Graph Orientation to Maximize the Minimum Weighted Outdegree

Yuichi Asahiro*, Jesper Jansson', Eiji Miyan0:t and Hirotaka Ono®

* Department of Social Information Systems,
Kyushu Sangyo University,
Higashi-ku, Fukuoka 813-8503, Japan.
Email: asahiro@is.kyusan-u.ac.jp

t Ochanomizu University,
Bunkyo-ku, Tokyo 112-8610, Japan.
Email: Jesper.Jansson@ocha.ac.jp

i Department of Systems Design and Informatics,
Kyushu Institute of Technology,
lizuka, Fukuoka 820-8502, Japan.
Email: miyano@ces.kyutech.ac.jp

§ Department of Compuper Science and Communication Engineering,
Kyushu University,
Nishi-ku, Fukuoka 819-0395, Japan.
Email: ono@csce.kyushu-u.ac.jp

Abstract

We study a new variant of the graph orientation problem
called MAXMINO where the input is an undirected, edge-
weighted graph and the objective is to assign a direction
to each edge so that the minimum weighted outdegree
(taken over all vertices in the resulting directed graph) is
maximized. All edge weights are assumed to be positive
integers. This problem is closely related to the job scheduling
on parallel machines, called the machine covering problem,
where its goal is to assign jobs to parallel machines such
that each machine is covered as much as possible. First,
we prove that MAXMINO is strongly NP-hard and cannot
be approximated within a ratio of 2 — e for any constant
€ > 0 in polynomial time unless P=NP, even if all edge
weights belong to {1,2}, every vertex has degree at most
three, and the input graph is bipartite or planar. Next, we
show how to solve MAXMINO exactly in polynomial time
for the special case in which all edge weights are equal to 1.
This technique gives us a simple polynomial-time :Z:“:
approximation algorithm for MAXMINO where W,q. and
Wpmin denote the maximum and minimum weights among
all the input edges. Furthermore, we also observe that this
approach yields an exact algorithm for the general case of
MAXMINO whose running time is polynomial whenever the
number of edges having weight larger than W, is at most
logarithmic in the number of vertices. Finally, we show that
MAXMINO is solvable in polynomial time if the input is a
cactus graph.

Keywords: Graph orientation, Approximation algorithm, Hard-
ness of approximation.

1. Introduction

An orientation of an undirected graph is an assignment of
a direction to each of its edges. Graph orientation is a well-
studied area of graph theory and combinatorial optimization
and thus a large variety of objective functions have been
considered so far. The objective function of the present
paper is the maximization of the minimum outdegree. It
is closely related to the classic job scheduling on parallel
machines. In the parallel machine scheduling scenario, our
problem can be regarded as the restricted assignment variant
of the machine covering problem [18], where its goal is
to assign jobs to parallel machines such that each machine
is covered as much as possible. In the following, we first
define several terminologies and our objective function, then
describe related work, and summarize our results.

Problem definition. Let G = (V, E,w) be a given undi-
rected, edge-weighted graph with vertex set V' and edge
set £ whose weights are numbers specified by a function w.
An orientation A of G is defined to be any function on E of
the form A : {u,v} = {(u,v), (v,u)}, i.e., an assignment
of a direction to each undirected edge {u,v} in E. Given
an orientation A of G, the weighted outdegree dy(v) of
a vertex v € V 1is defined as the total weight of all

edges leaving v, i.e., dy(v) = ZA({{M,U}})E? : w({u,v}),

and the minimum weighted outdegree 0(G) is defined by

(SA(G) = minvev{d/\(v)}.

In this paper we deal with the problem of finding an ori-
entation of the input graph such that the minimum weighted
outdegree is maximum. We call this problem Maximum
Minimum Weighted Outdegree Graph Orientation Problem
(MAXMINO for short): The input is an undirected, edge-
weighted graph G = (V, E,w) with w : E — Z™T, where
Z7T denotes the set of positive integers, and the objective
is to find an orientation A* of G which maximizes d5 (G)
over all possible orientations A of G. Such an orientation
is called a max-min orientation of G, and the corresponding
value 05« (@) is denoted by OPT(G). The special case of
MAXMINO where all edge weights of the input graph are
equal to 1 is referred to as unweighted MAXMINO.

Throughout the paper, we use the following notations:
n=|V|[,m=|E|,and W =} _pw(e) for the input G.
Furthermore, w4, and w,,;, denote the maximum and
minimum weights, respectively, among all edges in E. For
any v € V, the (unoriented) weighted degree of v, denoted
by d(v), is the sum of all weights of edges incident to v, and
A = max,ey {d(v)} is the maximum (unoriented) weighted
degree among all vertices in G. Also for a (fixed) v € V,
we call [{{u,v} € E}| (i.e., the number of edges incident
to v) the (unoriented) unweighted degree of v, and denote
it by deg(v). We also call max,ey deg(v) the (unoriented)
unweighted degree of GG, both of which will be used to focus
on the topological structure of the graph.

We say that an algorithm A is a o-approximation algo-
rithm for MAXMINO or that A’s approximation ratio is
at most o, if OPT(G) < o - A(G) holds for any input
graph G, where A(G) is the minimum weighted outdegree
in the orientation returned by A on input G.

Related work. MAXMINO studied in the current work
is closely related to the restricted assignment variant of
the machine covering problem, which is often called the
Santa Claus problem [4], [5], [8], [12]: Santa Claus has m
gifts (corresponding to jobs, and to edges in MAXMINO)
that he wants to distribute among n kids (corresponding
to machines, and to vertices in MAXMINO). Some gift
may be worth $100 but another may be not so expensive,
and some kids do not want some of the gifts whatsoever
(i.e., its value is O for the kids). The goal of Santa Claus
is to distribute the gifts in such a way that the least
lucky kid is as happy as possible. In addition, MAXMINO
has the following restriction (which might be strong and
somehow strange in the Santa Claus scenario): Every gift
is of great value only to exactly two kids and thus it must
be delivered to one of them. For the Santa Claus problem,
Golovin [12] provided an O(y/n)-approximation algorithm
for the restricted case where the value of each gift belongs
to {1,k} for some integer k. Bansal and Sviridenko [4]
considered the general value case and showed that a certain
linear programming relaxation can be used to design an

O(loglogm/ logloglog m)-approximation algorithm, while
Bezakova and Dani [5] already showed that the general case
is NP-hard to approximate within ratios smaller than 2.

Another objective function studied for the graph orienta-
tion problem is that of minimizing the maximum weighted
outdegree (MINMAXO), also known as Graph Balanc-
ing [1], [2], [3], [7], [13], [17]: Given an undirected graph
with edge weights, we are asked to assign a direction to
each edge so that the maximum outdegree is minimized. It
is obvious that MINMAXO is generally NP-hard. Asahiro
et al. [2] showed that it is still weakly NP-hard for outer-
planar graphs, and strongly NP-hard for P,-bipartite graphs.
Fortunately, however, they also showed [2] that MINMAXO
is tractable if the input is limited to trees or even to cactus
graphs. Note that the class of cactus graphs is a maximal
subset of the class of outerplanar graphs and the class of P,-
bipartite graphs, and a minimal superset of the class of trees.
Very recently, Ebenlendr et al. [7] designed a polynomial-
time 1.75-approximation algorithm for the general weighted
case, and Asahiro et al. [1] showed that MINMAXO can
be approximated within an approximation ratio of 1.5 in
polynomial-time if all edge weights belong to {1, 2}. As for
inapproximability, it is known that MINMAXO is NP-hard
to approximate within approximation ratios smaller than 1.5
even for this restricted {1,2}-case [1], [7].

Our results. In this paper we study the computational
complexity and (in)approximability of the machine covering
problem from the viewpoint of the graph based problem, i.e.,
graph orientation. In Section 2, we prove that MAXMINO
is strongly NP-hard and cannot be approximated within a
ratio of min{2, ¥=e=} — ¢ for any constant € > 0 in poly-
nomial time unless P=NP, even if all edge weights belong
t0 {Wimin, Wmae }, every vertex has unweighted degree at
most three, and the input graph is bipartite and planar. As
mentioned above, although MAXMINO imposes a strong
restriction on the Santa Claus problem, unfortunately it is
still hard.

Section 3 first considers the unweighted MAXMINO prob-
lem. We can obtain an optimal orientation algorithm which
runs in O(m?/2 -logm -log® A) time for the special case in
which all edge weights are equal to 1. Here, it is important to
note that Golovin [12] already claimed that the unweighted
case of MAXMINO (more precisely, the Santa Claus prob-
lem) can be solved in polynomial time, but no proof of
this claim has ever appeared as far as the authors know.
Our contribution here is to provide the non-trivial, efficient
running time with its explicit proof. Then, we observe that
our approach yields an exact algorithm for the general case
of MAXMINO whose running time is polynomial whenever
the number of edges having weight larger than w,,;, is at
most logarithmic in the number of vertices. In Section 4,
this efficient algorithm for the unweighted MAXMINO also
gives us a simple ﬁ-approximation algorithm running in

the same time for general (weighted) case of MAXMINO,
i.e., it always outputs an orientation A’ of G which satisfies
OPT(G) < %me= . 65 (G). This simple approximation
algorithm is best possible for the case that the weights of
edges belong to {Wmin, Wmaz } With Wmer < 2Wh4p, since
the lower bound of approximation ratios is min{2, {me=}
described above.

In the field of combinatorial optimization, much work is
often devoted to seek a subset of instances that is tractable
and as large as possible. For example, if the input graph G
is a tree, then OPT(G) is always 0 because the number
of vertices is larger than the number of edges, and in any
orientation of G, at least one vertex must have no outgoing
edges. Also, for the case of cycles, MAXMINO is quite
trivial since the clockwise or counterclockwise orientation
along the cycle gives us the optimal value of w;,;,. On
the other hand, the class of planar graphs is too large
to allow a polynomial-time optimal algorithm (under the
assumption of P#NP). Hence, our goal in Section 5 is to
find a polynomially solvable subset between trees and planar
graphs. Then, we show that MAXMINO remains in P even
if we make the set of instances so large that it contains the
class of cactus graphs.

2. Hardness results

In this section, we show the MAXMINO problem is
strongly NP-hard even if all the edge weights belong to
{Wmin, Wmag } for any integers wp,in < Wiae and the input
graph is bipartite and planar. The proof is by a reduction
from AT-MOST-3-SAT(2L).

AT-MOST-3-SAT(2L) is a restriction of 3-SAT where
each clause contains at most three literals and each literal
(not variable) appears at most twice in a formula. It can
be easily proved that AT-MO0OST-3-SAT(2L) is NP-hard by
using problem [LO1] on p. 259 of [9].

First, we pick any fixed integers for w,,i, and w;,qz
such that w,,in < Wmee. Given a formula ¢ of AT-MOST-
3-SAT(2L) with n variables {vy,...,v,} and m clauses
{c1,...,¢cm}, we then construct a graph G4 including
gadgets that mimic (a) variables and (b) clauses. To define
these, we prepare a gadget consisting of a cycle of 3 vertices
and 3 edges (i.e., a triangle) where each edge of the cycle
has weight w,,,4..- We call this a triangle gadget. Apart from
these triangle gadgets, we define gadgets for (a) variables
and (b) clauses: (a) Each variable gadget corresponding to
a variable v; consists of two vertices labeled by v; and 7;
and one edge {v;,7;} between them. The weight of {v;,7;}
1S Wpae- By the definition of AT-MOST-3-SAT(2L), some
literals (say wv; for example) do not occur (or may occur
only once). In such a case, we attach a triangle gadget to the
variable gadget by adding two edges (one edge) of weight
Wmin that connects vertex v; and two different vertices (one
vertex) of the triangle gadget. (b) Each clause gadget consists

of one representative vertex labeled by c;, corresponding to
clause c¢; of ¢, and a triangle gadget connected to this ¢;-
vertex by an edge of weight w,,;,,. The representative vertex
¢j is also connected to at most three vertices in the literal
gadgets that have the same labels as the literals in the clause
cj, by edges of weight wy,;,,. For example, if ¢; =z VY
appears in ¢, then vertex c; is connected to vertices x and
Y. (See Figure 1.) We have the following lemma.

Lemma 1: For the reduced graph Gy, the following holds:
(1) OPT(Gy) > min{2Wmin, Wimae } if ¢ is satis-
fiable.

(i) OPT(Gy) < wpmin if ¢ is not satisfiable.

Proof: First, if 0o (G) > Wi, for an optimal orien-
tation A, then we can assume that each triangle gadget is
oriented in such a way that the triangle forms a directed
cycle in an optimal orientation, which guarantees that the
minimum weighted outdegree among those vertices belong-
ing to the triangle is at least w,,,4, (otherwise, it has a vertex
whose weighted outdegree is at most wy,;,). Due to this
cycle orientation, we can also assume that edges that connect
triangle gadgets to other vertices are oriented towards the
triangle gadgets in the optimal orientation.

Now we prove (i). Suppose that there is a satisfying
truth assignment 7 for the formula ¢. From 7, we construct
an orientation with OPT(Gy) > min{2Wmin, Wmae }- If
v; = true in 7, the edge {v;,7;} is oriented from v; to
v;; otherwise, from v; to v;. At this moment, the weighted
outdegree of vertices associated with the literals of frue and
false assignments is w,,q, and 0, respectively. (We call
the vertices associated with literals of true (resp., false)
assignments true (resp., false) vertices. For example, if a
variable = false in a truth assignment, then the upper
leftmost vertex x is called a false vertex and the second
leftmost vertex T is called a true vertex in Figure 1.) Each
false vertex has one or two edges connected to clause
vertices, and in case a false vertex is connected to one clause
vertex, then it is connected to a triangle gadget. We then
orient such edges towards the clause vertices and triangle
gadgets, which make the weighted outdegree of each false
vertex 2w,,;». Thus the weighted outdegree of each vertex
in a variable gadget is at least 2w,,;,. Each clause vertex
has at least one edge connected to a true vertex due to the
truth assignment. We orient this edge towards the true vertex,
which makes the weighted outdegree of the clause vertex at
least 2w,,,;,, because it has an edge connected to a triangle
gadget. Hence, the weighted outdegree of every vertex is at
least min{2w,in, Winae }, Which shows (i).

Next, we prove (ii) by showing that if the graph G
has an orientation whose minimum weighted outdegree
is at least min{2wmin, Wmaz}» then ¢ is satisfiable by
constructing the satisfying truth assignment. If an edge in
the ¢th variable gadget v; is oriented from v; to v;, then we
assign v; = true; otherwise, v; = false. Then two edges
between a vertex assigned with false and its two adjacent

Figure 1. Reduction from Ar-Mos1-3-SAT(2L) (Solid and dotted edges have weight w,,4. and w,in, respectively.)

clause vertices must be oriented towards the clause vertices.
(Otherwise, the weighted outdegree of the false vertex is at
most Wynin, Which contradicts the assumption.) Every clause
vertex is connected with the variable and triangle gadgets.
As mentioned above, every edge between a clause vertex and
its triangle gadget can be assumed to be oriented towards
the triangle gadget. It follows that for each clause vertex,
there must be at least one edge directed towards the clause
vertex from a vertex v in a variable gadget, and v must be
a true vertex. This means that the above truth assignment
satisfies all the clauses in ¢. O

From Lemma 1, we immediately obtain the following
theorem.

Theorem 2: MAXMINO is strongly NP-hard even if the
edge weights are in {Wmin, Wmaz} Wmin < Wmaz)- O

Also the (un)satisfiability gap of Lemma 1 yields the
following theorem.

Theorem 3: Even if the edge weights are in
{Wmin, Wmaz }, MAXMINO has no pseudo-polynomial
time algorithm whose approximation ratio is smaller than
min{2, ¥=a=} unless P = NP. O

SimilarT)i," we can show the NP-hardness of MAXMINO
for planar bipartite graphs by almost the same reduction
as the above from MONOTONE-PLANAR-ONE-IN-THREE-
3-SAT(2L), which is a variant of AT-MOST-3-SAT(2L),
having both the planarity [14] and the monotonicity [10].

ONE-IN-THREE-3-SAT itself is a variant of 3-SAT prob-
lem which asks whether there exists a truth assignment
to the variables so that each clause has exactly one true
literal (and thus exactly two false literals) [16]. The rea-
son why we use ONE-IN-THREE-3-SAT instead of AT-
MOST-3-SAT is to bound the unweighted degrees of the
constructed graphs. While the above reduction from AT-
MosT1-3-SAT(2L) guarantees that the unweighted degrees
of constructed graphs are bounded by four, we can bound
the unweighted degrees of constructed graph from ONE-IN-
THREE-3SAT(2L) by three. In the new reduction, we do
not attach triangle gadgets to clause vertices, which makes
the unweighted degrees of clause vertices three, and One-
In-Three satisfiability guarantees that each clause vertex has

two outgoing edges in an optimal MAXMINO solution.

The planarity means that the graph constructed from an
instance CNF, in which two vertices corresponding to a
variable and a clause are connected by an edge if the variable
occurs (positively or negatively) in the clause, is planar.
The monotonicity means that in an input CNF formula each
clause contains either only positive literals or only negative
literals. PLANAR-ONE-IN-THREE-3-SAT is shown to be
NP-complete in [15].

By applying an operation used in [2], we can transform
an instance of PLANAR-ONE-IN-THREE-3-SAT into one of
MONOTONE-PLANAR-ONE-IN-THREE-3-SAT. Moreover,
by applying another operation used in the same paper [2],
we can transform an instance of MONOTONE-PLANAR-
ONE-IN-THREE-3-SAT into MONOTONE-PLANAR-ONE-
IN-THREE-3-SAT(2L). This implies that the constructed
graph is planar and bipartite and its unweighted degree is at
most three. (To preserve the bipartiteness, we need to use
bipartite gadgets, e.g., square gadgets, instead of triangle
gadgets.)

Theorem 4: MAXMINO is strongly NP-hard even if the
edge weights are in {Wpmin, Wmae} for integers wp,in, <
Wmae and the input graph is bipartite and planar in which
the unweighted degree is bounded by three. |

Theorem 5: Even if the edge weights are in
{Wmin, Wmae} and the input graph is bipartite and
planar in which the unweighted degree is bounded by three,
MAXMINO has no pseudo-polynomial time algorithm
whose approximation ratio is smaller than min{2, %ma=},
unless P=NP. mm

This result is tight in a sense, because if the unweighted
degree of the input graph is bounded by two (i.e., cycles or
trees), obviously MAXMINO can be solved in linear time.

3. An exact algorithm for unweighted cases

MAXMINO is closely related to the problem of computing
a maximum flow in a flow network with positive edge ca-
pacities. Indeed, maximum-flow-based techniques have been
used in [3] to solve the analogous problem of computing an

Figure 2. An example of G

edge set vertex set

Figure 3. Network N constructed from G of Figure 2

edge orientation which minimizes the maximum outdegree of
a given unweighted graph (MINMAXO) in polynomial time.
In this section, we extend the results of [3] by showing how
a maximum flow-algorithm can be used to efficiently solve
unweighted MAXMINO.

For any input graph G = (V,E) to unweighted
MAXMINO, let Ng = (Vg, Eq) be the directed graph with
vertex set Vi and edge set Eg defined by:

Vo = EUVU{st},
Eq = {(s,e)lecE}u{(v,t)|veV}u
{(e,vi), (e,vj) | e ={vi,v} € E},
and for any integer ¢ € {0,1,...,A}, let Ng(q) =

(Va, Eq, capy) be the flow network obtained by augmenting
N¢ with edge capacities cap,, where:

—_

, if a=(s,e) withe € Ej
, ifa=(e,v) withe€ E, veV;
q, ifa=(v,t) withvelV.

—_

capg(a) =

See Figure 2 and Figure 3 for an example of the original
graph G and the corresponding network N, respectively.
Let F'(q) be an integral maximum directed flow! from ver-
tex s to vertex ¢ in Ng(g). Then, for each e = {v;,v;} € E,
either zero or one unit of flow in F(¢) passes through the
1. Since all edge capacities are integers, we may assume by the integrality

theorem (see, e.g., [6]) that the flow along each edge in F'(q) found by the
algorithm in [11] is an integer.

corresponding vertex e in Vi, and thus at most one of the
two edges (e,v;) and (e,v;) is assigned one unit of flow.
This induces an orientation Ap(,) of G based on F(q) as
follows: If the flow in F(g) from vertex e to vertex v;
equals 1 then set Ap(g(e) = (v;,v;); else if the flow
in F'(q) from e to v; equals 1 then set Ap(g)(e) := (vj,v;);
else set Ap(q) (e) arbitrarily.

Let f(g) denote the value of a maximum directed flow
from vertex s to vertex ¢ in NVg(g). Then:

Lemma 6: For any g € {0,1,...,A}, f(q) <q-n.

Proof: The sum of all edge capacities of edges leading

into ¢ in Ng(q) is ¢ - n. Clearly, the value of the maximum
flow in N (g) cannot be larger than this sum. O

Lemma 7: For any ¢ € {0,1,...,A}, f(qg) =¢-nif and
only if OPT(G) > q.

Proof:

=) Suppose that f(q) = ¢-n and consider the maximum
flow F'(q) defined above. For each v € V, exactly ¢ units
of flow leave the corresponding vertex v in Vg because the
edge capacity of (v,t) is ¢ and there are n such vertices.
This implies that ¢ units of flow enter v, which is only
possible if there are ¢ edges of the form (e,v) in Eg that
have been assigned one unit of flow each. Therefore, the
induced orientation Ap(,) ensures that dy,., (v) > ¢ for
every v € V, which yields OPT(G) > gq.

<=) Suppose that OPT(G) > ¢ and let A be a max-
min orientation of G. Let F' be the following directed flow
from s to ¢ in Ng(A):

,

1, if a = (s,e) with e € E;
1, if a = (e,v;) with e = {v;,v;} € E
Fla) = . and A(e) = (vs,v5);
0, if a = (e,v;) with e = {v;,v;} € E
and A(e) = (vj,v;);
Lda(v), ifa=(v,t) withveV.

For every v € V, the flow in F' along the edge (v,t)
in Ng(A) is dy(v) > OPT(G) > q. By reducing each
such edge flow to ¢, one obtains a directed flow which
obeys the (stricter) edge capacity constraints of the flow
network N¢(q) and has flow value - g. Thus, there exists a
maximum directed flow from s to ¢ in N (g) with value g-n,
so f(q) > ¢ n. It follows from Lemma 6 that f(¢) = ¢q - n.
O

Lemmas 6 and 7 suggest the algorithm for unweighted
MAXMINO named Algorithm Exact-1-MaxMinO.

Theorem 8: Exact-1-MaxMinO solves unweighted
MAXMINO in O(m?/? -logm -log® A) time. O
Proof: The correctness of Exact-1-MaxMinO is guar-
anteed by Lemmas 6 and 7. For any ¢ € {0,1,...,A}, to
compute a maximum flow in the flow network Ng(q) takes
O(m?/? -logm -log A) time with the algorithm of Goldberg

Algorithm 1 Algorithm Exact-1-MaxMinO

1: Construct Ng.

2: Use binary search on ¢ in the interval {0,1,...,A} to
find the integer ¢ such that f(¢) = ¢-n and f(¢g+1) <
(g+1)-n.

3: Compute F'(g) as a maximum directed flow from s to ¢
in Ne(q).

4: Return AF(q)-

and Rao [11] because N¢(g) contains m +n + 2 = O(m)
vertices and 3m + n = O(m) edges and the capacity
of each edge in Ng(g) is upper-bounded by A. Algo-
rithm Exact-1-MaxMinO can therefore be implemented to
run in O(m3/2 -logm -log® A) time. O

Finally, we outline how Exact-1-MaxMinO can be ap-
plied to solve weighted MAXMINO. Let X be the set of
all edges in E with weight larger than w,,;,. First modify
the flow network N (g) to set capy(a) = [w(e)/Wmin]-
for every edge a € Eg of the form a = (s,e). Then,
run Exact-1-MaxMinO a total of 2/X! times while testing
all possible ways of setting the capacity of exactly one
of (e,v;) and (e,v;) in Ng(g) to w(e) and the other to 0
for each e € X, using binary search on ¢ in the interval
{0,1,...,[W/n]}, and select the best resulting orientation.
The asymptotic running time becomes the same as that of
Exact-1-MaxMinO multiplied by 2/%! and with an increase
due to the larger interval for the binary search on ¢ and the
edge capacities being upper-bounded by max{w,qz, W/n}
instead of A.

Theorem 9: Weighted MAXMINO can be solved in
O(m>/? -logm -1og(wWmaz + W/n) - log(W/n) - 21X1) time,
where X = {e € E | w(e) > Wmin}-

Corollary 1: If |X| = Of(logn) then weighted
MAXMINO can be solved in polynomial time. d

4. A simple approximation algorithm for gen-
eral cases

Here, we prove that ignoring the edge weights of the input
graph and applying Exact-1-MaxMinO on the resulting
unweighted graph immediately yields a == -approximation
algorithm for the general case of the probfgr;l. The algorithm
is named Approximate-MaxMinO and is listed in Algo-
rithm 2.

Algorithm 2 Algorithm Approximate-MaxMinO

1: Let G’ be the undirected graph obtained from G by
replacing the weight of every edge by 1.

2: Apply Algorithm Exact-1-MaxMinO on G’ and let A’
be the obtained orientation.

3: Return A’.

Theorem 10: Approximate-MaxMinO runs in O(m?/? -
logm -log® A) time and is a “mas _gpproximation algorithm
for MAXMINO. .

Proof: The asymptotic running time of Algo-
rithm Approximate-MaxMinO is the same as that of Exact-
1-MaxMinO.

To analyze the approximation ratio, observe that j, (G) >
Wmin -0A (G") for any orientation A of G because the weight
of any edge in GG is at least w,,;, times larger than its
weight in G'. Similarly, wpae - IA(G') > 0A(G) for any
orientation A of G. Now, let A’ be the optimal orientation
for G' returned by Approximate-MaxMinO and let A* be
an optimal orientation for G. Note that da: (G') > dp=(G').
Thus, 5/\/ (G) Z Wmin * 5/\/ (G’) Z Wmin * 6/* (G’) Z
Wmin . §r. (F) = Emin . OPT(G). O

Wmaz Wmaz

5. An exact algorithm for cactus graphs

In this section, we present a polynomial time algorithm
which obtains optimal orientations for cactus graphs. A
graph is a cactus if every edge is part of at most one cycle. To
this end, we introduce vertex weight ag(v) for each vertex
v in a graph G which is considered as O in the input graph
(we omit the subscript G of ag(v) if it is apparent). Here
we define the notion of weighted outdegree for a vertex in
a vertex and edge weighted graph. The weighted outdegree
da (v) of a vertex v is defined as the weight of v itself plus
the total weight of outgoing arcs of v, i.e.,

dyv)=al)+ Y w({u,v}).
{u,vyem:
A{w,vP)=(v,u)
In a cactus graph, a vertex in a cycle is a gate if it is adjacent
to any vertex that does not belong to the cycle. Note that
the unweighted degree of a gate is at least three. As for the
number of gates in a cycle, the following is known:

Proposition 11 (Proposition 2 in [2]): In a cactus graph
G in which deg(v) > 2 for every vertex v, there always
exists a cycle with at most one gate.

The main part of the proposed algorithm Exact-Cactus-
MaxMinO is shown in Algorithm 3, which solves the de-
cision version of the problem MAXMINO: Given a number
K, this problem asks whether there exists an orientation
whose value is at least K. We can develop an algorithm
for the original problem MAXMINO by using this algorithm
O(log A) times in a binary search manner on optimal value,
which is upper-bounded by A.

The correctness of Exact-Cactus-MaxMinO is based
on the following property on optimal orientations for two
graphs.

Proposition 12: Consider two graphs G and G' that differ
only on their vertex weights. If ag(v) < ag:(v) for every
vertex v, then OPT(G) < OPT(G') holds. O

Algorithm 3 Algorithm Exact-Cactus-MaxMinO
1: repeat
2: For a vertex v,

3 if a(v) +d(v) < K then

4 output No and halt.

5. else if deg(v) = 1 then

6: (let its connecting edge be e = {v,u})

7 if a(v) < K then

8 Ale) :== (v,u)

9: else

10: A(e) := (u,v) and increase a(u) by w(e)

11: end if

12: Remove v and e.

13: else if deg(v) = 2 then

14: (let e; = {p,v} and ex = {v,¢q})

15: if a(v)+w(e1) < K and a(v) +w(ez) < K then

16: A(e1) := (v,p) and A(ez) := (v, q). Remove v,

e1, and es.

17: else if a(v) + w(e;) < K and a(v) + w(ex) > K
then

18: A(e1) := (p,v) and A(e2) := (v,q) and also

increase a(p) by w(er). Remove v, e, and es.
19: end if
20: end if
21: until there does not exist a vertex v satisfying either one
of the above conditions

22: for all C := (vg,v1, -+ ,ve = vp) that has at most one
gate do

23: if C does not have a gate then

24: A({vi,viﬂ}) = (Ui,vi+]_) for O <3< {—1.

25: Remove C.

26: else

27: Let vy be the gate.

28: if there exists a vertex v;, j # 0 satisfying a(v;) >

K in C then
29: Assign A({vi,vit1}) = (vi,vig1) for 0 <

) S _] — 1 and A({Ui;'ui—i-l}) = (Uz'+1,1]i) for
j <i<£€—1. Increase a(vg) by w({vo,v1}) +
’LU({U(),’UZ_1}).

30: else

31 If w({vog,v1}) > w({vo,ve—1}) then assign
A({’l)i,’l)i+1}) = (’Ui,’l)i+1) for 0 S) S (-1
and increase a(vg) by w({vo,v1}), otherwise
A({Ui,vi+1}) = (Uz'+1;Ui) for O S) S (-1
and increase a(vg) by w({vo,ve_1}).

32: end if

33: Remove C except the gate vy.
34: end if
35: end for

36: if the graph is empty then
37 output A and halt.

38: else

39: go back to line 1.

40: end if

Theorem 13: Given a cactus graph G and a target K,
Exact-Cactus-MaxMinO outputs an orientation A such that
0o (@) > K if such an orientation exists, in polynomial time.

Proof: First we estimate the running time. Since each
of executions of repeat loop or for all loop determines the
direction of at least one edge, the total number of times those
steps are being processed is bounded by O(m). Also all of
those steps can be done in O(m) time because they only
find a vertex or a cycle with testing certain conditions by a
constant time. Hence the total running time is O(m?). It can
be reduced to O(m + nlogn) by a careful implementation
of the algorithm, but we omit the details here.

Next we show the correctness of the algorithm. Each
execution that removes some vertices and edges from the
current graph H (lines 12, 16, 18, 25 and 33) may in-
crease the weight of a remaining vertex, and then obtains
a modified graph H'. What we would like to show is that
if OPT(H) > K, then (i) also OPT(H') > K, (ii) the
determined directions of edges are correct, and so (iii) all
the vertices removed at the step have weighted outdegree at
least K. Assume that OPT(H) > K.

Lines 3-4: If the condition is satisfied, the answer is
clearly No.

Lines 5-12: It holds that a(v) +w(e) > K since it passes
through the check in line 3. In the case that a(v) < K, if we
assign A(e) := (u,v), then the weighted outdegree of v is
less than K, which contradicts the assumption OPT (H) >
K. Hence the assignment A(e) := (v,u) is correct and also
the removed vertex v has weighted outdegree at least K.
Also it holds that OPT(H') > OPT(H), otherwise, it
contradicts that OPT(H) is the optimal value.

Let us consider the other case that a(v) > K. The
weighted outdegree of the removed vertex v is at least
a(v) > K in this case whichever the direction assigned to
the edge e is. There are two possibilities: We assign either
Ale) := (u,v) or A(e) := (v,u). Let the graph obtained
by the former assignment with increasing a(u) by w(e) be
H’, and let the graph obtained by the latter be H''. From
Proposition 12, we observe that OPT(H') > OPT(H").
If OPT(H") > OPT(H), then it holds that OPT(H') >
OPT(H'") > OPT(H) for both of the directions of the
edge e. Conversely, the inequality OPT(H") < OPT(H)
means that the weighted outdegree of the vertex w must
be augmented by orienting the edge e = {v,u} as (u,v)
in the optimal orientation for H, because, otherwise it
contradicts that OPT(H) is the optimal value. Thus the
assignment A(e) := (u,v) is correct and it holds that
OPT(H') > OPT(H) > K.

Lines 13-20: If we do not follow the rules here, the
weighted outdegree of the processed vertex would be less
than K < OPT(H), which implies the operations in these
lines are correct. As a result, the weighted outdegree of the
removed vertex v at line 16 (resp., line 18) is at least K from
the assumption that v does not satisfy the condition of line

3 (resp., line 15), and also OPT(H') > OPT(H) > K.

Lines 22-35: First of all, at the beginning of this part,
it holds that deg(v) > 2 for every vertex v since it passes
lines 5-12. From Proposition 11, we can always find a cycle
having at most one gate.

Lines 23-25: It is obvious that the vertices removed
at this step have weighted outdegree at least K because
they passed lines 13-19. In addition to that it holds that
OPT(H') > OPT(H) since C is a connected component
in H and OPT(H) = min{OPT(C),OPT(H")}.

Lines 27-33: The vertices removed in this step all have
weighted outdegree at least /' because of the conditions of
lines 13-19. Also the proposed assignment of directions for
the cycle C increases «(vg) as much as possible without
breaking optimality, and it derives OPT(H') > K by a
similar argument as the one used in lines 5-12.

By the above discussion, if all the vertices are removed
without answering No, the weighted outdegree of every
vertex by the orientation A is at least K. d

From Theorem 13, we can solve MAXMINO for cac-
tus graphs in polynomial time by using EXACT-CACTUS-
MAXMINO as an engine of the binary search.

Acknowledgments

We thank Tetsuo Shibuya for some inspiring discussions.
This work is partially supported by Grant-in-Aid for Sci-
entific Research (C) No. 20500017, Grant-in-Aid for Young
Scientists (B) No. 18700014 and 18700015, and Asahi glass
foundation.

References

[1] Y. Asahiro, J. Jansson, E. Miyano, H. Ono, and K. Zenmyo.
Approximation algorithms for the graph orientation mini-
mizing the maximum weighted outdegree. In Proceedings of
Algorithmic Aspects in Information and Management, Third
International Conference (AAIM 2007), pp.167-177, 2007.

[2] Y. Asahiro, E. Miyano, and H. Ono. Graph classes and the
complexity of the graph orientation minimizing the maximum
weighted outdegree. In Proceedings of heory of Comput-
ing 2006, Proceedings of the Twelfth Computing: The Aus-
tralasian Theory Symposium (CATS2006), pp.97-106, 2008.

[3] Y. Asahiro, E. Miyano, H. Ono, and K. Zenmyo. Graph
orientation algorithms to minimize the maximum outdegree.
International Journal of Foundations of Computer Science,
18(2), pp-197-215, 2007.

[4] N. Bansal and M. Sviridenko. The Santa Claus problem. In
Proceedings of the 38th Annual ACM Symposium on Theory
of Computing (STOC2006), pp.31-40, 2006.

[5] I. Bezdkova and V. Dani. Allocating indivisible goods. ACM
SIGecom Exchanges, 5(3), pp.11-18, 2005.

[6] T. Cormen, C. Leiserson, and R. Rivest. Introduction to
Algorithms. MIT Press, 1990.

[7] T. Ebenlendr, M. Kr¢dl, and J. Sgall. Graph balancing: a
special case of scheduling unrelated parallel machines. In
Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2008), pp.483-490, 2008.

[8] U. Feige. On allocations that maximize fairness. In Proceed-
ings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2006), pp.287-293, 2008.

[9] M. Garey and D. Johnson. Computers and Intractability — A
Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, 1979.

[10] E. M. Gold. Complexity of automaton identification from
given data. Information and Control, 37(3), pp.302-320,
1978.

[11] A. V. Goldberg and S. Rao. Beyond the flow decomposition
barrier. Journal of the ACM, 45(5), pp.783-797, 1998.

[12] D. Golovin. Max-min fair allocation of indivisible goods.
Technical Report, 2005.

[13] L. Kowalik. Approximation scheme for lowest outdegree
orientation and graph density measures. In Algorithms and
Computation, 17th International Symposium (ISAAC 2006),
pp-557-566, 2006.

[14] D. Lichtenstein. Planar formulae and their uses. SIAM Journal
on Computing, 11(2), pp.329-343, 1982.

[15] W. Mulzer and G. Rote. Minimum-weight triangulation is NP-
hard. In 22nd Annual ACM Symposium on Computational
Geometry (SoCG), pp.1-10, 2006.

[16] T. J. Schaefer. The complexity of satisfiability problems. In
Proceedings of the 10th Annual ACM Symposium on Theory
of Computing, pp.216-226, 1978.

[17] V. Venkateswaran. Minimizing maximum indegree. Discrete
Applied Mathematics., 143(1-3), pp.374-378, 2004.

[18] G. J. Woeginger. A polynomial-time approximation scheme
for maximizing the minimum machine completion time. Op-
erations Research Letters, 20, pp.149-154, 1997.

