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.jpAbstra
tWe study a new variant of the graph orientation problem
alled MAXMINO where the input is an undire
ted, edge-weighted graph and the obje
tive is to assign a dire
tionto ea
h edge so that the minimum weighted outdegree(taken over all verti
es in the resulting dire
ted graph) ismaximized. All edge weights are assumed to be positiveintegers. This problem is 
losely related to the job s
hedulingon parallel ma
hines, 
alled the ma
hine 
overing problem,where its goal is to assign jobs to parallel ma
hines su
hthat ea
h ma
hine is 
overed as mu
h as possible. First,we prove that MAXMINO is strongly NP-hard and 
annotbe approximated within a ratio of 2 � � for any 
onstant� > 0 in polynomial time unless P=NP, even if all edgeweights belong to f1; 2g, every vertex has degree at mostthree, and the input graph is bipartite or planar. Next, weshow how to solve MAXMINO exa
tly in polynomial timefor the spe
ial 
ase in whi
h all edge weights are equal to 1.This te
hnique gives us a simple polynomial-time wmaxwmin -approximation algorithm for MAXMINO where wmax andwmin denote the maximum and minimum weights amongall the input edges. Furthermore, we also observe that thisapproa
h yields an exa
t algorithm for the general 
ase ofMAXMINO whose running time is polynomial whenever thenumber of edges having weight larger than wmin is at mostlogarithmi
 in the number of verti
es. Finally, we show thatMAXMINO is solvable in polynomial time if the input is a
a
tus graph.

Keywords: Graph orientation, Approximation algorithm, Hard-ness of approximation.1. Introdu
tionAn orientation of an undire
ted graph is an assignment ofa dire
tion to ea
h of its edges. Graph orientation is a well-studied area of graph theory and 
ombinatorial optimizationand thus a large variety of obje
tive fun
tions have been
onsidered so far. The obje
tive fun
tion of the presentpaper is the maximization of the minimum outdegree. Itis 
losely related to the 
lassi
 job s
heduling on parallelma
hines. In the parallel ma
hine s
heduling s
enario, ourproblem 
an be regarded as the restri
ted assignment variantof the ma
hine 
overing problem [18℄, where its goal isto assign jobs to parallel ma
hines su
h that ea
h ma
hineis 
overed as mu
h as possible. In the following, we �rstde�ne several terminologies and our obje
tive fun
tion, thendes
ribe related work, and summarize our results.Problem de�nition. Let G = (V;E;w) be a given undi-re
ted, edge-weighted graph with vertex set V and edgeset E whose weights are numbers spe
i�ed by a fun
tion w.An orientation � of G is de�ned to be any fun
tion on E ofthe form � : fu; vg 7! f(u; v); (v; u)g, i.e., an assignmentof a dire
tion to ea
h undire
ted edge fu; vg in E. Givenan orientation � of G, the weighted outdegree d�(v) ofa vertex v 2 V is de�ned as the total weight of alledges leaving v, i.e., d�(v) = P fu;vg2E:�(fu;vg)=(v;u) w(fu; vg),and the minimum weighted outdegree Æ�(G) is de�ned by



Æ�(G) = minv2V fd�(v)g.In this paper we deal with the problem of �nding an ori-entation of the input graph su
h that the minimum weightedoutdegree is maximum. We 
all this problem MaximumMinimum Weighted Outdegree Graph Orientation Problem(MAXMINO for short): The input is an undire
ted, edge-weighted graph G = (V;E;w) with w : E ! Z+, whereZ+ denotes the set of positive integers, and the obje
tiveis to �nd an orientation �� of G whi
h maximizes Æ�(G)over all possible orientations � of G. Su
h an orientationis 
alled a max-min orientation of G, and the 
orrespondingvalue Æ��(G) is denoted by OPT (G). The spe
ial 
ase ofMAXMINO where all edge weights of the input graph areequal to 1 is referred to as unweighted MAXMINO.Throughout the paper, we use the following notations:n = jV j, m = jEj, and W =Pe2E w(e) for the input G.Furthermore, wmax and wmin denote the maximum andminimum weights, respe
tively, among all edges in E. Forany v 2 V , the (unoriented) weighted degree of v, denotedby d(v), is the sum of all weights of edges in
ident to v, and� = maxv2V fd(v)g is the maximum (unoriented) weighteddegree among all verti
es in G. Also for a (�xed) v 2 V ,we 
all jffu; vg 2 Egj (i.e., the number of edges in
identto v) the (unoriented) unweighted degree of v, and denoteit by deg(v). We also 
all maxv2V deg(v) the (unoriented)unweighted degree of G, both of whi
h will be used to fo
uson the topologi
al stru
ture of the graph.We say that an algorithm A is a �-approximation algo-rithm for MAXMINO or that A's approximation ratio isat most �, if OPT (G) � � � A(G) holds for any inputgraph G, where A(G) is the minimum weighted outdegreein the orientation returned by A on input G.Related work. MAXMINO studied in the 
urrent workis 
losely related to the restri
ted assignment variant ofthe ma
hine 
overing problem, whi
h is often 
alled theSanta Claus problem [4℄, [5℄, [8℄, [12℄: Santa Claus has mgifts (
orresponding to jobs, and to edges in MAXMINO)that he wants to distribute among n kids (
orrespondingto ma
hines, and to verti
es in MAXMINO). Some giftmay be worth $100 but another may be not so expensive,and some kids do not want some of the gifts whatsoever(i.e., its value is 0 for the kids). The goal of Santa Clausis to distribute the gifts in su
h a way that the leastlu
ky kid is as happy as possible. In addition, MAXMINOhas the following restri
tion (whi
h might be strong andsomehow strange in the Santa Claus s
enario): Every giftis of great value only to exa
tly two kids and thus it mustbe delivered to one of them. For the Santa Claus problem,Golovin [12℄ provided an O(pn)-approximation algorithmfor the restri
ted 
ase where the value of ea
h gift belongsto f1; kg for some integer k. Bansal and Sviridenko [4℄
onsidered the general value 
ase and showed that a 
ertainlinear programming relaxation 
an be used to design an

O(log logm= log log logm)-approximation algorithm, whileBezakova and Dani [5℄ already showed that the general 
aseis NP-hard to approximate within ratios smaller than 2.Another obje
tive fun
tion studied for the graph orienta-tion problem is that of minimizing the maximum weightedoutdegree (MINMAXO), also known as Graph Balan
-ing [1℄, [2℄, [3℄, [7℄, [13℄, [17℄: Given an undire
ted graphwith edge weights, we are asked to assign a dire
tion toea
h edge so that the maximum outdegree is minimized. Itis obvious that MINMAXO is generally NP-hard. Asahiroet al. [2℄ showed that it is still weakly NP-hard for outer-planar graphs, and strongly NP-hard for P4-bipartite graphs.Fortunately, however, they also showed [2℄ that MINMAXOis tra
table if the input is limited to trees or even to 
a
tusgraphs. Note that the 
lass of 
a
tus graphs is a maximalsubset of the 
lass of outerplanar graphs and the 
lass of P4-bipartite graphs, and a minimal superset of the 
lass of trees.Very re
ently, Ebenlendr et al. [7℄ designed a polynomial-time 1:75-approximation algorithm for the general weighted
ase, and Asahiro et al. [1℄ showed that MINMAXO 
anbe approximated within an approximation ratio of 1:5 inpolynomial-time if all edge weights belong to f1; 2g. As forinapproximability, it is known that MINMAXO is NP-hardto approximate within approximation ratios smaller than 1:5even for this restri
ted f1; 2g-
ase [1℄, [7℄.Our results. In this paper we study the 
omputational
omplexity and (in)approximability of the ma
hine 
overingproblem from the viewpoint of the graph based problem, i.e.,graph orientation. In Se
tion 2, we prove that MAXMINOis strongly NP-hard and 
annot be approximated within aratio of minf2; wmaxwmin g � � for any 
onstant � > 0 in poly-nomial time unless P=NP, even if all edge weights belongto fwmin; wmaxg, every vertex has unweighted degree atmost three, and the input graph is bipartite and planar. Asmentioned above, although MAXMINO imposes a strongrestri
tion on the Santa Claus problem, unfortunately it isstill hard.Se
tion 3 �rst 
onsiders the unweighted MAXMINO prob-lem. We 
an obtain an optimal orientation algorithm whi
hruns in O(m3=2 � logm � log2�) time for the spe
ial 
ase inwhi
h all edge weights are equal to 1. Here, it is important tonote that Golovin [12℄ already 
laimed that the unweighted
ase of MAXMINO (more pre
isely, the Santa Claus prob-lem) 
an be solved in polynomial time, but no proof ofthis 
laim has ever appeared as far as the authors know.Our 
ontribution here is to provide the non-trivial, ef�
ientrunning time with its expli
it proof. Then, we observe thatour approa
h yields an exa
t algorithm for the general 
aseof MAXMINO whose running time is polynomial wheneverthe number of edges having weight larger than wmin is atmost logarithmi
 in the number of verti
es. In Se
tion 4,this ef�
ient algorithm for the unweighted MAXMINO alsogives us a simple wmaxwmin -approximation algorithm running in



the same time for general (weighted) 
ase of MAXMINO,i.e., it always outputs an orientation �0 of G whi
h satis�esOPT (G) � wmaxwmin � Æ�0(G). This simple approximationalgorithm is best possible for the 
ase that the weights ofedges belong to fwmin; wmaxg with wmax � 2wmin sin
ethe lower bound of approximation ratios is minf2; wmaxwmin gdes
ribed above.In the �eld of 
ombinatorial optimization, mu
h work isoften devoted to seek a subset of instan
es that is tra
tableand as large as possible. For example, if the input graph Gis a tree, then OPT (G) is always 0 be
ause the numberof verti
es is larger than the number of edges, and in anyorientation of G, at least one vertex must have no outgoingedges. Also, for the 
ase of 
y
les, MAXMINO is quitetrivial sin
e the 
lo
kwise or 
ounter
lo
kwise orientationalong the 
y
le gives us the optimal value of wmin. Onthe other hand, the 
lass of planar graphs is too largeto allow a polynomial-time optimal algorithm (under theassumption of P6=NP). Hen
e, our goal in Se
tion 5 is to�nd a polynomially solvable subset between trees and planargraphs. Then, we show that MAXMINO remains in P evenif we make the set of instan
es so large that it 
ontains the
lass of 
a
tus graphs.2. Hardness resultsIn this se
tion, we show the MAXMINO problem isstrongly NP-hard even if all the edge weights belong tofwmin; wmaxg for any integers wmin < wmax and the inputgraph is bipartite and planar. The proof is by a redu
tionfrom AT-MOST-3-SAT(2L).AT-MOST-3-SAT(2L) is a restri
tion of 3-SAT whereea
h 
lause 
ontains at most three literals and ea
h literal(not variable) appears at most twi
e in a formula. It 
anbe easily proved that AT-MOST-3-SAT(2L) is NP-hard byusing problem [LO1℄ on p. 259 of [9℄.First, we pi
k any �xed integers for wmin and wmaxsu
h that wmin < wmax. Given a formula � of AT-MOST-3-SAT(2L) with n variables fv1; : : : ; vng and m 
lausesf
1; : : : ; 
mg, we then 
onstru
t a graph G� in
ludinggadgets that mimi
 (a) variables and (b) 
lauses. To de�nethese, we prepare a gadget 
onsisting of a 
y
le of 3 verti
esand 3 edges (i.e., a triangle) where ea
h edge of the 
y
lehas weight wmax. We 
all this a triangle gadget. Apart fromthese triangle gadgets, we de�ne gadgets for (a) variablesand (b) 
lauses: (a) Ea
h variable gadget 
orresponding toa variable vi 
onsists of two verti
es labeled by vi and viand one edge fvi; vig between them. The weight of fvi; vigis wmax. By the de�nition of AT-MOST-3-SAT(2L), someliterals (say vi for example) do not o

ur (or may o

uronly on
e). In su
h a 
ase, we atta
h a triangle gadget to thevariable gadget by adding two edges (one edge) of weightwmin that 
onne
ts vertex vi and two different verti
es (onevertex) of the triangle gadget. (b) Ea
h 
lause gadget 
onsists

of one representative vertex labeled by 
j , 
orresponding to
lause 
j of �, and a triangle gadget 
onne
ted to this 
j-vertex by an edge of weight wmin. The representative vertex
j is also 
onne
ted to at most three verti
es in the literalgadgets that have the same labels as the literals in the 
lause
j , by edges of weight wmin. For example, if 
1 = x _ yappears in �, then vertex 
1 is 
onne
ted to verti
es x andy. (See Figure 1.) We have the following lemma.Lemma 1: For the redu
ed graphG�, the following holds:(i) OPT (G�) � minf2wmin; wmaxg if � is satis-�able.(ii) OPT (G�) � wmin if � is not satis�able.Proof: First, if Æ�(G) > wmin for an optimal orien-tation �, then we 
an assume that ea
h triangle gadget isoriented in su
h a way that the triangle forms a dire
ted
y
le in an optimal orientation, whi
h guarantees that theminimum weighted outdegree among those verti
es belong-ing to the triangle is at least wmax (otherwise, it has a vertexwhose weighted outdegree is at most wmin). Due to this
y
le orientation, we 
an also assume that edges that 
onne
ttriangle gadgets to other verti
es are oriented towards thetriangle gadgets in the optimal orientation.Now we prove (i). Suppose that there is a satisfyingtruth assignment � for the formula �. From � , we 
onstru
tan orientation with OPT (G�) � minf2wmin; wmaxg. Ifvi = true in � , the edge fvi; vig is oriented from vi tovi; otherwise, from vi to vi. At this moment, the weightedoutdegree of verti
es asso
iated with the literals of true andfalse assignments is wmax and 0, respe
tively. (We 
allthe verti
es asso
iated with literals of true (resp., false)assignments true (resp., false) verti
es. For example, if avariable x = false in a truth assignment, then the upperleftmost vertex x is 
alled a false vertex and the se
ondleftmost vertex x is 
alled a true vertex in Figure 1.) Ea
hfalse vertex has one or two edges 
onne
ted to 
lauseverti
es, and in 
ase a false vertex is 
onne
ted to one 
lausevertex, then it is 
onne
ted to a triangle gadget. We thenorient su
h edges towards the 
lause verti
es and trianglegadgets, whi
h make the weighted outdegree of ea
h falsevertex 2wmin. Thus the weighted outdegree of ea
h vertexin a variable gadget is at least 2wmin. Ea
h 
lause vertexhas at least one edge 
onne
ted to a true vertex due to thetruth assignment. We orient this edge towards the true vertex,whi
h makes the weighted outdegree of the 
lause vertex atleast 2wmin, be
ause it has an edge 
onne
ted to a trianglegadget. Hen
e, the weighted outdegree of every vertex is atleast minf2wmin; wmaxg, whi
h shows (i).Next, we prove (ii) by showing that if the graph G�has an orientation whose minimum weighted outdegreeis at least minf2wmin; wmaxg, then � is satis�able by
onstru
ting the satisfying truth assignment. If an edge inthe ith variable gadget vi is oriented from vi to vi, then weassign vi = true; otherwise, vi = false . Then two edgesbetween a vertex assigned with false and its two adja
ent
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lausegadget
variablegadget
2 = �x _ y _ z2 edges

Figure 1. Redu
tion from AT-MOST-3-SAT(2L) (Solid and dotted edges have weight wmax and wmin, respe
tively.)
lause verti
es must be oriented towards the 
lause verti
es.(Otherwise, the weighted outdegree of the false vertex is atmost wmin, whi
h 
ontradi
ts the assumption.) Every 
lausevertex is 
onne
ted with the variable and triangle gadgets.As mentioned above, every edge between a 
lause vertex andits triangle gadget 
an be assumed to be oriented towardsthe triangle gadget. It follows that for ea
h 
lause vertex,there must be at least one edge dire
ted towards the 
lausevertex from a vertex v in a variable gadget, and v must bea true vertex. This means that the above truth assignmentsatis�es all the 
lauses in �. �From Lemma 1, we immediately obtain the followingtheorem.Theorem 2: MAXMINO is strongly NP-hard even if theedge weights are in fwmin; wmaxg (wmin < wmax). �Also the (un)satis�ability gap of Lemma 1 yields thefollowing theorem.Theorem 3: Even if the edge weights are infwmin; wmaxg, MAXMINO has no pseudo-polynomialtime algorithm whose approximation ratio is smaller thanminf2; wmaxwmin g, unless P = NP. �Similarly, we 
an show the NP-hardness of MAXMINOfor planar bipartite graphs by almost the same redu
tionas the above from MONOTONE-PLANAR-ONE-IN-THREE-3-SAT(2L), whi
h is a variant of AT-MOST-3-SAT(2L),having both the planarity [14℄ and the monotoni
ity [10℄.ONE-IN-THREE-3-SAT itself is a variant of 3-SAT prob-lem whi
h asks whether there exists a truth assignmentto the variables so that ea
h 
lause has exa
tly one trueliteral (and thus exa
tly two false literals) [16℄. The rea-son why we use ONE-IN-THREE-3-SAT instead of AT-MOST-3-SAT is to bound the unweighted degrees of the
onstru
ted graphs. While the above redu
tion from AT-MOST-3-SAT(2L) guarantees that the unweighted degreesof 
onstru
ted graphs are bounded by four, we 
an boundthe unweighted degrees of 
onstru
ted graph from ONE-IN-THREE-3SAT(2L) by three. In the new redu
tion, we donot atta
h triangle gadgets to 
lause verti
es, whi
h makesthe unweighted degrees of 
lause verti
es three, and One-In-Three satis�ability guarantees that ea
h 
lause vertex has

two outgoing edges in an optimal MAXMINO solution.The planarity means that the graph 
onstru
ted from aninstan
e CNF, in whi
h two verti
es 
orresponding to avariable and a 
lause are 
onne
ted by an edge if the variableo

urs (positively or negatively) in the 
lause, is planar.The monotoni
ity means that in an input CNF formula ea
h
lause 
ontains either only positive literals or only negativeliterals. PLANAR-ONE-IN-THREE-3-SAT is shown to beNP-
omplete in [15℄.By applying an operation used in [2℄, we 
an transforman instan
e of PLANAR-ONE-IN-THREE-3-SAT into one ofMONOTONE-PLANAR-ONE-IN-THREE-3-SAT. Moreover,by applying another operation used in the same paper [2℄,we 
an transform an instan
e of MONOTONE-PLANAR-ONE-IN-THREE-3-SAT into MONOTONE-PLANAR-ONE-IN-THREE-3-SAT(2L). This implies that the 
onstru
tedgraph is planar and bipartite and its unweighted degree is atmost three. (To preserve the bipartiteness, we need to usebipartite gadgets, e.g., square gadgets, instead of trianglegadgets.)Theorem 4: MAXMINO is strongly NP-hard even if theedge weights are in fwmin; wmaxg for integers wmin <wmax and the input graph is bipartite and planar in whi
hthe unweighted degree is bounded by three. �Theorem 5: Even if the edge weights are infwmin; wmaxg and the input graph is bipartite andplanar in whi
h the unweighted degree is bounded by three,MAXMINO has no pseudo-polynomial time algorithmwhose approximation ratio is smaller than minf2; wmaxwmin g,unless P=NP. �This result is tight in a sense, be
ause if the unweighteddegree of the input graph is bounded by two (i.e., 
y
les ortrees), obviously MAXMINO 
an be solved in linear time.3. An exa
t algorithm for unweighted 
asesMAXMINO is 
losely related to the problem of 
omputinga maximum �ow in a �ow network with positive edge 
a-pa
ities. Indeed, maximum-�ow-based te
hniques have beenused in [3℄ to solve the analogous problem of 
omputing an
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ap = qFigure 3. Network NG 
onstru
ted from G of Figure 2edge orientation whi
h minimizes the maximum outdegree ofa given unweighted graph (MINMAXO) in polynomial time.In this se
tion, we extend the results of [3℄ by showing howa maximum �ow-algorithm 
an be used to ef�
iently solveunweighted MAXMINO.For any input graph G = (V;E) to unweightedMAXMINO, let NG = (VG; EG) be the dire
ted graph withvertex set VG and edge set EG de�ned by:VG = E [ V [ fs; tg;EG = �(s; e) j e 2 E	 [ �(v; t) j v 2 V 	 [�(e; vi); (e; vj) j e = fvi; vjg 2 E	;and for any integer q 2 f0; 1; : : : ;�g, let NG(q) =(VG; EG; 
apq) be the �ow network obtained by augmentingNG with edge 
apa
ities 
apq, where:
apq(a) = 8><>: 1; if a = (s; e) with e 2 E;1; if a = (e; v) with e 2 E; v 2 V ;q; if a = (v; t) with v 2 V:See Figure 2 and Figure 3 for an example of the originalgraph G and the 
orresponding network NG, respe
tively.Let F (q) be an integral maximum dire
ted �ow1 from ver-tex s to vertex t in NG(q). Then, for ea
h e = fvi; vjg 2 E,either zero or one unit of �ow in F (q) passes through the1. Sin
e all edge 
apa
ities are integers, we may assume by the integralitytheorem (see, e.g., [6℄) that the �ow along ea
h edge in F (q) found by thealgorithm in [11℄ is an integer.


orresponding vertex e in VG, and thus at most one of thetwo edges (e; vi) and (e; vj) is assigned one unit of �ow.This indu
es an orientation �F (q) of G based on F (q) asfollows: If the �ow in F (q) from vertex e to vertex viequals 1 then set �F (q)(e) := (vi; vj); else if the �owin F (q) from e to vj equals 1 then set �F (q)(e) := (vj ; vi);else set �F (q)(e) arbitrarily.Let f(q) denote the value of a maximum dire
ted �owfrom vertex s to vertex t in NG(q). Then:Lemma 6: For any q 2 f0; 1; : : : ;�g, f(q) � q � n.Proof: The sum of all edge 
apa
ities of edges leadinginto t in NG(q) is q � n. Clearly, the value of the maximum�ow in NG(q) 
annot be larger than this sum. �Lemma 7: For any q 2 f0; 1; : : : ;�g, f(q) = q �n if andonly if OPT (G) � q.Proof:=)) Suppose that f(q) = q � n and 
onsider the maximum�ow F (q) de�ned above. For ea
h v 2 V , exa
tly q unitsof �ow leave the 
orresponding vertex v in VG be
ause theedge 
apa
ity of (v; t) is q and there are n su
h verti
es.This implies that q units of �ow enter v, whi
h is onlypossible if there are q edges of the form (e; v) in EG thathave been assigned one unit of �ow ea
h. Therefore, theindu
ed orientation �F (q) ensures that d�F (q) (v) � q forevery v 2 V , whi
h yields OPT (G) � q.(=) Suppose that OPT (G) � q and let � be a max-min orientation of G. Let F 0 be the following dire
ted �owfrom s to t in NG(�):F 0(a) = 8>>>>>>>><>>>>>>>>:
1; if a = (s; e) with e 2 E;1; if a = (e; vi) with e = fvi; vjg 2 Eand �(e) = (vi; vj);0; if a = (e; vi) with e = fvi; vjg 2 Eand �(e) = (vj ; vi);d�(v); if a = (v; t) with v 2 V:For every v 2 V , the �ow in F 0 along the edge (v; t)in NG(�) is d�(v) � OPT (G) � q. By redu
ing ea
hsu
h edge �ow to q, one obtains a dire
ted �ow whi
hobeys the (stri
ter) edge 
apa
ity 
onstraints of the �ownetwork NG(q) and has �ow value n �q. Thus, there exists amaximum dire
ted �ow from s to t inNG(q) with value q�n,so f(q) � q �n. It follows from Lemma 6 that f(q) = q �n.� Lemmas 6 and 7 suggest the algorithm for unweightedMAXMINO named Algorithm Exa
t-1-MaxMinO.Theorem 8: Exa
t-1-MaxMinO solves unweightedMAXMINO in O(m3=2 � logm � log2�) time. �Proof: The 
orre
tness of Exa
t-1-MaxMinO is guar-anteed by Lemmas 6 and 7. For any q 2 f0; 1; : : : ;�g, to
ompute a maximum �ow in the �ow network NG(q) takesO(m3=2 � logm � log�) time with the algorithm of Goldberg



Algorithm 1 Algorithm Exa
t-1-MaxMinO1: Constru
t NG.2: Use binary sear
h on q in the interval f0; 1; : : : ;�g to�nd the integer q su
h that f(q) = q �n and f(q+1) <(q + 1) � n.3: Compute F (q) as a maximum dire
ted �ow from s to tin NG(q).4: Return �F (q).and Rao [11℄ be
ause NG(q) 
ontains m+ n+ 2 = O(m)verti
es and 3m + n = O(m) edges and the 
apa
ityof ea
h edge in NG(q) is upper-bounded by �. Algo-rithm Exa
t-1-MaxMinO 
an therefore be implemented torun in O(m3=2 � logm � log2�) time. �Finally, we outline how Exa
t-1-MaxMinO 
an be ap-plied to solve weighted MAXMINO. Let X be the set ofall edges in E with weight larger than wmin. First modifythe �ow network NG(q) to set 
apq(a) = dw(e)=wmine:for every edge a 2 EG of the form a = (s; e). Then,run Exa
t-1-MaxMinO a total of 2jXj times while testingall possible ways of setting the 
apa
ity of exa
tly oneof (e; vi) and (e; vj) in NG(q) to w(e) and the other to 0for ea
h e 2 X , using binary sear
h on q in the intervalf0; 1; : : : ; dW=neg, and sele
t the best resulting orientation.The asymptoti
 running time be
omes the same as that ofExa
t-1-MaxMinO multiplied by 2jXj and with an in
reasedue to the larger interval for the binary sear
h on q and theedge 
apa
ities being upper-bounded by maxfwmax;W=nginstead of �.Theorem 9: Weighted MAXMINO 
an be solved inO(m3=2 � logm � log(wmax+W=n) � log(W=n) � 2jXj) time,where X = fe 2 E j w(e) > wming.Corollary 1: If jX j = O(log n) then weightedMAXMINO 
an be solved in polynomial time. �4. A simple approximation algorithm for gen-eral 
asesHere, we prove that ignoring the edge weights of the inputgraph and applying Exa
t-1-MaxMinO on the resultingunweighted graph immediately yields a wmaxwmin -approximationalgorithm for the general 
ase of the problem. The algorithmis named Approximate-MaxMinO and is listed in Algo-rithm 2.Algorithm 2 Algorithm Approximate-MaxMinO1: Let G0 be the undire
ted graph obtained from G byrepla
ing the weight of every edge by 1.2: Apply Algorithm Exa
t-1-MaxMinO on G0 and let �0be the obtained orientation.3: Return �0.

Theorem 10: Approximate-MaxMinO runs in O(m3=2 �logm � log2�) time and is a wmaxwmin -approximation algorithmfor MAXMINO.Proof: The asymptoti
 running time of Algo-rithm Approximate-MaxMinO is the same as that of Exa
t-1-MaxMinO.To analyze the approximation ratio, observe that Æ�(G) �wmin �Æ�(G0) for any orientation � of G be
ause the weightof any edge in G is at least wmin times larger than itsweight in G0. Similarly, wmax � Æ�(G0) � Æ�(G) for anyorientation � of G. Now, let �0 be the optimal orientationfor G0 returned by Approximate-MaxMinO and let �� bean optimal orientation for G. Note that Æ�0(G0) � Æ��(G0).Thus, Æ�0(G) � wmin � Æ�0(G0) � wmin � Æ��(G0) �wminwmax � Æ��(G) = wminwmax � OPT (G). �5. An exa
t algorithm for 
a
tus graphsIn this se
tion, we present a polynomial time algorithmwhi
h obtains optimal orientations for 
a
tus graphs. Agraph is a 
a
tus if every edge is part of at most one 
y
le. Tothis end, we introdu
e vertex weight �G(v) for ea
h vertexv in a graph G whi
h is 
onsidered as 0 in the input graph(we omit the subs
ript G of �G(v) if it is apparent). Herewe de�ne the notion of weighted outdegree for a vertex ina vertex and edge weighted graph. The weighted outdegreed�(v) of a vertex v is de�ned as the weight of v itself plusthe total weight of outgoing ar
s of v, i.e.,d�(v) = �(v) + Xfu;vg2E:�(fu;vg)=(v;u) w(fu; vg):In a 
a
tus graph, a vertex in a 
y
le is a gate if it is adja
entto any vertex that does not belong to the 
y
le. Note thatthe unweighted degree of a gate is at least three. As for thenumber of gates in a 
y
le, the following is known:Proposition 11 (Proposition 2 in [2℄): In a 
a
tus graphG in whi
h deg(v) � 2 for every vertex v, there alwaysexists a 
y
le with at most one gate.The main part of the proposed algorithm Exa
t-Ca
tus-MaxMinO is shown in Algorithm 3, whi
h solves the de-
ision version of the problem MAXMINO: Given a numberK, this problem asks whether there exists an orientationwhose value is at least K. We 
an develop an algorithmfor the original problem MAXMINO by using this algorithmO(log�) times in a binary sear
h manner on optimal value,whi
h is upper-bounded by �.The 
orre
tness of Exa
t-Ca
tus-MaxMinO is basedon the following property on optimal orientations for twographs.Proposition 12: Consider two graphsG and G0 that differonly on their vertex weights. If �G(v) � �G0(v) for everyvertex v, then OPT (G) � OPT (G0) holds. �



Algorithm 3 Algorithm Exa
t-Ca
tus-MaxMinO1: repeat2: For a vertex v,3: if �(v) + d(v) < K then4: output No and halt.5: else if deg(v) = 1 then6: (let its 
onne
ting edge be e = fv; ug)7: if �(v) < K then8: �(e) := (v; u)9: else10: �(e) := (u; v) and in
rease �(u) by w(e)11: end if12: Remove v and e.13: else if deg(v) = 2 then14: (let e1 = fp; vg and e2 = fv; qg)15: if �(v)+w(e1) < K and �(v)+w(e2) < K then16: �(e1) := (v; p) and �(e2) := (v; q). Remove v,e1, and e2.17: else if �(v) + w(e1) < K and �(v) + w(e2) � Kthen18: �(e1) := (p; v) and �(e2) := (v; q) and alsoin
rease �(p) by w(e1). Remove v, e1, and e2.19: end if20: end if21: until there does not exist a vertex v satisfying either oneof the above 
onditions22: for all C := hv0; v1; � � � ; v` = v0i that has at most onegate do23: if C does not have a gate then24: �(fvi; vi+1g) := (vi; vi+1) for 0 � i � `� 1.25: Remove C.26: else27: Let v0 be the gate.28: if there exists a vertex vj , j 6= 0 satisfying �(vj) �K in C then29: Assign �(fvi; vi+1g) := (vi; vi+1) for 0 �i � j � 1 and �(fvi; vi+1g) := (vi+1; vi) forj � i � `� 1. In
rease �(v0) by w(fv0; v1g) +w(fv0; v`�1g).30: else31: If w(fv0; v1g) > w(fv0; v`�1g) then assign�(fvi; vi+1g) := (vi; vi+1) for 0 � i � ` � 1and in
rease �(v0) by w(fv0; v1g), otherwise�(fvi; vi+1g) := (vi+1; vi) for 0 � i � ` � 1and in
rease �(v0) by w(fv0; v`�1g).32: end if33: Remove C ex
ept the gate v0.34: end if35: end for36: if the graph is empty then37: output � and halt.38: else39: go ba
k to line 1.40: end if

Theorem 13: Given a 
a
tus graph G and a target K,Exa
t-Ca
tus-MaxMinO outputs an orientation � su
h thatÆ�(G) � K if su
h an orientation exists, in polynomial time.Proof: First we estimate the running time. Sin
e ea
hof exe
utions of repeat loop or for all loop determines thedire
tion of at least one edge, the total number of times thosesteps are being pro
essed is bounded by O(m). Also all ofthose steps 
an be done in O(m) time be
ause they only�nd a vertex or a 
y
le with testing 
ertain 
onditions by a
onstant time. Hen
e the total running time is O(m2). It 
anbe redu
ed to O(m+ n logn) by a 
areful implementationof the algorithm, but we omit the details here.Next we show the 
orre
tness of the algorithm. Ea
hexe
ution that removes some verti
es and edges from the
urrent graph H (lines 12, 16, 18, 25 and 33) may in-
rease the weight of a remaining vertex, and then obtainsa modi�ed graph H 0. What we would like to show is thatif OPT (H) � K, then (i) also OPT (H 0) � K, (ii) thedetermined dire
tions of edges are 
orre
t, and so (iii) allthe verti
es removed at the step have weighted outdegree atleast K. Assume that OPT (H) � K.Lines 3-4: If the 
ondition is satis�ed, the answer is
learly No.Lines 5-12: It holds that �(v)+w(e) � K sin
e it passesthrough the 
he
k in line 3. In the 
ase that �(v) < K, if weassign �(e) := (u; v), then the weighted outdegree of v isless than K, whi
h 
ontradi
ts the assumption OPT (H) �K. Hen
e the assignment �(e) := (v; u) is 
orre
t and alsothe removed vertex v has weighted outdegree at least K.Also it holds that OPT (H 0) � OPT (H), otherwise, it
ontradi
ts that OPT (H) is the optimal value.Let us 
onsider the other 
ase that �(v) � K. Theweighted outdegree of the removed vertex v is at least�(v) � K in this 
ase whi
hever the dire
tion assigned tothe edge e is. There are two possibilities: We assign either�(e) := (u; v) or �(e) := (v; u). Let the graph obtainedby the former assignment with in
reasing �(u) by w(e) beH 0, and let the graph obtained by the latter be H 00. FromProposition 12, we observe that OPT (H 0) � OPT (H 00).If OPT (H 00) � OPT (H), then it holds that OPT (H 0) �OPT (H 00) � OPT (H) for both of the dire
tions of theedge e. Conversely, the inequality OPT (H 00) < OPT (H)means that the weighted outdegree of the vertex u mustbe augmented by orienting the edge e = fv; ug as (u; v)in the optimal orientation for H , be
ause, otherwise it
ontradi
ts that OPT (H) is the optimal value. Thus theassignment �(e) := (u; v) is 
orre
t and it holds thatOPT (H 0) � OPT (H) � K.Lines 13-20: If we do not follow the rules here, theweighted outdegree of the pro
essed vertex would be lessthan K � OPT (H), whi
h implies the operations in theselines are 
orre
t. As a result, the weighted outdegree of theremoved vertex v at line 16 (resp., line 18) is at leastK fromthe assumption that v does not satisfy the 
ondition of line



3 (resp., line 15), and also OPT (H 0) � OPT (H) � K.Lines 22-35: First of all, at the beginning of this part,it holds that deg(v) � 2 for every vertex v sin
e it passeslines 5-12. From Proposition 11, we 
an always �nd a 
y
lehaving at most one gate.Lines 23-25: It is obvious that the verti
es removedat this step have weighted outdegree at least K be
ausethey passed lines 13-19. In addition to that it holds thatOPT (H 0) � OPT (H) sin
e C is a 
onne
ted 
omponentin H and OPT (H) = minfOPT (C); OPT (H 0)g.Lines 27-33: The verti
es removed in this step all haveweighted outdegree at least K be
ause of the 
onditions oflines 13-19. Also the proposed assignment of dire
tions forthe 
y
le C in
reases �(v0) as mu
h as possible withoutbreaking optimality, and it derives OPT (H 0) � K by asimilar argument as the one used in lines 5-12.By the above dis
ussion, if all the verti
es are removedwithout answering No, the weighted outdegree of everyvertex by the orientation � is at least K. �From Theorem 13, we 
an solve MAXMINO for 
a
-tus graphs in polynomial time by using EXACT-CACTUS-MAXMINO as an engine of the binary sear
h.A
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