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We study a new variant of the graph orientation problem called MaxMinO where the
input is an undirected, edge-weighted graph and the objective is to assign a direction
to each edge so that the minimum weighted outdegree (taken over all vertices in the
resulting directed graph) is maximized. All edge weights are assumed to be positive
integers. This problem is closely related to the job scheduling on parallel machines,
called the machine covering problem, where its goal is to assign jobs to parallel machines
such that each machine is covered as much as possible. First, we prove that MaxMinO
is strongly NP-hard and cannot be approximated within a ratio of 2− ε for any constant
ε > 0 in polynomial time unless P=NP, even if all edge weights belong to {1, 2}, every
vertex has degree at most three, and the input graph is bipartite or planar. Next, we
show how to solve MaxMinO exactly in polynomial time for the special case in which
all edge weights are equal to 1. This technique gives us a simple polynomial-time wmax

wmin
-

approximation algorithm for MaxMinO where wmax and wmin denote the maximum
and minimum weights among all the input edges. Furthermore, we also observe that this

approach yields an exact algorithm for the general case of MaxMinO whose running
time is polynomial whenever the number of edges having weight larger than wmin is at
most logarithmic in the number of vertices. Finally, we show that MaxMinO is solvable
in polynomial time if the input is a cactus graph.
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1. Introduction

An orientation of an undirected graph is an assignment of a direction to each of its

edges. Graph orientation is a well-studied area of graph theory and combinatorial

optimization and thus a large variety of objective functions have been considered

so far. The objective of the present paper is the maximization of the minimum

outdegree. It is closely related to the classic job scheduling on parallel machines.

In the parallel machine scheduling scenario, our problem can be regarded as the

restricted assignment variant of the machine covering problem [23]: We are given a

set of jobs J , a set of machines M to process the jobs and a processing time pj for

each job j ∈ J . For a given assignment of jobs to machines, the load of a machine

mi ∈ M is defined as the sum of the processing of jobs assigned to mi. The goal of

the machine covering problem is to assign jobs to parallel machines such that each

machine is occupied (covered) as long as possible (without introducing machine idle

times). This problem was originally motivated by the sequencing of maintenance

actions for modular gas turbine aircraft engines [10]. In the restricted assignment

variant studied in the paper, the job can only be processed on a subset of the

machines. In the following, we first define several terminologies and our objective

function, then describe related work, and summarize our results.

Problem definition. Let G = (V,E,w) be a given undirected, edge-weighted

graph with vertex set V and edge set E whose weights are numbers specified by a

function w. An orientation Λ of G is defined to be any function on E of the form

Λ : {u, v} 7→ {(u, v), (v, u)}, i.e., an assignment of a direction to each undirected

edge {u, v} in E. Given an orientation Λ of G, the weighted outdegree dΛ(v) of a

vertex v ∈ V is defined as the total weight of all edges leaving v, i.e., dΛ(v) =
∑

{u,v}∈E:
Λ({u,v})=(v,u)

w({u, v}), and the minimum weighted outdegree δΛ(G) is defined by

δΛ(G) = minv∈V {dΛ(v)}.
This paper deals with the problem of finding an orientation of the input graph

such that the minimum weighted outdegree is maximized. We call this problem

Maximum Minimum Weighted Outdegree Graph Orientation Problem (MaxMinO

for short): The input is an undirected, edge-weighted graph G = (V,E,w) with w :

E → Z
+, where Z+ denotes the set of positive integers, and the objective is to find

an orientation Λ∗ of G which maximizes δΛ(G) over all possible orientations Λ of G.

Such an orientation is called a max-min orientation of G, and the corresponding

value δΛ∗(G) is denoted by OPT (G). The special case of MaxMinO where all edge

weights of the input graph are equal to 1 is referred to as unweighted MaxMinO.

Throughout the paper, we use the following notation: n = |V |, m = |E|, and
W =

∑

e∈E w(e) for the input G. Furthermore, wmax and wmin denote the max-

imum and minimum weights, respectively, among all edges in E. For any v ∈ V ,
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the (unoriented) weighted degree of v, denoted by d(v), is the sum of all weights of

edges incident to v, and ∆ = maxv∈V {d(v)} is the maximum (unoriented) weighted

degree among all vertices in G. Also for a (fixed) v ∈ V , we call |{{u, v} ∈ E}| (i.e.,
the number of edges incident to v) the (unoriented) unweighted degree of v, and

denote it by deg(v). We also call maxv∈V deg(v) the (unoriented) unweighted degree

of G, both of which will be used to focus on the topological structure of the graph.

We say that an algorithm A is a σ-approximation algorithm for MaxMinO or

that A’s approximation ratio is at most σ, if OPT (G) ≤ σ · A(G) holds for any

input graph G, where A(G) is the minimum weighted outdegree in the orientation

returned by A on input G.

Related work. MaxMinO studied in the current work is closely related to the

restricted assignment variant of the machine covering problem, which is often called

the Santa Claus problem [4, 5, 9, 14]: Santa Claus hasm gifts (corresponding to jobs,

and to edges in MaxMinO) that he wants to distribute among n children (corre-

sponding to machines, and to vertices in MaxMinO). Some gift may be worth $100

but another may be less expensive, and some children do not want some of the gifts

whatsoever (i.e., its value is 0 for the children). The goal of Santa Claus is to dis-

tribute the gifts in such a way that the least lucky child is as happy as possible. In

addition, MaxMinO has the following restriction: Every gift is of great value only

to exactly two children and thus it must be delivered to one of them. For the Santa

Claus problem, Golovin [14] provided an O(
√
n)-approximation algorithm for the re-

stricted case where the value of each gift belongs to {1, k} for some integer k. Bansal

and Sviridenko [4] considered the general value case and showed that a certain

linear programming relaxation can be used to design an O(log logm/ log log logm)-

approximation algorithm, while Bezakova and Dani [5] showed that the general case

is already NP-hard to approximate within ratios smaller than 2.

Another objective function studied for the graph orientation problem is that of

minimizing the maximum weighted outdegree (MinMaxO), also known as Graph

Balancing [1, 2, 3, 8, 16, 21]: Given an undirected graph with edge weights, we are

asked to assign a direction to each edge so that the maximum outdegree is mini-

mized. It can be shown that MinMaxO is generally NP-hard. Furthermore, Asahiro

et al. [2] showed that it is still weakly NP-hard for outerplanar graphs, and strongly

NP-hard for P4-bipartite graphs. Fortunately, however, they also showed [2] that

MinMaxO is tractable if the input is limited to trees or even to cactus graphs. Note

that the class of cactus graphs is a maximal subset of the class of outerplanar graphs

and the class of P4-bipartite graphs, and a minimal superset of the class of trees.

Very recently, Ebenlendr et al. [8] designed a polynomial-time 1.75-approximation

algorithm for the general weighted case, and Asahiro et al. [1] showed that Min-

MaxO can be approximated within an approximation ratio of 1.5 in polynomial-

time if all edge weights belong to {1, 2}. As for inapproximability, it is known that

MinMaxO is NP-hard to approximate within approximation ratios smaller than

1.5 even for this restricted {1, 2}-case [1, 8].
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Our new results. In this paper we study the computational complexity and

(in)approximability of the machine covering problem from the viewpoint of graph

orientation. In Section 2, we prove that MaxMinO is strongly NP-hard and cannot

be approximated within a ratio of min{2, wmax

wmin
} − ε for any constant ε > 0 in

polynomial time unless P=NP, even if all edge weights belong to {wmin, wmax},
every vertex has unweighted degree at most three, and the input graph is bipartite

and planar. As mentioned above, although MaxMinO imposes a strong restriction

on the Santa Claus problem, unfortunately it remains hard.

Section 3 first considers the unweighted MaxMinO problem. We obtain an

optimal orientation algorithm which runs in O(m3/2 · logm · log2 ∆) time for the

special case in which all edge weights are equal to 1. Here, it is important to note

that Golovin [14] already claimed that the unweighted case of MaxMinO (more

precisely, the Santa Claus problem described in Related work) can be solved in

polynomial time, but no proof of this claim has ever been published as far as we

know. Our contribution here is to provide a non-trivial, yet simple and efficient

algorithm along with explicit proofs of its correctness and a running time analysis.

In the same section, we also observe that our approach yields an exact algorithm

for the general case of MaxMinO whose running time is polynomial whenever

the number of edges having weight larger than wmin is at most logarithmic in the

number of vertices.

Next, Section 4 shows how to use our algorithm for unweighted MaxMinO to

directly obtain an wmax

wmin
-approximation algorithm running in the same time for the

general (weighted) case of MaxMinO, i.e., it always outputs an orientation Λ′ of G

which satisfies OPT (G) ≤ wmax

wmin
· δΛ′(G). This simple approximation algorithm is

the best possible for the case where the weights of edges belong to {wmin, wmax}
with wmax ≤ 2wmin since the lower bound of approximation ratios is min{2, wmax

wmin
}

as described above.

In the field of combinatorial optimization, much work is often devoted to seek

a subset of instances that is tractable and as large as possible. For example, if

the input graph G is a tree, then OPT (G) is always 0 because the number of

vertices is larger than the number of edges, and in any orientation of G, at least one

vertex must have no outgoing edges. Also, for the case of cycles, MaxMinO is quite

trivial since the clockwise or counterclockwise orientation along the cycle gives us

the optimal value of wmin. On the other hand, the class of planar graphs is too large

to allow a polynomial-time optimal algorithm (under the assumption of P 6=NP) as

shown in Section 2. Hence, our goal in Section 5 is to find a (pseudo-)polynomially

solvable subset between trees and planar graphs. We first show in Section 5.1 that

MaxMinO remains in P even if we make the set of instances so large that it contains

the class of cactus graphs, and then show in Section 5.2 that the problem becomes

solvable in pseudo-polynomial time for series-parallel graphs. Finally, we conclude

the paper with some remarks in Section 6.
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2. Hardness Results

In this section, we prove the strong NP-hardness and inapproximability of the

MaxMinO problem for bipartite graphs and planar graphs.

Theorem 1. Even if the edge weights are in {wmin, wmax} and the input graph

is bipartite and planar in which the unweighted degree is bounded by three,

(i) MaxMinO is strongly NP-hard, and (ii) MaxMinO has no pseudo-polynomial

time algorithm whose approximation ratio is smaller than min{2, wmax

wmin
}, unless P

= NP.

Proof. For the purpose of making our basic ideas clear, we assume for a while that

the input graph is general, i.e., it is not limited to bipartite or planar. Then, we first

show that the MaxMinO problem is strongly NP-hard even if all the edge weights

belong to {wmin, wmax} for any positive integers wmin < wmax. The proof is by a

reduction from At-Most-3-SAT(2L).

At-Most-3-SAT(2L) is a restriction of 3-SAT where each clause contains at

most three literals and each literal (not variable) appears at most twice in a formula.

It can be easily proved that At-Most-3-SAT(2L) is NP-hard by using problem

[LO1] on p. 259 of [11].

First, we pick any fixed positive integers for wmin and wmax such that wmin <

wmax. Given a formula φ of At-Most-3-SAT(2L) with n variables {v1, . . . , vn}
and m clauses {c1, . . . , cm}, we then construct a graph Gφ including gadgets that

mimic (a) variables and (b) clauses. To define these, we prepare a gadget consisting

of a cycle of 3 vertices and 3 edges (i.e., a triangle) where each edge of the cycle

has weight wmax. We call this a triangle gadget. Apart from these triangle gad-

gets, we define gadgets for (a) variables and (b) clauses: (a) Each variable gadget

corresponding to a variable vi consists of two vertices labeled by vi and vi and

one edge {vi, vi} between them. The weight of {vi, vi} is wmax. By the definition

of At-Most-3-SAT(2L), some literals (say vi for example) do not occur (or may

occur only once). In such a case, we attach a triangle gadget to the variable gad-

get by adding two edges (one edge) of weight wmin that connects vertex vi and

two different vertices (one vertex) of the triangle gadget. (b) Each clause gadget

consists of one representative vertex labeled by cj , corresponding to clause cj of φ,

and a triangle gadget connected to this cj-vertex by an edge of weight wmin. The

representative vertex cj is also connected to at most three vertices in the variable

gadgets that have the same labels as the literals in the clause cj , by edges of weight

wmin. For example, if c1 = x∨y appears in φ, then vertex c1 is connected to vertices

x and y. (See Figure 1.) We have the following lemma.

Lemma 2. For the reduced graph Gφ, the following holds:

(i) OPT (Gφ) ≥ min{2wmin, wmax} if φ is satisfiable.

(ii) OPT (Gφ) ≤ wmin if φ is not satisfiable.
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c1 = x ∨ ȳ

x zȳy z̄x̄

clause
gadget

variable
gadget

c2 = x̄ ∨ y ∨ z

2 edges

Fig. 1. Reduction from At-Most-3-SAT(2L) (Solid and dotted edges have weight wmax and wmin,
respectively.)

Proof. First we prove (i). We fix the orientation of edges in the triangle gadget.

Each triangle gadget is oriented in such a way that the triangle forms a directed

cycle, which guarantees that the minimum weighted outdegree among those vertices

belonging to the triangle is at least wmax. Then, edges that connect triangle gadgets

to other vertices are oriented towards the triangle gadgets.

Now suppose that there is a satisfying truth assignment τ for the formula φ. From

τ , we construct an orientation with OPT (Gφ) ≥ min{2wmin, wmax}. If vi = true

in τ , the edge {vi, vi} is oriented from vi to vi; otherwise, from vi to vi. At this

moment, the weighted outdegree of vertices associated with the literals of true and

false assignments is wmax and 0, respectively. (We call the vertices associated with

literals of true (resp., false) assignments true (resp., false) vertices. For example, if a

variable x = false in a truth assignment, then the upper leftmost vertex x is called

a false vertex and the second leftmost vertex x is called a true vertex in Figure 1.)

Each false vertex has at most two edges connected to clause vertices, and in case

a false vertex is connected to zero, one or two clause vertices, then it is connected

respectively to two, one or zero triangle gadgets. We then orient such edges towards

the clause vertices and triangle gadgets, which make the weighted outdegree of each

false vertex 2wmin. Thus the weighted outdegree of each vertex in a variable gadget

is at least min{2wmin, wmax}. Each clause vertex has at least one edge connected to

a true vertex due to the truth assignment τ . We orient this edge towards the true

vertex, which makes the weighted outdegree of the clause vertex at least 2wmin,

because it has an oriented edge (arc) towards to a triangle gadget (see the first

paragraph of this proof). Hence, the weighted outdegree of every vertex is at least

min{2wmin, wmax}, which shows (i).

Next, we prove (ii) by showing that if the graph Gφ has an orientation whose

minimum weighted outdegree is larger than wmin, i.e., at least min{2wmin, wmax},
then φ is satisfiable by constructing the satisfying truth assignment. First of all, by
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the assumption that δΛ(G) ≥ min{2wmin, wmax} > wmin for an orientation Λ, we

can assume that each triangle gadget is oriented clockwise (or counterclockwise);

otherwise, it has a vertex whose weighted outdegree is at most wmin, which is a

contradiction. Furthermore, without loss of generality, we can assume that edges

that connect triangle gadgets to other vertices are oriented towards the triangle

gadgets in any orientation.

If an edge in the ith variable gadget vi is oriented from vi to vi, then we assign

vi = true; otherwise, vi = false . Then two edges between a vertex assigned with false

and its two adjacent vertices (in clause and/or triangle gadgets) must be oriented

towards these vertices. (Otherwise, the weighted outdegree of the false vertex is at

most wmin, which contradicts the assumption.) Every clause vertex is connected

with the variable and triangle gadgets. As mentioned above, every edge between

a clause vertex and its triangle gadget can be assumed to be oriented towards the

triangle gadget. It follows that for each clause vertex, there must be at least one

edge directed from the clause vertex towards a vertex v in a variable gadget, and v

must be a true vertex. This means that the above truth assignment satisfies all the

clauses in φ. (End of the proof of Lemma 2) 2

Lemma 2 means that MaxMinO is strongly NP-hard, and furthermore, unless P

= NP, MaxMinO has no pseudo-polynomial time algorithm whose approximation

ratio is smaller than min{2, wmax

wmin
} even if the edge weights are in {wmin, wmax}

(wmin < wmax). In the following we strengthen those results; we prove the NP-

hardness and the inapproximability of MaxMinO for planar bipartite graphs with

the unweighted degree of at most three, by almost the same reduction as the above

from Monotone-Planar-One-In-Three-3-SAT(2L), which is a variant of At-

Most-3-SAT(2L), having both the planarity [17] and the monotonicity [12]. The

planarity means that the graph constructed from an instance CNF, in which two

vertices corresponding to a variable and a clause are connected by an edge if the

variable occurs (positively or negatively) in the clause, is planar. The monotonicity

means that in an input CNF formula each clause contains either only positive literals

or only negative literals. In a graph constructed from a monotone CNF, the distance

from a positive (resp., negative) vertex to a vertex of a clause consisting of only

positive (resp., negative) literals is always odd, and then the distance from a positive

(resp., negative) vertex to a vertex of a clause consisting of only negative (resp.,

positive) literals is always even. This implies that the constructed graph is bipartite.

One-In-Three-3-SAT itself is a variant of 3-SAT problem which asks whether

there exists a truth assignment to the variables so that each clause has exactly

one true literal and thus exactly two false literals (equivalently, each clause has

exactly one false literal and exactly two true literals, and we use this variant for

the reduction.) [19]. The reason why we use One-In-Three-3-SAT instead of At-

Most-3-SAT is to bound the unweighted degrees of the constructed graphs. The

above reduction from At-Most-3-SAT(2L) guarantees that the unweighted de-

grees of constructed graphs are bounded only by four, due to the clause gadgets
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(As for the other gadgets, the unweighted degrees are at most three). In the new

reduction from One-In-Three-3SAT(2L), we do not attach triangle gadgets to

clause vertices, which makes the unweighted degrees of clause vertices three, and

One-In-Three satisfiability guarantees that each clause vertex has two outgoing

edges in an optimal MaxMinO solution.

Planar-One-In-Three-3-SAT is shown to be NP-complete in [18]. By ap-

plying an operation used in [2], we can transform an instance of Planar-One-

In-Three-3-SAT into one ofMonotone-Planar-One-In-Three-3-SAT. More-

over, by applying another operation used in the same paper [2], we can transform

an instance of Monotone-Planar-One-In-Three-3-SAT into Monotone-

Planar-One-In-Three-3-SAT(2L). This implies that the constructed graph is

planar and bipartite and its unweighted degree is at most three. (To preserve the

bipartiteness, we need to use bipartite gadgets, e.g., square gadgets, instead of tri-

angle gadgets. Note that the new bipartite gadgets are connected only to variable

gadgets whose corresponding literals do not appear or appear only once in the

instance CNF.) (End of the proof of Theorem 1) 2

This result is tight in a sense, because if the unweighted degree of the input

graph is bounded by two (i.e., cycles or paths), obviously MaxMinO can be solved

in linear time.

3. An Exact Algorithm for Unweighted Cases

MaxMinO is closely related to the problem of computing a maximum flow in a flow

network with positive edge capacities. Indeed, maximum-flow-based techniques have

been used in [3] to solve the analogous problem of computing an edge orientation

whichminimizes themaximum outdegree of a given unweighted graph (MinMaxO)

in polynomial time. In this section, we extend the results of [3] by showing how a

maximum flow algorithm can be used to efficiently solve unweighted MaxMinO.

For any input graph G = (V,E) to unweighted MaxMinO, let NG = (VG, EG)

be the directed graph with vertex set VG and edge set EG defined by:

VG = E ∪ V ∪ {s, t},
EG =

{

(s, e) | e ∈ E
}

∪
{

(v, t) | v ∈ V
}

∪
{

(e, vi), (e, vj) | e = {vi, vj} ∈ E
}

,

and for any integer q ∈ {0, 1, . . . ,∆}, let NG(q) = (VG, EG, capq) be the flow net-

work obtained by augmenting NG with edge capacities capq, where:

capq(a) =















1, if a = (s, e) with e ∈ E;

1, if a = (e, v) with e ∈ E, v ∈ V ;

q, if a = (v, t) with v ∈ V.

See Fig. 2 and Fig. 3 for an example of a graph G and a corresponding network

NG, respectively.
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v1

v2

v3

v4

v5e1

e2

e4

e3 e5

e6

e7

Fig. 2. An example of a graph G.

v1

v2

v3

v4

v5

e1

e2

e7

e3

e5

e6

vertex setedge set

e4

cap = 1

s t

cap = 1

cap = q

Fig. 3. A flow network NG constructed from the graph G in Fig. 2.

Let F (q) be an integral maximum directed flowa from vertex s to vertex t

in NG(q). Then, for each e = {vi, vj} ∈ E, either zero or one unit of flow in F (q)

passes through the corresponding vertex e in VG, and thus at most one of the two

edges (e, vi) and (e, vj) is assigned one unit of flow. This induces an orientation ΛF (q)

of G based on F (q) as follows: If the flow in F (q) from vertex e to vertex vi equals 1

then set ΛF (q)(e) := (vi, vj); else if the flow in F (q) from e to vj equals 1 then set

ΛF (q)(e) := (vj , vi); else set ΛF (q)(e) arbitrarily.

Let f(q) denote the value of a maximum directed flow from vertex s to vertex t

in NG(q). Then:

Lemma 3. For any q ∈ {0, 1, . . . ,∆}, f(q) ≤ q · n.

Proof. The sum of all edge capacities of edges leading into t in NG(q) is q · n.
Clearly, the value of the maximum flow in NG(q) cannot be larger than this sum.

2

aSince all edge capacities are integers, we may assume by the integrality theorem (see, e.g., [7])
that the flow along each edge in F (q) found by the algorithm in [13] is an integer.
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Lemma 4. For any q ∈ {0, 1, . . . ,∆}, f(q) = q · n if and only if OPT (G) ≥ q.

Proof.

=⇒) Suppose that f(q) = q · n and consider the maximum flow F (q) defined

above. For each v ∈ V , exactly q units of flow leave the corresponding vertex v

in VG because the edge capacity of (v, t) is q and there are n such vertices. This

implies that q units of flow enter v, which is only possible if there are q edges of

the form (e, v) in EG that have been assigned one unit of flow each. Therefore, the

induced orientation ΛF (q) ensures that dΛF (q)
(v) ≥ q for every v ∈ V , which yields

OPT (G) ≥ q.

⇐=) Suppose that OPT (G) ≥ q and let Λ be a max-min orientation of G. Let F ′

be the following directed flow from s to t in NG(∆):

F ′(a)=























1, if a = (s, e) with e ∈ E;

1, if a = (e, vi) with e = {vi, vj} ∈ E and Λ(e) = (vi, vj);

0, if a = (e, vi) with e = {vi, vj} ∈ E and Λ(e) = (vj , vi);

dΛ(v), if a = (v, t) with v ∈ V.

For every v ∈ V , the flow in F ′ along the edge (v, t) in NG(∆) is dΛ(v) ≥
OPT (G) ≥ q. By reducing each such edge flow to q, one obtains a directed flow

which obeys the (stricter) edge capacity constraints of the flow network NG(q) and

has flow value n ·q. Thus, there exists a maximum directed flow from s to t in NG(q)

with value q · n, so f(q) ≥ q · n. It follows from Lemma 3 that f(q) = q · n. 2

Lemmas 3 and 4 suggest the algorithm for unweighted MaxMinO named Al-

gorithm Exact-1-MaxMinO.

Algorithm 1 Algorithm Exact-1-MaxMinO

1: Construct NG.

2: Use binary search on q in the interval {0, 1, . . . ,∆} to find the integer q such

that f(q) = q · n and f(q + 1) < (q + 1) · n.
3: Compute F (q) as a maximum directed flow from s to t in NG(q).

4: Return ΛF (q).

Theorem 5. Exact-1-MaxMinO solves unweighted MaxMinO in O(m3/2 · logm ·
log2 ∆) time.

Proof. The correctness of Exact-1-MaxMinO is guaranteed by Lemmas 3 and 4.

Recall that the algorithm of Goldberg and Rao [13] computes a maximum flow

in a flow network with N vertices, M edges, and maximum edge capacity C in

O(M ·min{N2/3, M1/2} · log(N2/M) · logC) time. Thus, for any q ∈ {0, 1, . . . ,∆},
to compute a maximum flow in the flow network NG(q) takes O(m3/2 · logm · log∆)
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time because NG(q) contains m+n+2 = O(m) vertices and 3m+n = O(m) edges

and the capacity of each edge in NG(q) is upper-bounded by ∆. Algorithm Exact-

1-MaxMinO can therefore be implemented to run in O(m3/2 · logm · log2 ∆) time.

2

Finally, we outline how Exact-1-MaxMinO can be applied to solve weighted

MaxMinO exactly. Let X be the set of all edges in E with weight larger than wmin.

First fix an orientation Λ of edges in X , and modify the flow network NG(q) based

on Λ:

capq(a) =











































1, if a = (s, e) for e ∈ E \X ;

0, if a = (s, e) for e ∈ X ;

1, if a = (e, v) for e ∈ E \X, v ∈ V ;

0, if a = (e, v) for e ∈ X, v ∈ V ;

max

{⌈

q −∑

e=(v,u)∈X,

Λ(e)=(v,u)

w(e)

wmin

⌉

, 0

}

, if a = (v, t) for v ∈ V.

Note that the definition of capq(a) for a = (v, t) comes from how many edges of

weight wmin should be oriented from v under Λ to achieve weighted outdegree

at least q. Then, run Exact-1-MaxMinO for each Λ while testing whether the flow

value is
∑

v∈V capq((v, t)). If the answer is yes, there exists an orientation whose

minimum weighted outdegree is at least q. Thus by binary search on q in the interval

{0, 1, . . . , dW/ne}, we can select the best resulting orientation.

The asymptotic running time becomes the same as that of Exact-1-MaxMinO

multiplied by 2|X|, which is the number of candidates of Λ, and with an increase

due to the larger interval for the binary search on q and the edge capacities being

upper-bounded by max{wmax,W/n} instead of ∆.

Theorem 6. Weighted MaxMinO can be solved in O(m3/2 · logm · log(wmax +

W/n) · log(W/n) · 2|X|) time, where X = {e ∈ E | w(e) > wmin}. 2

Corollary 7. If |X | = O(log n) then weighted MaxMinO can be solved in polyno-

mial time. 2

4. A Simple Approximation Algorithm for General Cases

Here, we prove that ignoring the edge weights of the input graph and applying

Exact-1-MaxMinO on the resulting unweighted graph immediately yields a wmax

wmin
-

approximation algorithm for the general case of the problem. The algorithm is

named Approximate-MaxMinO and is listed in Algorithm 2.

Theorem 8. Approximate-MaxMinO runs in O(m3/2 · logm · log2 ∆) time and is a
wmax

wmin
-approximation algorithm for MaxMinO.

Proof. The asymptotic running time of Algorithm Approximate-MaxMinO is the

same as that of Exact-1-MaxMinO.
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Algorithm 2 Algorithm Approximate-MaxMinO

1: Let G′ be the undirected graph obtained from G by replacing the weight of

every edge by 1.

2: Apply Algorithm Exact-1-MaxMinO onG′ and let Λ′ be the obtained orientation.

3: Return Λ′.

To analyze the approximation ratio, observe that δΛ(G) ≥ wmin · δΛ(G′) for any

orientation Λ of G because the weight of any edge in G is at least wmin times larger

than its weight in G′. Similarly, wmax · δΛ(G′) ≥ δΛ(G) for any orientation Λ of G.

Now, let Λ′ be the optimal orientation for G′ returned by Approximate-MaxMinO

and let Λ∗ be an optimal orientation for G. Note that δΛ′(G′) ≥ δΛ∗(G′). Thus,

δΛ′(G) ≥ wmin · δΛ′(G′) ≥ wmin · δΛ∗(G′) ≥ wmin

wmax
· δΛ∗(G) = wmin

wmax
·OPT (G). 2

5. Exact Algorithms for Special Graphs

5.1. An exact algorithm for cactus graphs

In this section, we present a polynomial time algorithm which obtains optimal

orientations for cactus graphs. A graph is a cactus if every edge is part of at most

one cycle. To this end, we introduce vertex weight αG(v) for each vertex v in a

graph G which is considered as 0 in the input graph (we omit the subscript G of

αG(v) if it is apparent). Here we define the notion of weighted outdegree for a vertex

in a vertex and edge weighted graph. The weighted outdegree dΛ(v) of a vertex v is

defined as the weight of v itself plus the total weight of outgoing arcs of v, i.e.,

dΛ(v) = α(v) +
∑

{u,v}∈E:
Λ({u,v})=(v,u)

w({u, v}).

In a cactus graph, a vertex in a cycle is a gate if it is adjacent to any vertex that

does not belong to the cycle. Note that the unweighted degree of a gate is at least

three. As for the number of gates in a cycle, the following is known:

Proposition 9 (Proposition 2 in [2]) In a cactus graph G in which deg(v) ≥ 2

for every vertex v, there always exists a cycle with at most one gate. 2

The main part of the proposed algorithm Exact-Cactus-MaxMinO is shown in

Algorithm 3, which solves the decision version of the problem MaxMinO: Given a

number K, this problem asks whether there exists an orientation whose value is at

least K. We can develop an algorithm for the original problem MaxMinO by using

this algorithm O(log∆) times in a binary search manner on optimal value, which

is upper-bounded by ∆.

The correctness of Exact-Cactus-MaxMinO is based on the following property on

optimal orientations for two graphs.
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Algorithm 3 Algorithm Exact-Cactus-MaxMinO

1: repeat

2: For a vertex v,

3: if α(v) + d(v) < K then

4: output No and halt.

5: else if α(v) ≥ K then

6: Λ(e) := (u, v) for every edge e = {u, v} incident to v. Increase α(u) by

w({u, v}) for all edges {u, v}’s, and then remove v and all such edges.

7: else if deg(v) = 1 then

8: (let its connecting edge be e = {v, u})
9: Λ(e) := (v, u) and then remove v and e.

10: else if deg(v) = 2 then

11: (let e1 = {p, v} and e2 = {v, q})
12: if α(v) + w(e1) < K and α(v) + w(e2) < K then

13: Λ(e1) := (v, p) and Λ(e2) := (v, q). Remove v, e1, and e2.

14: else if α(v) + w(e1) < K and α(v) + w(e2) ≥ K then

15: Λ(e1) := (p, v) and Λ(e2) := (v, q) and also increase α(p) by w(e1).

Remove v, e1, and e2.

16: end if

17: end if

18: until there does not exist a vertex v satisfying either one of the above conditions

19: for a cycle C := 〈v0, v1, · · · , v` = v0〉 that has at most one gate do

20: if C does not have a gate then

21: Λ({vi, vi+1}) := (vi, vi+1) for 0 ≤ i ≤ `− 1. Remove C.

22: else

23: (Let v0 be the gate.)

24: if w({v0, v1}) > w({v0, v`−1}) then
25: Λ({vi, vi+1}) := (vi, vi+1) for 0 ≤ i ≤ ` − 1 and increase α(v0) by

w({v0, v1})
26: else

27: Λ({vi, vi+1}) := (vi+1, vi) for 0 ≤ i ≤ ` − 1 and increase α(v0) by

w({v0, v`−1}).
28: end if

29: Remove C except the gate v0.

30: end if

31: end for

32: if the graph is empty then

33: output Λ and halt.

34: else

35: go back to line 1.

36: end if
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Proposition 10. Consider two graphs G and G′ that differ only on their vertex

weights. If αG(v) ≤ αG′(v) for every vertex v, then OPT (G) ≤ OPT (G′) holds. 2

Theorem 11. Given a cactus graph G and a target K, Exact-Cactus-MaxMinO

outputs an orientation Λ such that δΛ(G) ≥ K if such an orientation exists, in

polynomial time.

Proof. First we estimate the running time. Note that the number of edges of a

cactus graph is O(n) due to the planarity. Since each of executions of repeat loop

or for loop determines the direction of at least one edge, the total number of times

those steps are being processed is bounded by O(n). Also all of those steps can be

done in O(n) time because they only find a vertex or a cycle with testing certain

conditions by a constant time. Hence the total running time is O(n2).

The running time can be reduced to O(n) by a careful implementation. Since now

the input is a cactus graph, as preprocessing, (unweighted and weighted) degrees of

the vertices are obtained and all cycles with a number of its gates are enumerated

by, e.g., the depth-first-search in O(n) time. Note here that we do not need to sort

them, but maintain a list of vertices having unweighted degree one or two, and also

a list of cycles having at most one gate. The repeat procedure of lines 1-18 just

updates these information, i.e., unweighted/weighted degrees and vertex weights for

the processed vertex v and its adjacent vertices. The total number of these updates

is bounded above by O(n) since they are updated only when the orientation of

an edge incident to v is determined. As for the for procedure of lines 19-31, the

discussion is similar and its running time is also bounded by O(n). Therefore the

total running time of this algorithm is O(n).

Next we show the correctness of the algorithm. Each execution that removes

some vertices and edges from the current graph H (lines 6, 9, 13, 15, 21 and 29)

may increase the weight of some remaining vertices, and then obtains a modified

graph H ′. What we would like to show is that if OPT (H) ≥ K, then (i) also

OPT (H ′) ≥ K, (ii) the determined directions of edges are correct, and so (iii) all

the vertices removed at the step have weighted outdegree at least K.

Lines 3-4: If the condition is satisfied, the answer is clearly No.

Assume that OPT (H) ≥ K.

Lines 5-9: It holds that α(v) + w(e) ≥ K since it passes through the check

at line 3. Let us consider the case that α(v) ≥ K. The weighted outdegree of the

removed vertex v is at least α(v) ≥ K in this case whichever the directions assigned

to edges incident to v are. For simplicity, assume deg(v) = 1, i.e., only one edge

e = {u, v} is incident to v for a while. There are two possibilities: We assign either

Λ(e) := (u, v) or Λ(e) := (v, u). Let the graph obtained by the former assignment

with increasing α(u) by w(e) be H ′, and let the graph obtained by the latter be

H ′′. From Proposition 10, we observe that OPT (H ′) ≥ OPT (H ′′). If OPT (H ′′) ≥
OPT (H), then it holds that OPT (H ′) ≥ OPT (H ′′) ≥ OPT (H) for both of the

directions of the edge e. Conversely, the inequality OPT (H ′′) < OPT (H) means
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that the weighted outdegree of the vertex u must be augmented by orienting the

edge e = {v, u} as (u, v) in the optimal orientation for H , because, otherwise it

contradicts that OPT (H) is the optimal value. Thus the assignment Λ(e) := (u, v)

is correct and it holds that OPT (H ′) ≥ OPT (H) ≥ K. The argument for the case

deg(v) ≥ 2 is similar and it also holds that OPT (H ′) ≥ OPT (H).

In the other case that α(v) < K, if we assign Λ(e) := (u, v), then the weighted

outdegree of v is less than K, which contradicts the assumption OPT (H) ≥ K.

Hence the assignment Λ(e) := (v, u) is correct and also the removed vertex v has

weighted outdegree at least K. Also it holds that OPT (H ′) ≥ OPT (H), otherwise,

it contradicts that OPT (H) is the optimal value.

Lines 10-17: If we do not follow the rule at lines 12-13, the weighted outdegree

of the processed vertex would be less than K ≤ OPT (H), which implies the oper-

ation is correct. As for the rule at lines 14-15, to guarantee the weighted outdegree

of v is at least K, Λ(e2) should be (v, q). Then α(v) ≥ K already holds, and we can

fix Λ(e1) = (p, v), as well as the rule at line 6.

Lines 19-31: First of all, at the beginning of this part, it holds that deg(v) ≥ 2

for every vertex v since it passes lines 7-9. Also for any vertex having degree two,

if we orient one incident edge outward, its outdegree in the resulted orientation

becomes at least K, because such vertices pass lines 10-17. From Proposition 9, we

can always find a cycle having at most one gate.

Lines 20-21: It is obvious that the vertices removed at this step have weighted

outdegree at least K because they passed lines 10-17. In addition to that it holds

that OPT (H ′) ≥ OPT (H) since C is a connected component in H and OPT (H) =

min{OPT (C), OPT (H ′)}.
Lines 22-31: The vertices removed in this step all have weighted outdegree

at least K because of the conditions of lines 10-17. Also the proposed assignment

of directions for the cycle C increases α(v0) as much as possible without breaking

optimality, and it derives OPT (H ′) ≥ K by a similar argument as the one used in

lines 5-9.

By the above discussion, if all the vertices are removed without answering No,

the weighted outdegree of every vertex by the orientation Λ is at least K. 2

From Theorem 11, we can solve MaxMinO for cactus graphs in polynomial

time by using Exact-Cactus-MaxMinO as an engine of the binary search.

5.2. Pseudo-polynomial time algorithms for series-parallel graphs

In this subsection, we describe the main idea of a pseudo-polynomial time algorithm

solving MaxMinO for series-parallel graphs. The definition of series-parallel graphs

is as follows (e.g., see [15]):

Definition 12. A series-parallel graph with distinguished terminals l and r is de-

noted (G, l, r) and is defined recursively as follows:

• The graph consisting of a single edge {v1, v2} is a series-parallel graph

(G, l, r) with l = v1 and r = v2.
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• A series operation (G1, l1, r1)�s (G2, l2, r2) forms a series-parallel graph by

identifying r1 with l2. The terminals of the new graph are l1 and r2.

• A parallel operation (G1, l1, r1)�p (G2, l2, r2) forms a series-parallel graph

by identifying l1 with l2 and r1 with r2. The terminals of the new graph are

l1 and r1.

• A jackknife operation (G1, l1, r1)�j (G2, l2, r2) forms a series-parallel graph

by identifying r1 with l2; the new terminals are l1 and r1.

The pseudo-polynomial time algorithm is based on a dynamic programming, and

utilizes a decomposition tree [20] defined by the series, parallel and jackknife op-

erations. It is known that determining whether a given graph G = (V,E) is a

series-parallel graph can be done in linear time [22, 6]. Moreover, we can also obtain

a decomposition tree T of G in linear time if G is a series-parallel graph.

For an arbitrary series-parallel graph (G, l, r), where l and r are left and right ter-

minals, respectively, and two values wl ∈ {0, 1, . . . , wG(l)
def
=

∑

{l,u}∈E(G)w({l, u})}
and wr ∈ {0, 1, . . . , wG(r)

def
=

∑

{r,u}∈E(G)w({r, u})}, we define

WSP (G, l, r, wl, wr) = max
Λ:dΛ(l)=wl,

dΛ(r)=wr

min
v∈V (G)\{l,r}

{dΛ(v)} ,

where Λ is an orientation for G.

In a decomposition tree, let us assume that a (sub)tree Ta is composed from

its subtrees Tb and Tc by an operation series, parallel, or jackknife, where Ta, Tb

and Tc correspond to (Ga, la, ra), (Gb, lb, rb) and (Gc, lc, rc), respectively. Roughly

speaking, for series, parallel, and jackknife operations, the following equations (1),

(2), and (3) hold, respectively:

WSP (Ga, la, ra, wl, wr) = max
wb,wc

min







WSP (Gb, lb, rb, wl, wb),

WSP (Gc, lc, rc, wc, wr),

wb + wc







. (1)

WSP (Ga, la, ra, wl, wr) = max
wbl+wcl=wl,

wbr+wcr=wr

min

{

WSP (Gb, lb, rb, wbl, wbr),

WSP (Gc, lc, rc, wcl, wcr)

}

. (2)

WSP (Ga, la, ra, wl, wr) = max
wbr+wcl=wr,

wcr

min

{

WSP (Gb, lb, rb, wl, wbr),

WSP (Gc, lc, rc, wcl, wcr)

}

. (3)

The above equations (1), (2) and (3) show a principle of optimality, which yields

an algorithm based on the dynamic programming. Algorithm 4 shows the algorithm.

Now we discuss the time complexity of AlgSP. As mentioned above, Step 1

is done in O(m) time. In Step 2, we keep wG(l) × wG(r) WSP values for each

(G, l, r), and if we have all WSP values for its two children, the evaluation of

equations (1), (2) and (3) can be done in wGb
(rb)×wGc

(lc), wGa
(la)×wGa

(ra) and

wGa
(ra)×wGc

(rc) time, respectively. All of these are bounded by ∆2. The number
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Algorithm 4 Algorithm AlgSP

1: Construct a decomposition tree T for G, and let l and r be two terminals of G.

2: For all wl = 0, 1, . . . , wG(l) and wr = 0, 1, . . . , wG(r), compute

WSP (G, l, r, wl, wr) and its orientation in a recursive manner by equations (1),

(2) and (3).

3: Output an orientation that gives maxwr≤∆,wl≤∆{WSP (G, l, r, wl, wr) |
WSP (G, l, r, wl, wr) ≤ min{wl, wr}}.

of recursions is at most m = O(n), so this step is done in O(n∆2). Step 3 can be

done also in O(∆2) time. Therefore the total running time of AlgSP is O(n∆2),

which is pseudo-polynomial for the input size.

Theorem 13. Given a series-parallel graph G, AlgSP computes an optimal orien-

tation of G in O(n∆2) time.

6. Concluding Remarks

In this paper, we have studied the problem of orienting all edges of an input graph

so that the minimum weighted outdegree among all vertices is maximized, taken

over all possible orientation of G. We have seen that MaxMinO is strongly NP-

hard for planar graphs, but it is solvable in polynomial time for cactus graphs. Also,

it is not difficult to show the weak NP-hardness of MaxMinO for series-parallel

graphs [20], which is an intermediate class between cactus graphs and planar graphs.

This hardness result is tight in the sense that it cannot be extended to strong NP-

hardness due to the pseudo-polynomial time algorithm for series-parallel graphs

shown in Section 5.2.

It is straightforward to extend Algorithm Exact-1-MaxMinO from Section 3 to

solve a more general variant of unweighted MaxMinO in which the input consists

of an unweighted hypergraph G = (V, F ), where each hyperedge f ∈ F is defined

as a non-empty subset of V . (If every hyperedge contains exactly two vertices then

this is the original unweighted MaxMinO problem.) We only need to modify the

construction of the flow network NG in Step 1 of Algorithm Exact-1-MaxMinO so

that for each hyperedge f ∈ F and each vertex vi ∈ f , we include the directed

edge (f, vi) in the edge set EG:

VG = F ∪ V ∪ {s, t},
EG =

{

(s, f) | f ∈ F
}

∪
{

(v, t) | v ∈ V
}

∪
{

(f, vi) | vi ∈ f and f ∈ F
}

.

In other words, for every hyperedge f , if f contains c vertices then the cor-

responding vertex f in the flow network NG will have c outgoing edges. The

new NG still has m + n + 2 = O(m) vertices but the number of edges increases

to m+
∑

fi∈F |fi|+ n, which is O(mn) in the worst case. Hence, the running time

of the modified Algorithm Exact-1-MaxMinO becomes O(m3/2 ·n ·min{m1/6, n1/2} ·
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log(m/n) · log2 ∆), but in case every hyperedge contains at most O(1) vertices then

the total number of edges in NG is only O(m) and the algorithm’s running time

remains O(m3/2 · logm · log2 ∆) as in Theorem 5. Also note that by representing

each gift in the Santa Claus problem (see Section 1) by one hyperedge, it follows

that the unweighted version of the Santa Claus problem where each gift has value 0

or 1 for each child can be solved efficiently as above.

There are several open problems; the most important one is to improve the

approximation algorithm for the general (weighted) case of MaxMinO provided in

Section 4. To obtain a constant factor approximation ratio, however, might need

considerable work.
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