and define n = jLj, m = max{m1, m2}, and e = max{e1, e2}.

In the case of general phylogenetic networks, we use the naive cluster representation from Section 2 or the cluster repre-
sentation by compressed characteristic vectors from Section 3.1 to implement Algorithm 3. The resulting complexities are gi-
ven by:

Theorem 5. Let N1, N2 be two phylogenetic networks with n leaf labels and at most m nodes and e edges each. The Robinson–
Foulds distance between N1 and N2 can be computed in:
Algorithm 3. Compute the Robinson–Foulds distance between two phylogenetic networks N1, N2

function robinson_foulds_distance (N1, N2)
C1 cluster_collection(N1)
C2 cluster_collection(N2)
radix sort C1; radix sort C2

m1, m2 number of nodes of N1, N2

i1 1
i2 1
c 0
while i1 6m1 and i2 6m2 do

if C1[i1] < C2[i2] then
i1 i1 + 1

else if C1[i1] > C2[i2] then
i2 i2 + 1

else
i1 i1 + 1
i2 i2 + 1
c c + 1

return (m1 + m2 � 2 � c)/2



1. O(n e) time using O(nm) bits.

2. O(nm) time using O(nm) bits, if N1 and N2 have bounded degree.
3. O(ne/log n) time using O(nm/log n) words, assuming the word RAM model with a word length of dlog ne bits.
4. O(nm/log n) time using O(nm/log n) words, if N1 and N2 have bounded degree, assuming the word RAM model with a word

length of dlog ne bits.

Proof. Run Algorithm 3, where the first two steps (constructing the cluster collections C1 and C2) are implemented as fol-
lows. To obtain the first two results, apply Theorem 1 to find the naive cluster representations for C1 and C2. For the last
two results, take any leaf numbering function f for N1 and N2 and then apply Theorem 2 to obtain the cluster representations
by compressed characteristic vectors under f.

The complexity to compute C1 and C2 depends on Theorems 1 and 2. The radix sort step and remaining operations can be
performed in O(m x) time, where x denotes the amount of space needed to represent one cluster, that is, x = O(n) bits and
x = O(n/log n) words, respectively. For phylogenetic networks with bounded degree, e = O(m). h

Next, we analyze the complexity when the cluster representation by interval lists from Section 4 is employed. The difficulty
here is that N1 might have an efficient leaf numbering function f1 (that is, with a small spread) and N2 an efficient leaf num-
bering function f2, while f1 and f2 are completely different. In this case, we need some way to convert between intervals un-
der f1 and intervals under f2 in order to identify clusters that are shared among N1 and N2. The proof of the next theorem
shows how to do this quickly when at least one of f1 and f2 has spread 1:

Theorem 6. Let N1 and N2 be two phylogenetic networks with n leaf labels and at most m nodes and e edges each. Given a leaf
numbering function f1 for N1 and a leaf numbering function f2 for N2 such that If1

¼ 1, the Robinson–Foulds distance between N1

and N2 can be computed in OðIf2
� eÞ time using OðIf2

�m log nÞ bits.
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Proof. Implement the first two steps of Algorithm 3 (constructing the cluster collections C1 and C2) as follows:

� Apply Lemmas 3 and 4 to obtain the interval lists for all clusters in N1 under f1 and all clusters in N2 under f2 using
OðIf2 �m log nÞ bits and OðIf2 � eÞ time. By definition, every cluster in N1 consists of a single interval and every cluster in
N2 consists of at most f2 intervals. Let C1 be the multiset of all intervals in N1.
� Construct the multiset C2 of all clusters in N2 that form single intervals under f1 by modifying a technique from [10], as

described next.5 For each node v in N2, let nr_desc(v) denote the number of leaf descendants of v; compute nr_desc(v) in OðIf2 Þ
time for each node v in N2 simply by summing up the number of elements in its at most If2 intervals. Then, relabel the leaves
in N2 by the leaf numbering function f1. For each node v in N2, define min(v) and max(v) as the leaf descendant of v with the
smallest and largest number according to f1. Do a bottom-up traversal of N2 in O(e) time to find min(v) and max(v) for every
node v in N2. Observe that for any node v in N2, if the condition nr_desc(v) = max(v) �min(v) + 1 holds then the set of leaf
descendants of v forms a consecutive interval according to f1 and hence might be a shared cluster between the two networks.
Therefore, to construct C2, initialize C2 = ; and then, for every node v in N2, if nr_desc(v) = max(v) �min(v) + 1 then insert the
interval [min(v),max(v)] into C2. Importantly, the multiset C2 might not contain all clusters of N2, but will definitely contain
those clusters of N2 that are also clusters of N1.

After constructing C1 and C2, count the number of identical clusters in C1 and C2 and compute the Robinson–Foulds
distance as specified in Algorithm 3. h

Theorem 6 plus Lemmas 5 and 6, and Corollary 1 imply.

Corollary 2. Let N1 and N2 be two phylogenetic networks with n leaf labels and at most m nodes and e edges each. The Robinson–
Foulds distance between N1 and N2 can be computed in:

1. O(m) time using O(mlog n) bits, if N1 and N2 are leaf-outerplanar phylogenetic networks.
2. O((k + 1)e) time using O((k + 1)m logn) bits, if N1 is a phylogenetic tree or a level-1 phylogenetic network (that is, a galled-tree)

and N2 is a level-k phylogenetic network.
3. O(n) time using O(nlog n) bits, if N1 and N2 are phylogenetic trees or level-1 phylogenetic networks (that is, galled-trees).

For leaf-outerplanar phylogenetic networks, the running time in Corollary 2 is O(e) = O(m), which is optimal. For cases
where N1 is a level-1 network and the level of N2 is bounded by a constant, that is, k = O(1), the running time is also (optimal)
O(e). Also note that for the special case where both of N1 and N2 are phylogenetic trees, e = O(n) holds; then the complexity of
our algorithm becomes (optimal) O(n) time and O(nlogn) bits, and this is the same complexity as that of Day’s algorithm for
computing dRF between two phylogenetic trees [10].
5 In [10], this technique was used to identify clusters shared by two phylogenetic trees.
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6. Empirical results

We have implemented the three cluster representations: naive cluster representation (Algorithm 1), cluster representa-
tion by characteristic vectors (Algorithm 2), and cluster representation by interval lists, along with the Robinson–Foulds dis-
tance (Algorithm 3) and an additional algorithm for generating random phylogenetic networks with n leaves and m internal
nodes, (m � n + 1)/2 of which are hybrid. The number of leaves, tree nodes, hybrid nodes, and edges in the random phylo-
genetic networks are shown in Table 4.

Fig. 4 shows the running time of the Robinson–Foulds distance on random phylogenetic trees and networks for the dif-
ferent representations, averaged over 10 runs (naive cluster representation) or 100 runs (compressed cluster representation).
All reported values are user times in seconds on a 2.93 GHz Intel Core i7 Quad-Core processor with 16 GB of memory.

As shown in Fig. 4, there is an improvement by a logarithmic factor in the overall time taken to compute the Robinson–
Foulds distance when switching from the naive to the compressed cluster representation. Furthermore, computing the Rob-
inson–Foulds distance is faster when using interval lists instead of characteristic vectors. These empirical results confirm the
theoretical analysis done in the previous section.
Table 4
Number of leaves, tree nodes, hybrid nodes, and edges in the random phylogenetic networks used in
the experiments.

Leaves Internal nodes

Tree Hybrid Edges

100 112 13 237
200 225 26 476
300 337 38 712
400 450 51 951
500 562 63 1187
600 675 76 1426
700 787 88 1662
800 900 101 1901
900 1012 113 2137

1000 1125 126 2376
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Fig. 4. Time (in seconds) taken to compute the Robinson–Foulds distance between 50 � 50 pairs of random phylogenetic trees and networks with up to
1000 leaves, using the top-down (Cardona) and bottom-up (Naive) naive cluster representation, the compressed cluster representation by characteristic
vectors (Vector), and the compressed cluster representation by interval lists (Interval).
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7. Final remarks

We have presented a new, simple algorithm for computing the Robinson–Foulds distance between two given phyloge-
netic networks N1, N2. Our algorithm utilizes word-level parallelism and runs in O(ne/log n) time for general networks,
assuming the word RAM model with a word length of dlog ne bits. For the case of two leaf-outerplanar phylogenetic net-
works or one level-1 and one level-k phylogenetic network, we can represent clusters as intervals of consecutive integers,
and our algorithm runs in O(m) and O((k + 1)e) time, respectively. We have also introduced a new parameter, the minimum
spread of a phylogenetic network, and proved that every level-k network has minimum spread at most k + 1. For the special
case of leaf-outerplanar phylogenetic networks, which includes the class of galled-trees, we have shown that the minimum
spread is 1, meaning that our new algorithm can be implemented to run in optimal O(e) time.

We conclude this paper with some open problems:

� Our algorithm computes dRF(N1, N2) by comparing the cluster collections C(N1) and C(N2). Is there a faster and more direct
method to compute dRF(N1, N2) without constructing C(N1) and C(N2) first?
� How quickly can dRF between two level-k phylogenetic networks with k > 1 be computed? It can be done in O(n e) time by

Theorem 5, but is there any better way that takes advantage of the compactness of the interval list representation for
level-k phylogenetic networks guaranteed by Lemma 6? Perhaps hashing can be applied here.
� Can our techniques be extended to efficiently compute the tripartitions distance and the l-distance mentioned in Section

1.2?
� One application of the Robinson–Foulds distance in phylogenetics is during the construction of a single consensus tree

that summarizes a collection of conflicting phylogenetic trees. Here, the dissimilarity for every pair of trees in the given
collection may be used as a starting point; see, for instance, [22,28,29]. To cope with huge collections of trees, Pattengale
et al. [22] presented a sublinear-time, randomized approximation scheme that returns a close approximation of the Rob-
inson–Foulds distance between every pair of input trees, with high probability. See also [28] for a different randomized
method that runs even faster in practice. We wonder if it is possible to adapt the techniques of [22,28] to phylogenetic
networks.
� Extra conditions are often imposed on phylogenetic networks to narrow down the output space of reconstruction algo-

rithms [17,18] or to provide a more realistic model of recombination [26,27]. Two such additional conditions are: (1) a
phylogenetic network is time-consistent when it has a temporal representation [2], that is, an assignment of discrete time
stamps to the nodes that increases from parents to tree node children and remains the same from parents to hybrid node
children, meaning that the parents of each hybrid node coexist in time and thus, the corresponding reticulate evolution-
ary event can indeed take place and (2) a phylogenetic network is tree-child when every internal node has at least one
child that is a tree node [7], meaning that every non-extant species has some extant descendant through mutation alone.
Although dRF is not a metric on arbitrary phylogenetic networks, it is a metric on the class of all tree-child time-consistent
networks [7, Corollary 1]. A further investigation of what structural restrictions on the networks N1, N2 lead to dRF(N1, N2)
always being a metric is needed, and whether or not such restrictions coincide with biologically meaningful classes of
phylogenetic networks.
� Finally, an open problem that is interesting on its own is: What is the computational complexity of computing the min-

imum spread of an input phylogenetic network?
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