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Abstract

The prediction of protein complexes from protein-protein interactions (PPIs) is a well-studied

problem in bioinformatics. However, the currently available PPI data is not enough to

describe all known protein complexes. In this paper, we express the problem of determining

the minimum number of (additional) required protein-protein interactions as a graph theo-

retic problem under the constraint that each complex constitutes a connected component in

a PPI network. For this problem, we develop two computational methods: one is based on

integer linear programming (ILPMinPPI) and the other one is based on an existing greedy-

type approximation algorithm (GreedyMinPPI) originally developed in the context of commu-

nication and social networks. Since the former method is only applicable to datasets of small

size, we apply the latter method to a combination of the CYC2008 protein complex dataset

and each of eight PPI datasets (STRING, MINT, BioGRID, IntAct, DIP, BIND, WI-PHI, iRe-

fIndex). The results show that the minimum number of additional required PPIs ranges

from 51 (STRING) to 964 (BIND), and that even the four best PPI databases, STRING (51),

BioGRID (67), WI-PHI (93) and iRefIndex (85), do not include enough PPIs to form all

CYC2008 protein complexes. We also demonstrate that the proposed problem framework

and our solutions can enhance the prediction accuracy of existing PPI prediction methods.

ILPMinPPI can be freely downloaded from http://sunflower.kuicr.kyoto-u.ac.jp/~nakajima/.

Introduction

Identification of protein complexes is important for understanding cellular mechanisms

because many proteins express their functions by forming complexes. Since it is difficult to

experimentally determine protein complexes, extensive studies have been done on the
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prediction of protein complexes. Among them, many studies focused on the effective use of

protein-protein interaction (PPI) data because proteins in a complex physically interact and a

large amount of PPI data has been available due to developments of high-throughput experi-

mental techniques [1, 2]. In most of these studies, protein complexes are predicted by identify-

ing non-overlapping or overlapping clusters (i.e., certain types of connected subgraphs) in PPI

networks possibly with other biological information. In order to identify clusters in PPI net-

works, various methods have been developed, including the Markov CLuster (MCL) method

[3], the Molecular Complex Detection (MCODE) method [4], the Restricted Neighbourhood

Search Clustering (RNSC) method [5], the Repeated Random Walks (RRW) method [6], the

Clustering based on Maximal Clique (CMC) method [7], and the Node-Weighted Expansion

(NWE) method [8]. However, it was also pointed out that known PPI data suffers from a sig-

nificant amount of noise in terms of both false positives (spuriously detected interactions) and

false negatives (missing interactions) [9]. Therefore, various methods have also been developed

that make use of weight and/or reliability of PPIs [7, 9, 10].

When studying and analyzing these protein complex prediction methods, we encounter a

fundamental question. Is the current PPI data enough to explain all known protein complexes?

If not, how many additional PPIs are required? The main purpose of this paper is to tackle this

fundamental question. In order to answer the question, we impose as a minimum requirement

that the subgraph induced by the nodes (i.e., proteins) in each complex must be connected.

The answer would enable us to deduce that many interactions to detect the associations

between proteins forming all known protein complexes are missing from the current PPI data

and if the number of the additional PPIs is large, more additional experiments might be neces-

sary. Then, we define the problem of determining the minimum number of additional PPIs

required to support known complexes (MinPPI) as: given a set of protein complexes (i.e., a set

of sets of proteins) and a set of PPIs (i.e., a set of edges among proteins), find a minimum num-

ber of additional PPIs such that the connectivity requirement is satisfied for all given protein

complexes. We also define MinPPI0 as the special case of MinPPI in which the set of given

PPIs is empty.

Interestingly, the same problem has been studied in the analysis of communication and

social networks under the name of the Network Construction problem and a greedy, polyno-

mial-time approximation algorithm for it has been proposed [11]. This fact suggests that our

question is a natural and general one. We modify this greedy-type algorithm so that we can

start with some known PPI data, and the resulting algorithm is called GreedyMinPPI. We also

develop a novel integer linear programming (ILP)-based method called ILPMinPPI that gives

an exact solution.

In this paper, we compare two methods using moderate size synthetic data. Then, we apply

GreedyMinPPI to three large-scale real protein complex datasets, CYC2008 [12], MIPS [13],

and Aloy et al.’s set [1, 14] without any known PPIs, to estimate the minimum number of

PPIs, and to pairs of CYC2008 and eight PPI datasets (STRING [15], MINT [16], BioGRID

[17], DIP [18], BIND [19], WI-PHI [20], IntAct [21, 22], and iRefIndex [23]) to estimate the

minimum number of additional PPIs.

However, as mentioned above, known PPI data suffers from a significant amount of noise.

In particular, there are a large amount of missing interactions [24, 25]. Therefore, many meth-

ods have been proposed to predict PPIs from protein sequences, protein structures, and/or

other biological data [26–30]. Since GreedyMinPPI outputs also unknown PPIs, it might be

helpful to enhance existing PPI prediction methods by GreedyMinPPI. In order to assess the

usefulness of this idea, we examine a combination of GreedyMinPPI and each of four state-of-

the-art prediction methods for weighted PPIs, Struct2Net [26], ENTS [27], PIP [28], and

iWRAP [29], using four PPI datasets extracted from STRING [15], MINT [16], WI-PHI [20],
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and IntAct [21]. Since the four databases contain interactions with confidence score based on

distinct sources of evidence, we regard these PPI databases as reliable.

Problem definition and motivation

The two problems gMinPPI and gMinPPI0 studied in this paper are defined formally as graph

theoretic problems as follows. The input to gMinPPI is an undirected graph G = (V, E), where

V is a set of vertices and E is a set of edges, along with a collection C of subsets of V, and the

output is an undirected graph G0 = (V, E [ E0), where E0 is a set of additional edges, such that

the subgraph of G0 induced by each Ci 2 C is connected and the value of |E0| is minimized.

gMinPPI0 is the special case of gMinPPI where E = ;. Given any instance of gMinPPI or

gMinPPI0, we use the notation n = |V| andm ¼ jCj. When we apply gMinPPI and gMinPPI0

to the protein complex data, which are also defined as MinPPI and MinPPI0, which means

that MinPPI0 is the special case of MinPPI where the set of given PPIs is empty.

In our application, the elements in V, E, and C represent proteins, known protein-protein

interactions (PPIs), and protein complexes, respectively. The elements in E0 correspond to

hypothetical PPIs whose existence would guarantee that each protein complex is internally

connected. See Fig 1 for two examples. Hence the value of |E0| is a lower bound on the number

of additional PPIs needed to support the given protein complexes. The motivation of this

study is to solve MinPPI for some particular data sets from the literature and investigate their

values of |E0|; if |E0| for some data set is large, this suggests that many interactions between pro-

teins are missing from the database and that additional experiments might be necessary to

complete the picture.

Fig 1. A description of MinPPI and MinPPI0. (A) An example of MinPPI. MinPPI corresponds to determining the

minimum number of additional interactions starting with known PPI (a set of edges among proteins) data. For example, if a

family of protein complexes C consisting of C1, C2 and C3 where the total number of proteins is 7 and known PPI data are given

as an input data, the objective is to find the minimum number of additional PPIs required to describe interactions in all given

protein complexes such that all proteins belonging to each complex Ci (i = 1, 2, 3) must be connected. Since an initial PPI

network has 3 edges and one protein complex overlaps with other protein complexes, the resulting graph contains 7 edges. (B)

An example of MinPPI0. MinPPI0 corresponds to the determination beginning with the set of known PPIs is empty. For

example, if a family of protein complexes C composed of C1, C2 and C3 and known PPI data with no edge are given as an input

data, the objective is to find the connected graph which has the minimum number of PPIs such that all proteins belonging to

each complex Ci (i = 1, 2, 3) must be connected. Since a given PPI network has no edges and one protein complex overlaps with

others, the number of additional edges is 6.

https://doi.org/10.1371/journal.pone.0195545.g001
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Previous work

In the literature, gMinPPI0 is equivalent to theMinimum Topic-Connected Overlay problem

[31] and the Uniform Cost Network Construction problem [11]. The more general Network
Construction problem introduced in [11] is an extension of gMinPPI0 in which a non-negative

cost of an edge ce for each e 2 V × V is allowed and aims to minimize ∑e2E0 ce. Restricted ver-

sions of the Network Construction problem in which the output graph G0 is required to be a

tree or a star were studied in [32] and [33] (note that for certain inputs, no such G0 exists).

Chockler et al. [31] proved that gMinPPI0 is NP-hard to approximate within a constant factor.

They also gave a polynomial-time, greedy approximation algorithm for gMinPPI0 which starts

with E0 = ; and inserts one suitably chosen edge at a time into E0 until each Ci 2 C induces a

single connected component in the resulting graph G0, and showed that its approximation

ratio is logarithmic in
P

Ci2C
jCij. Angluin et al. [11] recently strengthened these results by: (i)

proving that the Network Construction problem and equivalently, gMinPPI0 is NP-hard to

approximate within a factor of O(log n); and (ii) extending the greedy approximation algo-

rithm for gMinPPI0 and refining its mathematical analysis to obtain a polynomial-time

O(logm)-approximation algorithm for the Network Construction problem.

Materials and methods

Integer linear programming formulation

We propose an exact method called ILPMinPPI, for the problem of predicting PPIs beginning

with the set of known PPIs is empty (corresponding MinPPI0).

MinPPI0 can be formulated using the following integer linear programming (ILP). For

each complex Cp, we add the following constraints using different 0-1 variables for different

Cp,

xp;Tpij ¼ 1 for all i < j;

xp;0ij � eij for all i < j;

xp;tþ1

ij � xp;tij þ
X

k =2 fi;jg

xp;tþ1

ij;k for all i < j and k =2 fi; jg;

xp;tþ1

ij;k �
1

2
xp;tik þ x

p;t
kj

� �
for all i < j and k =2 fi; jg;

ð1Þ

where i, j, k 2 Cp, x
p;t
ij ¼ x

p;t
ji , xp;tij;k ¼ x

p;t
ji;k, and Tp = dlog|Cp|e. eij is a variable which indicates

whether an edge exists between proteins i and j. If eij = 1, an interaction exists between proteins

i and j. xp;tij reflects whether proteins i and j are connected after t (0�t�Tp) steps and xp;tij;k
reflects whether proteins i and j are connected through protein k after t steps. The third con-

straint means that if i and k are connected and k and j are connected, i and j are also connected.

Hence, after enough steps Tp, proteins i and j should be connected, which means that xp;Tpij

takes 1. Since the connectedness of each complex is checked by using the doubling technique,

it is enough to repeat this process at most O(log|Cp|) steps. Hence, these constraints state that

the subgraph of G(V, E) induced by nodes (proteins) in each Cp must be connected, which

guarantees that each protein complex is internally connected under the condition that edges

with eij = 1 can only be used. Then, the required ILP is formulated as

minimize
X

1�i<j�n

eij; ð2Þ

with constraints for all Cps.

Determining the minimum number of PPIs from protein complexes
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Approximation algorithm

The exact method ILPMinPPI requires exponential time and can thus only be applied to small

datasets in practice. To deal with large-scale datasets, we now extend the approximation algo-

rithm of [11] to MinPPI. The resulting method will be referred to as GreedyMinPPI. It enables

us to detect the interactions among proteins with most highly overlapping and most of these

interactions would be expected to be more reliable. This means that in GreedyMinPPI, the reli-

ability or confidence score of PPIs are assigned in the order in which interactions are detected.

An O(log m)-approximation algorithm for gMinPPI. Angluin et al. [11] proved that the

Network Construction problem can be approximated within a ratio of O(logm) in polynomial

time. We now show that this yields a polynomial-time, O(logm)-approximation for gMinPPI.

Theorem 1. gMinPPI can be approximated within a ratio of O(logm) in polynomial time.
Proof. Let ðG; CÞ be any given instance of gMinPPI, where G = (V, E). Create an instance

ðV; C; cÞ of the Network Construction problem by defining a cost function c on pairs of verti-

ces as follows: for every u, v 2 V with u 6¼ v, if {u, v} =2 E then c({u, v}) = 1 and if {u, v} 2 E then

c({u, v}) = �, where � is any constant satisfying 0< � < 2−n (i.e., n = |V|). Next, apply Angluin

et al.’s O(logm)-approximation algorithm [11] to ðV; C; cÞ, and denote the obtained graph by

(V, E�). Finally, output the graph (V, E [ E�) as the approximate solution to gMinPPI.

Clearly, the running time is polynomial. To bound the approximation ratio, let OPT be any

optimal gMinPPI-solution to the given ðG; CÞ. Denote the total number of edges in OPT by |E|

+ x. Note that ðG; CÞ admits a solution to gMinPPI with |E| + x edges if and only if ðV; C; cÞ
admits a solution to the Network Construction problem whose cost (i.e., sum of costs of all

edges) is in the interval [x, x + � � |E|]. Since (V, E�) is an O(logm)-approximate solution for

the latter, the output (V, E [ E�) contains at most |E| + (x + 1) � O(logm) = |E| + x � O(logm)

edges and is therefore an O(logm)-approximation of OPT.

Results

Computer environment

We evaluated the performance of both ILPMinPPI and GreedyMinPPI using both synthetic

data and real protein-protein interaction data. An integer programming solver, CPLEX Inter-

active Optimizer 12.4.0.0 (http://www-01.ibm.com/software/commerce/optimization/cplex-

optimizer/) was used to compute an exact optimal solution and ‘Epi’ library (version 1.1.67) in

R (version 3.2.1) was used to plot the ROC curve. The implementation of ILPMinPPI and

GreedyMinPPI was done by C/C++ code. The C/C++ programs are used to generate linear

programs which are then fed to CPLEX. All experiments were performed on a PC with Intel

Core i7-2600 CPU (3.40 GHz) with 7.7 GB RAM running under the Fedora 21 with Linux ker-

nel 3.14.2 and with Xeon E5-2667 CPU (3.30GHz×8) with 62.9 GiB memory running under

the Mint 17.1 Cinnamon with Linux kernel 3.13.0-37-generic. We used the same CPU to com-

pare the CPU time in each experiment. ILPMinPPI can be freely downloaded from http://

sunflower.kuicr.kyoto-u.ac.jp/~nakajima/.

Results on ILPMinPPI using synthetic data and real data

Comparison of ILPMinPPI and GreedyMinPPI using synthetic data. At the beginning,

we compared GreedyMinPPI with ILPMinPPI using two types of synthetic datasets. We ran-

domly built two datasets (syndata 1, syndata 2), each of which is composed of 10 artificial pro-

tein complex datasets (data1–data10), where the maximum number of total proteins,

complexes and proteins within a complex are 10, 20 and 5 for syndata 1, and both 100 and 4

for syndata 2, respectively. Furthermore, in real world datasets, since the proteins apparently

Determining the minimum number of PPIs from protein complexes
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outnumbered the protein complexes, we also performed the simulation experiments in three

types of practical setting (see details in Table A1(a) in S1 File). For each protein complex data-

set, the corresponding ILP formulation is written in the LP-format required by CPLEX. Then,

we evaluated and compared the performance of ILPMinPPI with that of GreedyMinPPI by

measuring the total number of interactions (edges) and the CPU time (real time) as shown in

Fig 2 and Table A1 in S1 File.

For example, the results indicate that ILPMinPPI outputted 166 edges requiring 9.36 sec

using data1 of syndata 2 shown in Fig 2. For syndata 1, since the objective values provided by

the two methods are not all the same, we count the number of common PPIs. Table A1(b) in

S1 File shows that two methods do not always output the same objective values but the optimal

values are relatively close. On the other hand, both ILPMinPPI and GreedyMinPPI provide

the same objective values in all cases of syndata 2, 3 and 4, however, the rate of the common

PPIs between the two methods is not so high.

Although ILPMinPPI outputs the same objective value for the same complex datasets, this

property is not guaranteed for GreedyMinPPI because the objective value may depend on the

ordering of the input data. In order to validate whether or not GreedyMinPPI outputs the

same prediction results among runs with the same input data but different orderings, we also

examined GreedyMinPPI on MinPPI0 using randomly generated datasets, where the maxi-

mum numbers of proteins and complexes were 1600 and 400, respectively, and the maximum

number of proteins within one complex was 5. The configuration of each dataset was changed

by shuffling the complexes and the subunits each 10 times. Therefore, 100 configurations were

examined for each dataset. The results are summarized in Table A2(a) in S1 File. We found

that all approximate solutions were exactly the same including the addition order of edges. It is

reasonable because GreedyMinPPI repeatedly detects the protein pair with the highest overlap

by using the confidence score and thus it is not plausible that multiple pairs have the same con-

fidence score. However, there existed one exceptional case when GreedyMinPPI was applied

to real protein complex datasets (see Table A2(b) in S1 File). For the STRING dataset, 51 pro-

tein pairs were identified in 91 trials whereas 139 protein pairs were identified in 9 trials. How-

ever, the number of bad cases (i.e., 139 protein pairs) is small. Therefore, it is expected that

even in non-preferred cases, we can obtain a reasonably good solution by examining multiple

configurations and taking the best solution.

Additionally, the CPU time of GreedyMinPPI is much less than that of ILPMinPPI only if

the dataset is small. It must be noted that ILPMinPPI and GreedyMinPPI could possibly work

when one protein complex consists of relatively few proteins, because the CPU time depends

on the maximum number of proteins as described in Table A3 in S1 File. Actually, ILPMinPPI

could not work on syndata 5. GreedyMinPPI provides optimal or near-optimal solutions while

reducing the CPU time and it might therefore be effective for large datasets. This result also

suggests that ILPMinPPI still has room for improvement by extending the ILP formulation to

avoid combinatorial explosion.

Fig 2. Performance evaluation of ILPMinPPI and GreedyMinPPI using synthetic data (syndata 2).

https://doi.org/10.1371/journal.pone.0195545.g002
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Results using protein complex dataset. Although ILPMinPPI is not efficient for large

data in general, it would be insightful to examine whether it can provide optimal solutions for

real datasets. We thus applied ILPMinPPI to MinPPI0 using CYC2008 protein complexes as a

benchmark set reported by Pu et al. [12]. CYC2008 consists of 408 protein complexes, some of

which are composed of dozens of distinct subunits shared between the different complexes.

To examine how the CPU time is affected by the size of a dataset and the number of sub-

units, we prepare four datasets derived from the benchmark complexes according to the num-

ber of proteins within a complex. Unfortunately, the results on synthetic data indicate that

ILPMinPPI can be applicable for the limited datasets including complexes composed of only a

few subunits. Therefore, we randomly constructed the datasets that are limited to the maxi-

mum number of proteins within a complex as ranging from 4 to 10 and then examine how the

performance of ILPMinPPI evolves as the maximum number of complexes increases ranging

from 50 to 400 with 50 intervals in order from the beginning of CYC2008. For example, as

shown in Fig 3, CYCdata1 consists of 8 components (data1–data8), each of which is composed

of a large set of protein complexes formed by at most 4 proteins.

Fig 3 indicates that there may be some correlation between the CPU time and the maxi-

mum number of subunits. If a complex is formed by at most 6 subunits, ILPMinPPI requires

much less or slowly increasing CPU time, regardless of the size of the complex. Compared

with the performance on synthetic data, almost the same CPU time is required for this method

when using the syndata 2 shown in Table A1(c) in S1 File. In contrast, in case that the number

of subunits is more than 7, it cannot provide an optimal solution by solving the MIP problem

on CPLEX due to the high memory consumption. Indeed, MinPPI0 on these datasets almost

always lead to exponential increase in CPU time or segmentation faults, some of which are not

listed in Fig 3 if the complex is composed of 8–10 subunits. Therefore, these results reveal that

the computational complexity of ILPMinPPI increases exponentially because of depending not

on the total number of complexes but on the maximum number of subunits.

In this experiment, an optimal solution can be provided within a reasonable CPU time only

if the relatively small number of subunits are included in the complex, note however that, in

reality, there also even exist several complexes formed by more than 10 subunits in CYC2008

Fig 3. Performance comparison of ILPMinPPI with four protein complex datasets. Summary of four real protein complex datasets from CYC2008

and performance comparison of ILPMinPPI with these datasets. For example, ‘data7’ of CYCdata1 is composed of 303 complexes (see ‘Number of

complexes’), where the number of subunits is at most 4 (see ‘Maximum number of subunits’). When using this data, ILPMinPPI outputs 395 edges and

requires 17.6 seconds. A ‘segfault’ refers to the segmentation fault which occurs when a program accesses an invalid memory address and the number of

outputted edges with asterisk(�) means that CPLEX outputs not an optimal solution but a feasible solution because of exceeding the memory limit.

https://doi.org/10.1371/journal.pone.0195545.g003
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and more than 30 subunits in MIPS [13] as summarized in Table A3(b) in S1 File. The current

ILPMinPPI has room for improvement to reduce the computational costs. One possibility is

that there needs to be a reduction of the size of the MIP problem by omitting the unnecessary

constraints or to increase the maximum memory usage.

Results on GreedyMinPPI using real data

The number of PPI for three protein complex datasets. We only tested GreedyMinPPI

to solve MinPPI0 using real large-scale protein complex datasets because the current ILP-

MinPPI is not suitable for application to large-scale datasets (it is only applicable to datasets of

small size consisting of 100-150 nodes). We used a dataset derived from CYC2008 [12] which

consists of 408 protein complexes involving 1627 proteins in S. cerevisiae, and also used two

protein complex datasets obtained from MIPS [13] which was publicly available from the

study of [34] and Aloy et al. [1, 14].

We applied GreedyMinPPI to three protein complex datasets and evaluated the perfor-

mance in terms of the total number of outputted PPIs and the execution time (CPU time).

To test the correlation between the CPU time and the protein complex formation, we counted

the number of complexes consisting of pn proteins. The results are presented in Fig 4 and

Table A3 in S1 File. It is observed that the number of added edges is less than the number of

proteins in all cases. It is reasonable because three protein complex datasets may consist of the

disjoint sets of protein complexes which are a set of unions of proteins (overlapping proteins).

For example, MIPS dataset is composed of a small number of disjoint sets of complexes in

which a lot of proteins overlap and this may be related to the increased CPU usage as described

below. In contrast, Aloy et al.’s dataset consists of a large number of disjoint sets of complexes

that are a small number of overlapping complexes, despite containing lots of complexes. Simi-

larly, as you can see in Fig 4 and Table A3(b) in S1 File, the increase on required CPU time

may also be caused by the formation of protein complexes, which means that it may be caused

by the existence of some protein complexes that are composed of a lot of proteins and overlap

with other complexes. For example, the MIPS dataset consists of many complexes consisting

of more than 10 proteins (pn>10), on the other hand, Aloy et al.’s dataset contains 98% com-

plexes consisting of a lower number of proteins (pn�10). Certainly, it is observed that the com-

putation with MIPS dataset requires a lot of CPU time despite including a small number of

complexes among three datasets, but it requires much less CPU time for the prediction with

Aloy et al.’s dataset. Therefore, these results suggest that the CPU utilization depends not only

on the number of complexes or proteins but also on the total number of proteins involved in

one protein complex.

Results using known PPI datasets. We examined GreedyMinPPI for MinPPI from

known PPIs obtained from eight protein interaction databases such as STRING [15], MINT

[16], BioGRID [17, 34], DIP [18], BIND [19, 35], WI-PHI [20], IntAct [21] and iRefIndex [23,

36], and using protein complexes in CYC2008 dataset. Although the same PPIs should be con-

tained in different databases based on the different experimental techniques, known PPIs are

limited to the extracted PPIs composed of 1627 proteins formed of CYC2008 protein

Fig 4. Results with three protein complex datasets.

https://doi.org/10.1371/journal.pone.0195545.g004
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complexes stored in these databases. The performance of GreedyMinPPI was evaluated by

measuring the total number of additional interactions and the CPU time used to solve MinPPI,

as shown in Fig 5.

It is shown that the minimum number of additional PPIs ranges from at least 51 (STRING)

to 964 (BIND). In particular, in the case of BioGRID database, although it contains 16180

interactions, it is observed that 67 interactions are missing to support all interactions in the

CYC2008. The results also mean that even the four largest PPI databases, STRING (51) in

Table A4(a) in S1 File, BioGRID (67) in Table A7(a) in S1 File, WI-PHI (93) in Table A10(a)

in S1 File and iRefIndex (85) in Table A13(a) in S1 File, do not have enough PPIs to form all

CYC2008 protein complexes. For example, it is seen from Table A4 in S1 File that Dcs1p/Dcs2

heterodimer and Rad17p/Ddc1p/Mec3p complexes in CYC2008 are not fully covered by PPIs

in STRING (Table A4(b) in S1 File) and GreedyMinPPI identifies 51 additional PPI pairs for

supporting all CYC2008 complexes (Table A4(a) in S1 File). Table A5 in S1 File also presents

the additional protein pairs and the complexes including each pair.

Furthermore, we analyzed the biological significance of additional protein pairs identified

for four databases, STRING, BioGRID, WI-PHI and iRefIndex, using the PANTHER system

(http://www.pantherdb.org/), which provides the classification of proteins and their genes

according to family, subfamily, biological process, cellular component and molecular function.

To evaluate the frequency distribution of the assigned categories, we counted the frequency in

each category (see Tables A6, A9, A12 and A15 in S1 File). As for the molecular function cate-

gories, the top five across four databases are protein binding, oxidoreductase activity, RNA

binding, pyrophosphatase activity and structural constituent of ribosome. However, from the

PANTHER analysis, we could not observe a clear trend on the characteristic biological func-

tion for the additional proteins, which suggests that various types of complexes are not fully

covered by the PPIs currently in the four databases.

In order to examine the plausibility of the predicted interactions, we performed in silico

experiments. Among various excellent tools developed for prediction of protein interactions

[37, 38], we employed PSOPIA [39] because it needs only sequence information, is easy to use,

and is reported to have good prediction performance [39]. PSOPIA predicts the interaction

between two protein sequences based on information from known homologous PPIs using

Averaged One-Dependence Estimators. The interaction of two protein pairs is estimated by

calculating the three features, sequence similarities (FSeq), statistical propensities (FDom) and a

sum of edge weights between homologous proteins (FNet). We performed the prediction for 67

protein pairs on BioGRID. Table A16 in S1 File summarizes the estimated scores for the addi-

tional protein pairs. Although the confidence is not high because of the high false positive rates

in prediction of PPIs in PSOPIA and many other tools, it is found that many identified addi-

tional protein pairs possibly interact with each other (0.1� Sall< 0.5) and 8 among them were

considered as highly probable (Sall� 0.5). Furthermore, even if there is some data configura-

tion change with real complex and PPI datasets, almost all approximate solutions are the same

and the additional proteins are detected in the same order as mentioned in the prediction with

synthetic data (see Table A2(b) in S1 File).

Fig 5. Summary of eight databases and results on MinPPI by GreedyMinPPI.

https://doi.org/10.1371/journal.pone.0195545.g005
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In addition, GreedyMinPPI only requires a small amount of CPU time regardless of the

number of additional interactions and it might be effective for an application with large-scale

datasets. To summarize, the current PPI data identified by eight databases is incomplete and

does not adequately describe all PPIs involved in CYC2008; on the positive side, Greedy-

MinPPI enables us to detect the minimum number of additional interactions required to sup-

port all regulatory interactions among proteins which constitute the corresponding protein

complex.

Comparison of prediction performance

Performance comparison with weighted PPI datasets. To investigate the accuracy of

GreedyMinPPI, we compared our results with those from existing PPI prediction methods

using four different weighted PPI datasets predicted from Struct2Net [26], ENTS [27], PIP

[28] and iWRAP [29]. Struct2Net is a web server for predicting PPIs based on the structural

features using protein sequence data as input data. ENTS is a random forest based PPI predic-

tion method only from the primary sequence data. PIP is developed based on a naïve Bayes

classifier to stochastically predict whether each protein pair is present in the same complex

regardless of their direct interaction. iWRAP is a threading-based prediction method for

detecting de novo cancer related interactions. Since all interactions predicted from Struct2Net,

ENTS, PIP and iWRAP were assigned the confidence score, we assessed by measuring the

ROC curve and AUC (Area Under the Curve) score. In order to plot the ROC curve, we

regarded the PPIs obtained from STRING, MINT, WI-PHI and IntAct databases as the gold

standard (refer to S1 File) [40]. It must be noted that, in comparative experiments with those

databases, we limited PPIs to those of extracted PPIs composed of 1627 proteins stored in

those databases.

As for the confidence score assignment, for each interaction by GreedyMinPPI, the scores

between [1-1344] were calculated to reflect the reliability where the firstly added interaction

has the highest confidence which equals to 1344. Four existing methods also provided individ-

ual confidence scores, Struct2Net score ranging [0.25-0.98], ENTS score ranging [0.50-0.97],

PIP score ranging [300.07-146673.28] and iWRAP score ranging [0.90-1.00].

Fig 6 shows the number of predicted and common PPIs and the averages for all confidence

scores and in the 100 highest scoring group for each database. The results show that the num-

ber of common PPIs that are shared between the PPIs predicted from GreedyMinPPI and

those derived from STRING, WI-PHI are 1067, 1014, respectively, and the averages for all and

the top 100 are the highest scoring among other methods. It should be noted that in case of

IntAct, although the percentage of the number of common interactions is less than 50, the

average for the top 100 by GreedyMinPPI is higher than those by other methods. It is because

GreedyMinPPI has an advantage of being able to detect the minimum number of PPIs or addi-

tional PPIs by firstly adding edges among proteins that are most highly overlapping. In con-

trast, the averages of confidence scores of Struct2Net and ENTS are higher than those of

GreedyMinPPI using MINT. Note also that since the iWRAP PPIs were predicted using the

dataset of yeast cancer related genes and iWRAP detected an interaction between XPA

(RAD14) and SMARCA5, whose overexpression leads to cell proliferation [29, 41], it provides

only limited prediction and does not have many common interactions with four databases. In

this way, although GreedyMinPPI does not guarantee the optimality of its solution, it enables

us to provide high confidence protein interactions.

Comparison of distribution of PPI confidence score. Since the four databases provide

confidence scores, each of which was computed by evidences from their own sources and all

five scored PPIs were sorted in descending order in advance [42–44], we examined the
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distributions of database confidence score of the top 100 interactions that are calculated by five

existing methods with STRING score ranging [150-999], MINT score ranging [0.091-0.984],

WI-PHI score ranging [6.624-146.551] and IntAct score ranging [0.216-0.963] as shown in Fig

7 and A1–A4 Figs in S1 File.

In particular, the distribution with STRING exhibits that GreedyMinPPI detected the PPIs

with uniformly high confidence score which suggests that the prediction is performed with a

high reliability as shown by the high average score (Fig 7). Since iWRAP and STRING have no

common edges, the distribution of iWRAP cannot be plotted. In case of WI-PHI, Greedy-

MinPPI can detect the interactions with relatively high confidence score than other methods,

on the other hand, ENTS could predict interactions with higher scores than GreedyMinPPI

using MINT. In case of IntAct, the distribution of the confidence score on GreedyMinPPI

looks similar to the distribution by PIP, and certainly there is only a slight difference in the

range of averages of top 100 interactions by GreedyMinPPI and PIP. Similarly, the distribution

by Struct2Net and ENTS can appear to be almost the same (A1–A4 Figs in S1 File).

Therefore, the results suggest that the top 100 interactions predicted by GreedyMinPPI have

higher confidence scores than those by existing methods but not providing the uniformly high

scores except in the case of STRING. However, since it enables us to detect the interactions

Fig 6. Comparison of the PPIs predicted by the five methods with STRING (A), MINT (B), WI-PHI (C) and IntAct (D) databases.

https://doi.org/10.1371/journal.pone.0195545.g006
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among proteins with most highly overlapping, most of these interactions would be expected to

be more reliable.

Performance comparison with unweighted PPI datasets. In this subsection, we vali-

dated the predictive performance of GreedyMinPPI with three unweighted PPI prediction

methods, PIPE [30], SPPS [45] and InteroPORC [46]. PIPE predicts PPIs only using informa-

tion derived from the primary sequence of S. cerevisiae which consists of 6304 protein

sequences. SPPS server is developed by combining Support Vector Machines (SVM) with the

posterior probability which is derived from a sigmoid function, to search the possible interact-

ing partners with the query protein sequence. InteroPORC provides an automated prediction

based on the interolog concept, which reconstructs the orthology relationships across multiple

species.

The performances of the three unweighted datasets were assessed by measuring six criteria,

recall, precision, specificity, accuracy (ACC), F-measure and matthew’s correlation coefficient

(MCC) (see S1 File). Recall is the proportion of actual positives which are correctly predicted;

precision measures the proportion of positive predictions which are actual positives and there

is a trade-off between recall and precision; specificity measures the proportion of actual nega-

tives that are correctly predicted; accuracy is the proportion of the total number of correct pre-

dictions; F-measure is the harmonic mean of recall and precision; matthew’s correlation

coefficient is the correlation coefficient between the actual and predicted binary classes, that

takes from −1 to 1.

Needless to say, since the objective of MinPPI0 or MinPPI is to detect the minimum num-

ber of interactions or additional interactions so that all proteins belonging to each complex are

connected, the number of predicted PPIs from GreedyMinPPI should mostly be lower than

those from existing methods. This leads to the lower AUC performance of GreedyMinPPI

compared to those of existing methods, as shown in Fig 8 and refer to the “original” in Tables

A18–A21 in S1 File. Therefore, we tested whether the performance of existing methods can be

improved by combining the interactions predicted from GreedyMinPPI. Firstly, we examined

Fig 7. Distribution of PPI confidence score using STRING. The distribution of the confidence scores of PPIs

predicted by GreedyMinPPI (A), Struct2Net (B), ENTS (C) and PIP (D).

https://doi.org/10.1371/journal.pone.0195545.g007
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the six criteria of GreedyMinPPI and three methods using the four databases, STRING,

MINT, WI-PHI and IntAct as the gold standard. Secondly, we also examined them to compare

the performance of six criteria on their own datasets from PIPE, SPPS and InteroPORC with

those on the combined datasets, each of which was constructed by adding all interactions from

GreedyMinPPI. All measurement results are summarized in Table A17 in S1 File. Certainly,

the four criteria except for specificity and ACC of GreedyMinPPI are relatively low for each

database. However, almost all criteria of combined datasets for three existing methods are

slightly improved in case of using STRING, MINT and WI-PHI databases, although some of

them on the combined datasets perform a little bit worse than those on their own dataset using

IntAct. From this experiment, it is found that since GreedyMinPPI predicts additional interac-

tions including unknown PPIs, it might be helpful for enhancement of existing PPI prediction

methods.

AUC performance comparison with weighted PPI datasets. To validate the perfor-

mance enhancement of GreedyMinPPI with the weighted PPIs predicted from Struct2Net,

ENTS, PIP and iWRAP in terms of AUC, we examined MinPPI using the dataset, combining

all interactions and the corresponding confidence scores from GreedyMinPPI with those from

the four existing methods. The combined scores were computed by,

Sc ¼ SPE � Sg þ Se ð3Þ

where SPE reflects the specific weight of scores predicted from GreedyMinPPI when combin-

ing the scores. Sc is the combined score and Sg and Se are the individual scores that are calcu-

lated from GreedyMinPPI and existing methods, respectively.

Comparison results with the four databases are summarized in Tables A18–A21 in S1 File.

Since iWRAP does not have any common edges with STRING, the AUC score of iWRAP on

the original dataset could not be computed. In case of any database, regardless of the value of

SPE, the AUC scores on the combined datasets increased than those on their own datasets

from GreedyMinPPI. Because although GreedyMinPPI is based only on the connected compo-

nents from graph theory, MinPPI tends to output pairs of proteins that are contained in many

protein complexes. In other words, in this paper, we assume that the proteins consisting of

highly overlapping probably interact with each other and these interactions might be missing

interactions. In particular, the AUC on iWRAP was greatly improved when combining all

interactions because fewer shared interactions exist in case of each database. On the other

hand, the AUC performance was not improved using the combined datasets when combining

top 200 and 500 interactions from GreedyMinPPI. These results suggest that GreedyMinPPI is

also suitable for enhancement of the predictive performance of existing methods when all out-

putted interactions are utilized.

Discussion and conclusion

In this paper, we have introduced MinPPI, which is a problem of determining the minimum

number of PPIs required to support known protein complexes. For solving this problem, we

Fig 8. AUC scores on GreedyMinPPI with the four databases.

https://doi.org/10.1371/journal.pone.0195545.g008
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have developed a novel integer linear programming-based method (ILPMinPPI) and a greedy-

type method (GreedyMinPPI) based on an existing greedy-type approximation algorithm. The

comparison of these two methods using moderate size synthetic data suggests that Greedy-

MinPPI outputs optimal or near-optimal solutions for practical instances. Since ILPMinPPI

cannot be applied to large-scale data, we have applied GreedyMinPPI to pairs of a protein

complex dataset and eight PPI datasets. Our findings show that the minimum number of addi-

tional required PPIs ranges from 51 (STRING) to 964 (BIND). Significantly, this suggests that

even the four best PPI databases, STRING (51), BioGRID (67), WI-PHI (93) and iRefIndex

(85) do not have enough PPIs to form all CYC2008 protein complexes. We have also applied

GreedyMinPPI to enhance the existing PPI prediction methods. The results suggest that it is

also useful for that purpose.

Although ILPMinPPI and GreedyMinPPI output PPIs with scores, they output PPIs only

based on the minimum requirement that each complex must constitute a connected subgraph

in a PPI network. Therefore, these methods are not optimized for prediction of PPIs and thus

should be used only as auxiliary methods to enhance existing PPI prediction methods. How-

ever it might be possible to modify the formalization of MinPPI as a kind of machine-learning

problem to infer PPIs from protein complexes. Although such a variant would still not be

enough to be used as a stand-alone prediction method, it would be useful to further enhance

the prediction accuracy of existing PPI prediction methods. Another important future work is

to improve ILPMinPPI so that it can be applied to real protein complex datasets, because it is

unclear whether GreedyMinPPI outputs near-optimal solutions for large-scale protein com-

plex datasets and the theoretically guaranteed O(logm) approximation ratio is not enough to

estimate the minimum number.
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