
Journal of Combinatorial Optimization 3, 183–197 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

On the Complexity of Constructing
Evolutionary Trees

LESZEK GA̧SIENIEC leszek@csc.liv.ac.uk
Department of Computer Science, University of Liverpool, Peach Street, L69 7ZF, Liverpool, UK

JESPER JANSSON Jesper.Jansson@dna.lth.se
Department of Computer Science, Lund Institute of Technology, Box 118, 221 00 Lund, Sweden

ANDRZEJ LINGAS Andrzej.Lingas@dna.lth.se
ANNA ÖSTLIN Anna.Ostlin@dna.lth.se
Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden

Received November 25, 1995; Revised March 30, 1996

Abstract. In this paper we study a few important tree optimization problems with applications to computational
biology. These problems ask for trees that are consistent with an as large part of the given data as possible. We
show that the maximum homeomorphic agreement subtree problem cannot be approximated within a factor of
Nε , whereN is the input size, for any 0≤ ε < 1

9 in polynomial time unless P=NP, even if all the given trees are
of height 2. On the other hand, we present anO(N log N)-time heuristic for the restriction of this problem to
instances withO(1) trees of heightO(1) yielding solutions within a constant factor of the optimum. We prove that
the maximum inferred consensus tree problem is NP-complete, and provide a simple, fast heuristic for it yielding
solutions within one third of the optimum. We also present a more specialized polynomial-time heuristic for the
maximum inferred local consensus tree problem.

Keywords: algorithm, time complexity, evolutionary tree, homeomorphism, consensus tree

1. Introduction

An evolutionary tree models how different species in a given set have evolved. The leaves
in an evolutionary tree correspond to species and internal nodes represent the species’
ancestors.

The problem of constructing a reliable evolutionary tree has been studied extensively
(Farach et al., 1995; Farach and Thorup, 1994a, 1994b; Hein et al., 1996; Henzinger et al.,
1996; Kannan et al., 1995; Kao et al., 1997; Keselman and Amir, 1994; Lam et al., 1996;
Phillips and Warnow, 1996; Steel and Warnow, 1993). There are many different approaches,
depending among other things on what kind of data that is available. Therefore, various
versions of this problem arise in, for example, computational biology when one wants to find
out how different species are related, and comparative linguistics, where it is central to find
out how different languages have evolved. In this paper, we look at some of these problems.

Given a set of alternative evolutionary trees describing possible evolutions for a fixed
set of species, one might want to identify a subtree contained within every given tree such

184 GA̧SIENIEC ET AL.

that the number of leaves labeled by species is maximized. This problem is known asthe
maximum homeomorphic agreement subtree problem(MHT) (Keselman and Amir, 1994).
More formally, it is defined as follows. Givenk rooted treesT1, T2, . . . , Tk, each withn
leaves labeled distinctly with elements chosen from a setAof cardinalityn, find a maximum
cardinality subsetB of A such that the minimal homeomorphic subtrees ofT1, T2, . . . , Tk

(i.e., with all degree 2 nodes except for the root contracted) containing exactly the leaves
labeled byB are isomorphic. To measure the input size of an instance of MHT, we letN
denote the total number of nodes contained in the given trees. MHT restricted to instances
with two trees is frequently called MAST; algorithms for MAST have been developed since
1985 (Finden and Gordon, 1985). It has been shown to be solvable in polynomial time,
both for rooted trees (Farach and Thorup, 1994a, 1994b) and for UMAST, a variant of
MAST with unrooted trees (Farach and Thorup, 1994a; Kao et al., 1997; Lam et al., 1996;
Steel and Warnow, 1993). In practice, however, the number of trees is often much larger
than two (Keselman and Amir, 1994). For the special case of MHT in which at least one
of the given trees has bounded degree, there exist polynomial-time algorithms (Farach et
al., 1995; Keselman and Amir, 1994). In contrast, MHT is known to be NP-complete even
for instances with three trees of unbounded degree (Keselman and Amir, 1994). The first
non-approximability result for MHT was published in (Hein et al., 1996). It states that
for three trees with unbounded degree, MHT cannot be approximated within ratio 2logδ n

in polynomial time for anyδ < 1 unless NP⊆ DTIME[2polylogn]. Here we prove that,
unless P=NP, MHT cannot be approximated within a factor ofNε, for any 0≤ ε < 1

9
in polynomial time even for instances containing only trees of height 2; see Section 2. On
the other hand, in Section 3, we show that MHT for instances withO(1) number of trees
of heightO(1) can be approximated within a constant factor in timeO(N log N). Similar
results also hold for the unrooted version of MHT which is at least as hard as MHT (this
can be seen by an argument analogous to that in (Farach and Thorup, 1994a) for MAST
and UMAST).

Usually MHT instances do not admit a solution containing all the members of the species
set. Therefore, in some applications, other methods may be preferred. One alternative
approach is to attempt to construct an evolutionary tree from a set of constraints that relate
the species to each other. Already during the early eighties, Aho et al. (1981) studied
the problem of inferring a tree from constraints on its lowest common ancestors in the
context of relational data bases. They defined it as follows: Given a set of constraints of
the form {i, j }< {k, l }, where{i, j, k, l } ⊂ {1,2, . . . ,n}, if possible construct a tree on
the set of leaves{1,2, . . . ,n} such that for each constraint of the aforementioned form, the
lowest common ancestor ofi and j is a proper descendant of the lowest common ancestor
of k andl . Aho et al. showed how to decide whether an instance of this problem admits
a solution, and if so, how to construct it, both in timeO(mnlogn), wherem denotes the
number of constraints.

Recently, many authors have studied the related problem of constructing the so-called
consensus tree or local consensus tree (Henzinger et al., 1996; Kannan et al., 1995; Phillips
and Warnow, 1996). For a set of binary rooted trees{T1, T2, . . . , Tk}, each one leaf-labeled
by a subsetL(Ti) of {1,2, . . . ,n}, the consensus tree problem asks whether or not there
is a treeT such that fori = 1,2, . . . , k, Ti is homeomorphic to the subtree ofT induced

CONSTRUCTING EVOLUTIONARY TREES 185

by the nodes inL(Ti) and their ancestors. If the input trees are of constant size it is
termed the local consensus tree problem. A constraint of the form{i, j } < {i, k} (denoted
({i, j }, k) for short) is easily seen to be equivalent to the constraint imposed by a full
binary tree on the leavesi, j, k in the local consensus tree problem. For this reason, we
shall call the tree inferring problem posed in (Aho et al., 1981)the inferred consensus tree
problem.

Unfortunately, it is often impossible to construct an exact consensus tree. This creates
a need for an optimization version of the inferred consensus tree problem whose objective
is to find a consensus tree for an as large as possible subset of the input set of constraints
of the form {i, j }< {k, l }. For brevity, we term this optimization problemthe maximum
inferred consensus tree problem(MICT for short). We also distinguish the restricted case
of MICT where all constraints are of the form({i, j }, k) and call itthe maximum inferred
local consensus tree problem(MILCT).

In Section 4 we provide an NP-completeness proof for MICT. Section 5 contains a
simple O((n + m) logn)-time heuristic for MICT yielding solutions within one third of
the optimum and a more involved polynomial-time heuristic for MILCT. Both heuristics
work equally well for the weighted versions of MICT and/or MILCT where the objec-
tive is to find a consensus tree for a subset of the input constraints of maximum total
weight.

2. MHT is hard to approximate

Our main result in this section is the following theorem.

Theorem 1. For any0 ≤ ε < 1
9, MHT, even if restricted to trees of height2, cannot be

approximated within a factor of Nε in polynomial time, unless P=NP.

Proof: First, we describe a reduction from the maximum independent set problem to
MHT. Next, we show that if MHT can be approximated within a factor ofNε in polynomial
time then the problem of finding a maximum independent set in a graph withl nodes
can be approximated within a factor ofl 3ε+o(1). Finally, we apply known results about the
inapproximability of the maximum independent set problem to get our result. In part, our
reduction can be seen as a generalization of the reduction of three-dimensional perfect
matching to MHT restricted to instances with three trees used in (Keselman and Amir,
1994).

Let G = (V, E) be a graph whereV = {v1, . . . , vl } andE = {e1, . . . ,ek} with k > 1.
Constructk rooted treesT1, . . . , Tk on l + q labeled leaves that contain all the adjacency
information about the nodes ofG as follows. For each edgeei = (va, vb) ∈ E, build a
rooted treeTi on the set of leaves labeled byw1, . . . , wl , wl+1, . . . , wl+q. Let the rootri

of Ti be the parent of(l − 1) + q children, where the first child (“the non-leaf child”) is
a node with two children leaves labeledwa andwb, and the remaining children ofri are
leaves labeled by the elements in{w j | 1≤ j ≤ l +q and j 6∈ {a,b}}. Thus,ri has exactly
one pair of grandchildren, and we writeGC(Ti) = {wa, wb}.

186 GA̧SIENIEC ET AL.

Now, let T be a maximum homeomorphic agreement subtree ofT1, . . . , Tk. We choose
q large enough to guarantee that each of the rootsr1, . . . , rk will correspond to the root
r of T . Actually, q = 2 is sufficient. (To see this, assume that the non-leaf child ofri

turned out to be the root for somei . By the construction above, all non-leaf children have
two leaf children, so the number of leaves in this agreement subtree can be no larger than
two. But we can always find an agreement subtree with three leaves by selectingri as root
and includingwl+1 andwl+2 in addition to the path from the root to a fixed leafw j , where
1≤ j ≤ l .)

T has no non-leaf children because if it did, then there would exist somex andy such that
for eachi , where 1≤ i ≤ k, GC(Ti) would be equal to{wx, wy}. Consequently,G would
have only one edge which contradictsk>1. The children ofT arem+ q(= m+ 2) leaves
labeledwµ1, wµ2, . . . , wµm, wl+1, wl+2. If va is adjacent tovb in G then at most one ofwa

andwb can be a child ofT . Otherwise,GC(Ti) wouldn’t be equal to{wa, wb} for anyTi .
Consequently,ei 6= (va, vb) would hold for alli , contradicting the adjacency ofva andvb

in G. Thus, the nodesvµ1, vµ2, . . . , vµm form an independent set inG.Conversely, given an
independent setI of nodes inG,we can easily construct an agreement subtreeTI in the form
of a rooted tree with|I |+2 leaves uniquely labeled withw j ,wherev j ∈ I , andwl+1, wl+2.
By the maximality ofT , m equals the cardinality of the maximum independent set ofG.
Thus, an algorithm for MHT would immediately imply an algorithm for the maximum
independent set problem. See figures 1–3 for an example of the reduction.

The total sizeN of the treesT1, . . . , Tk is k · O(l) = O(l 3) = l 3+o(1). Clearly, they
can be constructed fromG in polynomial time. Also, note that they are of height 2.
Below we will only consider approximations that can be carried out in polynomial time. If
MHT could be approximated within a factor ofNε , then OPT+2

s+2 ≤ Nε , whereOPT+ 2
refers to the number of leaves in an optimal solution for a given instance of MHT and
s+ 2 is the number of leaves in its corresponding, approximative solution. Fors ≥ 1,
it follows that OPT

s ≤ 3 · OPT+2
s+2 ≤ 3Nε = l 3ε+o(1), which would imply that the problem

of finding a maximum independent set in a graph could be approximated within a factor
of l 3ε+o(1). However, Håstad (1996) proved that this problem isn’t approximable within
l 1/3−δ for anyδ >0, unless P=NP. Hence, if P6=NP, MHT cannot be approximated within
a factor ofNε for any 0≤ ε ≤ 1

9 − o(1). Finally, since1
9 − o(1) can be made arbitrarily

close to 1
9 by choosingN large enough, there exist instances of MHT which cannot be

approximated within a factor ofNε for any constant 0≤ ε < 1
9 in polynomial time (unless

P=NP). 2

Figure 1. An instance of the maximum independent set problem withl = 7 andk = 8.

CONSTRUCTING EVOLUTIONARY TREES 187

Figure 2. The treesTi corresponding to the graph in figure 1.

Figure 3. The maximum homeomorphic agreement subtree ofT1, . . . , T8 tells us that{v2, v3, v4, v7} is a maxi-
mum independent set of the graph in figure 1.

188 GA̧SIENIEC ET AL.

3. Approximations of MHT with O(1) trees of heightO(1)

We know that MHT is hard to approximate, both for instances with three trees (Hein et al.,
1996) and for instances with an arbitrary number of trees of height 2 or more by Theorem 1.
The natural question arises whether or not MHT for instances with a bounded number of
trees, each one of bounded height, can be tightly approximated in polynomial time. The
following result, together with Theorem 1, yields a characterization of the approximability
of MHT restricted to instances with trees ofO(1) height.

Theorem 2. MHT restricted to instances with k trees of height not exceeding h can be
approximated within a factor of kh in time O(n logn).

To begin the proof of Theorem 2, we need to introduce the following notation. For a tree
T, V(T) stands for the set of nodes ofT. Let v be a node of a rooted treeT. The minimal
subtree ofT rooted atv, includingv and all its descendants is denoted byTv. L(Tv) stands
for the set of labels of the leaves inTv. The set of children ofv in T is denoted byC(v).
Furthermore, by ak-partite hypergraph Hwe shall mean a pair(V1 ∪ · · · ∪ Vk, E) where
V1 throughVk are pairwise disjoint sets andE is a subset ofV1 × · · · × Vk. The elements
of V1 ∪ · · · ∪ Vk are called thenodesof H whereas the elements ofE are called theedges
of H. A matchingof H is a subset ofE in which no pair of edges includes a common
node.

LetT1, . . . , Tk be the input trees. For(v1, . . . , vk),wherevi ∈ V(Ti) for i = 1, . . . , k, let
Mht(v1, . . . , vk)denote the maximum size of an agreement subtree of the treesT1, . . . , Tk re-
stricted to B = L((T1)v1) ∩ · · · ∩ L((Tk)vk). We can viewMht(v1, . . . , vk) as the
solution of MHT for(T1)v1, . . . , (Tk)vk . Next, letH(v1, . . . , vk) denote thek-partite hyper-
graph(C(v1)∪ · · · ∪C(vk),C(v1)× · · · ×C(vk)) whose edges(w1, . . . , wk) have weight
Mht(w1, . . . , wk). Finally, letMatch(v1, . . . , vk) be the maximum weight of a matching in
hypergraphH(v1, . . . , vk) andDiag(v1, . . . , vk) = max{Mht(w1, . . . , wk) | (w1, . . . , wk)

∈ ({v1} ∪ C(v1))× · · · × ({vk} ∪ C(vk))− {(v1, . . . , vk)}.
Intuitively, in the final agreement subtree of(T1)v1, . . . , (Tk)vk either the roots of the trees,

i.e.,v1 throughvk, are matched together which forces their children to be optimally matched
together (Match), or only some of the roots are matched together with some children of
the remaining roots (Diag). This yields the following lemma which is a straightforward
generalization of the basic lemma in the dynamic programming approach to MAST in (Steel
and Warnow, 1993) (see also Farach and Thorup, 1994a).

Lemma 1. For any(v1, . . . , vk), wherevi ∈ V(Ti) for i = 1, . . . , k, if at least one of the
vi ’s is a leaf then Mht(v1, . . . , vk) = |L((T1)v1) ∩ · · · ∩ L((Tk)vk)| else Mht(v1, . . . , vk) =
max{Match(v1, . . . , vk),Diag(v1, . . . , vk)}.

It is easy to see that the recursive computation ofMht(v1, . . . , vk) for (v1, . . . , vk) ∈
V(T1) × · · · × V(Tk) used in Lemma 1 can be bottom-up ordered byHs(v1, . . . , vk) =∑k

i=1 height((Ti)vi). Hence, we have the following algorithm for MHT.

CONSTRUCTING EVOLUTIONARY TREES 189

Algorithm 1.

1. input T1, . . . , Tk

2. for each(v1, . . . , vk) ∈ V(T1) × · · · × V(Tk), in increasing order ofHs(v1, . . . , vk)

docomputeMht(v1, . . . , vk) by using the expression in Lemma 1.
3. output Mht(r1, . . . , rk) whereri is the root ofTi , for i = 1, . . . , k.

It is hard to compute the exact value ofMatch(v1, . . . , vk) in the expression of Lemma 1
since the problem of computing maximum matching in a 3-partite hypergraph is NP-
complete (Papadimitriou, 1994). For this reason, we shall rely on a greedy method for ap-
proximatingMatch(v1, . . . , vk) yielding an approximation ofMht(v1, . . . , vk). The greedy
method consists of repeatedly picking the heaviest edgee and removing all edges over-
lapping e. It can be implemented easily using a priority queue.e can overlap with at
most k edges in an optimum solution, and since their total weight≤k · weight(e), we
obtain:

Lemma 2. Let H = (V, E) be a k-partite hypergraph on m edges with positive integer
weights. A matching in H of total weight within a factor k of the maximum can be constructed
in a greedy fashion in time O(k|E| + |V | +m logm).

Interestingly, in the unweighted case there are known (much slower, but still) polynomial-
time heuristics yielding solutions within almostk

2 of the optimum (Hurkens and Schrijver,
1989).

By combining the scheme of Algorithm 1 with the greedy method for approximating
Match(v1, . . . , vk), we obtain the following lemma, yielding Theorem 2.

Lemma 3. For all (v1, . . . , vk) ∈ V(T1)×· · ·×V(Tk),we can approximate Mht(v1, . . . ,

vk) within a factor of kh, where h= max{height((Ti)vi) |1≤ i ≤ k} in time O(n logn).

Proof: For(v1, . . . , vk) ∈ V(T1)×· · ·×V(Tk), lets(v1, . . . , vk) denote the size of the in-
tersectionsL((T1)v1) ∩ · · · ∩ L((Tk)vk).Clearly, we haveMht(v1, . . . , vk) ≤ s(v1, . . . , vk),
and in particular if one of thevi ’s is a leaf thenMht(v1, . . . , vk) = s(v1, . . . , vk). For a leaf
label j, we determine allk-tuples(v1, . . . , vk) for which j ∈ L((T1)v1) ∩ · · · ∩ L((Tk)vk)

by finding, in eachTi , i = 1, . . . , k, the nodes on the path of length≤h from the leaf
labeled j to the root. It follows that the number of these tuples is(h+ 1)k. Consequently,
the setL of all k-tuples for whichs(v1, . . . , vk) > 0 has size not exceedingn(h+ 1)k. To
list L efficiently, we sort the pointers to leaves inT1 throughTk by the leaf labels. Such a
sorted list of pointers can be produced in timeO(|V(T1)|+ · · ·+ |V(Tk)|).Using it, we can
generateL by finding appropriate tree paths in timeO(|V(T1)|+ · · ·+ |V(Tk)|+ (h+1)k).

For thek-tuples(v1, . . . , vk) in set L that include at least one leaf, we clearly haves
(v1, . . . , vk) = 1 andMht(v1, . . . , vk) = 1. To compute approximations ofMht(v1, . . . ,vk)

for the remainingk-tuples inL , we build a balanced search treeSL for L, with respect
to the lexicographic order ofk-tuples inV(T1) × · · · × V(Tk), in time O(|L| log |L|).
Next, we follow the scheme of Algorithm 1 using the greedy method to approximate

190 GA̧SIENIEC ET AL.

Match(v1, . . . , vk) in the hypergraphHL(v1, . . . , vk)which is the hypergraphH(v1, . . . , vk)

defined in Lemma 1 restricted to edges inL .
Each k-tuple (w1, . . . , wk)∈ L occurs at most once as an edge in the hypergraphs

HL(v1, . . . , vk) for (v1, . . . , vk) ∈ L (only whenwi ∈ C(vi), for i = 1, . . . , k). Hence, the
hypergraphsHL(v1, . . . , vk) for (w1, . . . , wk) ∈ L , have no more than|L| edges totally and
can be constructed (without weights) by scanningL and usingSL in total timeO(|L| log |L|).
Clearly, eachHL(v1, . . . , vk) has at mosts(v1, . . . , vk) edges with positive weights. For
each of its edges(w1, . . . , wk), we haveHs(w1, . . . , wk) = Hs(v1, . . . , vk) − k and
max{height(wi) |1 ≤ i ≤ k} = h − 1. Hence, we may inductively assume that we have
alreadykh−1 approximations ofMht(w1, . . . , wk), i.e., of the weights of(w1, . . . , wk) in
the hypergraph. Consequently, we obtain an approximation ofMatch(v1, . . . , vk) within a
factor ofkh by applying the greedy method. Due to Lemma 2, the total time complexity
of the greedy method is bounded byO(k|L| + (∑(v1,...,vk)∈L s(v1, . . . , vk)) logn). By in-
duction onHs(v1, . . . , vk), we also obtain an approximation ofDiag(v1, . . . , vk) within a
factor of kh by considering solelyk-tuples(w1, . . . , wk) in L ∩ (({v1} ∪ C(v1)) × · · · ×
({vk} ∪ C(vk)) − {(v1, . . . , vk)}). Each(w1, . . . , wk) ∈ L can contribute to the value of
Diag(v1, . . . , vk) for at most 2k − 1 k-tuples(v1, . . . , vk) ∈ L . Hence, the total size of the
subsets ofL contributing toDiag(v1, . . . , vk) over all(v1, . . . , vk) ∈ L , and consequently
the total cost of finding maxima ofMht-approximations over these subsets, isO(2k|L|).We
can build these subsets, again by scanningL and usingSL , in total timeO(2k|L| log |L|).

Each of the treesT1 throughTk has size not exceeding 2n by its binarity. Hence, by
|L| ≤ (h+ 1)kn,

∑
(v1,...,vk)∈L s(v1, . . . , vk)≤ (h+ 1)kn, h=O(1), k=O(1), and straight-

forward calculations, we obtain theO(n logn) bound. 2

4. MICT is NP-complete

The problem of deciding whether or not a 3-partite hypergraph(V, E)has a perfect matching
(3PM), i.e., if V is covered by a subset of pairwise disjoint edges inE, is known to be
NP-complete (Papadimitriou, 1994). To show the NP-completeness of MICT, we provide
a reduction of 3PM to MICT.

Let H = (V, E) be a 3-partite hypergraph andk a parameter that will be specified later
on. We let each vertex inV label one leaf. Also, for each edgee ∈ E, we introducek + 2
leaves labeledei , wherei = 0, . . . , k+1. LetC be the minimal set of constraints satisfying:

1. foreache, f ∈ E withe 6= f : thecontraints({ei ,el }, f j)∈C, wherei = 0,1, l = 2, . . . ,
k+ 1, and j = 2, . . . , k+ 1.

2. for eache = (a,b, c) ∈ E: the three constraints{a,b} < {e0,e1}, {a, c} < {e0,e1},
and {b, c} < {e0,e1} ∈ C.

Thus,C consists of 2k2(|E|2− |E|) constraints of the first type and 3|E| constraints of the
second type.

To characterize consensus trees for large subsets ofC, we need the following defi-
nitions.

CONSTRUCTING EVOLUTIONARY TREES 191

Definition 1. In a rooted treeT, the lowest common ancestor of a sequence of nodes
v1, . . . , vm will be denoted bylca(v1, . . . , vm). Furthermore, the path from a nodev to
the root ofT will be denoted byR(v). The subtree ofT induced by a sequence of nodes
v1, . . . , vm is the smallest subtree ofT including the pathsR(vi), i = 1, . . . ,m.

Definition 2. The full binary tree on four leavesa, b, c, d, wherelca(a,b) andlca(c,d)
form the intermediate level, will be denoted byB4(a,b, c,d).

Lemma 4. If T is a consensus tree for at least|C| − k2 + 1 constraints in C, then for
each e, f ∈ E with e 6= f, the subtree induced of T by{e0,e1, f0, f1} is homeomorphic to
B4(e0,e1, f0, f1).

Proof: By the assumption on the number of constraints satisfied byT, for eache, f ∈ E
with e 6= f, there are indicesl , j ∈ {2, . . . , k + 1} such that fori = 0,1, the constraints
({ei ,el }, f j), ({ fi , f j },el) are satisfied byT.

By ({e0,el }, f j) and ({e1,el }, f j), the pathR(lca(e0,e1,el)) cannot be included in
the pathR(f j). Thus,R(lca(e0,e1,el)) 6⊆ R(lca(f0, f1, f j)). Similarly, by ({ f0, f j },el)

and ({ f1, f j },el), we haveR(lca(f0, f1, f j)) 6⊆ R(lca(e0,e1,el)). This means that the
paths fromlca(e0,e1,el) to lca(e0,e1,el , f0, f1, f j) as well as fromlca(f0, f1, f j) to
lca(e0,e1,el , f0, f1, f j) must be edge-disjoint. 2

Corollary 1. Let T be a consensus tree for at least|C| − k2 + 1 constraints in C. For
each node a∈ V and two different edges e, f ∈ E, if T satisfies a constraint of the form
{a, ·} < {e0,e1} then T cannot satisfy any constraints of the form{a, ·} < { f0, f1}.

Lemma 5. Let k>
√

3|E| − |V |. The hypergraph H has a perfect matching iff there is a
consensus tree for a subset of2k2(|E|2− |E|)+ |V | constraints in C.

Proof: Suppose first thatH has a perfect matchingM . We can construct a consensus
treeT satisfying at least 2k2(|E|2 − |E|) + |V | of the constraints inC as follows. The
root of T has|E| children which are in one-to-one correspondence with the edges inE.
For everye ∈ E, a subtree rooted in the corresponding child has as children the leaves
e0,e1, . . . ,ek+1. Furthermore, ife = {a,b, c} is in M , then the subtree has another child
which in turn is the parent of the leaves labeleda, b, c.

Suppose in turn that there is a consensus treeT satisfying 2k2(|E|2 − |E|)+ |V | con-
straints inC. The total number of constraints inC is 2k2(|E|2− |E|)+ 3|E|. It follows by
k >
√

3|E| − |V | thatT satisfies at least|C| − k2 + 1 constraints. Thus, by Corollary 1,
for each nodea ∈ V , there is at most one edgee∈ E such that some constraint of the form
{a, ·}< {e0,e1} is satisfied byT . On the other hand, for a given nodea and a given edgee,
at most two constraints of the form{a, ·} < {e0,e1} can be satisfied byT by the construc-
tion of C. Consequently,V can be partitioned into three disjoint subsetsVr , r = 0,1,2,
respectively consisting of nodesa ∈ V for which T satisfiesr constraints of the form
{a, ·} < {·, ·}. At most|V2| + |V1|

2 constraints of the form{·, ·} < {·, ·} are satisfied byT ,
so since there are only 2k2(|E|2− |E|) constraints of the form({·, ·}, ·) in C, we conclude
thatV2 has to be as large as possible, i.e.,V2 = V . It follows that for each edgee∈ E, if a

192 GA̧SIENIEC ET AL.

constraint of the form{·, ·} < {e0,e1} is satisfied byT , then all the three constraints of this
form are satisfied byT . Hence,H has a perfect matching. 2

The construction ofC for k equal, say, to|E| can easily be done in polynomial time.
Hence, MICT is NP-hard by the NP-completeness of 3PM and Lemma 5. The membership
of MICT in NP is obvious.

Theorem 3. MICT is NP-complete.

5. Approximation heuristics for MICT

Our heuristics in fact work for the generalization of MICT where with each input constraintc
a positive weightw(c) is associated, and the objective is to construct a consensus tree for
a subset of constraints of maximum total weight.

5.1. Heuristic 1

For a constraint{i, j } < {k, l }, where all the leaves are different,k andl are said to have an
upper occurrencein the constraint, andi and j are said to have alower occurrencein the
constraint. For a constraint{i, j } < {i, k}, wherei, j, k are different,i and j are said to
have a lower occurrence in the constraint andk is said to have an upper occurrence in the
constraint. Thetotal weightof upper (or lower) occurrences for a leafl is equal to the sum
of the weights of all constraints in whichl has upper (or lower) occurrences.

Lemma 6. For any instance of MICT, the sum of all leaves’ total weights of upper occur-
rences is at least one third(one half if all constraints contain four leaves) of the sum of all
leaves’ total weight of upper and lower occurrences.

Heuristic 1.

input: a setC of m weighted constraints on leaves 1 throughn;
output: a consensus treeT for a subset ofC whose weight is at least one third (one half if
all constraints contain four leaves) of the total weight of the constraints inC;
1. LEFT← C;

LEAVES← {1, . . . ,n};
T ← {v};

2. if LEFT = ∅ thenextendT by adding|LEAVES| children tov, label them uniquely with
elements inLEAVES, andreturn T;

3. pick a leafy in LEAVESwhich achieves the maximum ratio between the total weight of
y’s upper occurrences and the total weight ofy’s lower occurrences in the constraints in
LEFT;

4. setY to the set of constraints inLEFT which containsy;
5. LEFT← LEFT\Y;

CONSTRUCTING EVOLUTIONARY TREES 193

6. LEAVES← LEAVES\{y};
7. extendT by adding two children tov; label the first child byy; setv to the second child;
8. go to2

Theorem 4. Heuristic1 constructs a consensus tree for a subset of the input set of con-
straints C, whose total weight is at least one third(one half if all constraints contain four
leaves) of the total weight of C, in time O((m+ n) logn).

Proof: By Lemma 6 and the choice ofy, the ratio between the total weight of upper
occurrences and lower occurrences ofy in the constraints inLEFT is at least one third. All
the constraints inY in whichy has an upper occurrence are satisfied byT by the construction
of T.

To implement Steps 3 and 6 efficiently, we arrangeLEAVESin a priority queue partially
ordered by the ratio between the total weight of their upper and lower occurrences in
constraints inLEFT. All the priority queue operations, i.e., creating the priority queue,
picking they’s, updating the priority queue after Step 5, take a total ofO((n +m) logn)
time.

To implement Steps 4 and 5, we lexicographically sortC four times according to four
cyclic permutations of the four leaves in each constraint. Fori = 1, . . . ,4, the i th permu-
tation puts thei th leaf as the first, thei + 1st (in the cyclic order) as the second etc. Next,
four search trees are built on the basis of the sorted lists. Using the search trees, we can
find Y in LEFT and remove it fromLEFT in time O(|Y| logn). We conclude that Steps 4
and 5 totally take timeO((m+ n) logn) (inclusive the preprocessing). 2

The absolute factors of one third and half respectively provided by Heuristic 1 are worst-
case optimal. For example, any consensus tree can satisfy at most one constraint from each
consecutive triple of constraints in a sequence({ai ,bi }, ci), ({bi , ci },ai), ({ci ,ai },bi),

i = 1, . . . , k. In case all constraints contain four leaves, the sequence{ai ,bi } < {ci ,di },
{ci ,di } < {ai ,bi }, i = 1, . . . , k, causes the lower bound12.

The consensus tree produced by Heuristic 1 has the form of a linear chain with singular
leaves pending, where only the last chain node can have larger degree. It is easy to slightly
modify Heuristic 1 to output a subset of the input constraints (a priori) satisfied by the
tree. A minimum height consensus tree for at least one third of the input constraints is then
obtained in timeO(mnlogn) by running the algorithm of Aho et al. (1981) for the inferred
consensus tree problem on this set.

In case the minimum number of constraints necessary to delete in order to build a con-
sensus tree for the remaining part is very small, and the numberm of constraints relative
to the number of leaves is high (it is alwaysO(n4)), an approach different from that of
Heuristic 1 might be more useful.

5.2. Heuristic 2

Heuristic 2 for MILCT simply mimics the algorithm of Aho et al. (1981) for the inferred
consensus tree problem restricted to constraints of the form({i, j }, k). Their basic idea

194 GA̧SIENIEC ET AL.

is simple. The input set of leaves 1,2, . . . ,n is partitioned into a minimal set of blocks
satisfying the following requirement:

(*) If ({i, j }, k) is a constraint theni and j are in the same block.

Now, if the number of blocks in the minimal set is at least two, the algorithm of Aho
et al. creates the consensus tree by connecting the roots of the consensus trees recursively
computed for the respective blocks with a common parent root node. Otherwise, the number
is one, and it returns a null consensus tree.

For a subsetS of leaves, letG(S) denote the auxiliary graph onS where the edges
are induced by the requirement (*), and their weights are equal to the total weight of the
constraints inducing them.

Whenever the algorithm of Aho et al. is stuck at a non-divisible subsetS of the set of
leaves and has to return a null tree, Heuristic 2 simply finds a minimum weight edge cut
of the auxiliary graphG(S) (with respect to the current set of constraints). Next, the edges
of the min-cut are deleted fromG(S) and the connected components ofG(S) are computed.
Consequently, the constraints corresponding to the edges of the min-cut are also deleted.
Finally, the approximation consensus trees for the connected components are recursively
computed and connected by a common parent node.

Using recent dynamic data structures for graph connectivity, Henzinger et al. gave effi-
cient implementations of the algorithm of Aho et al. restricted to constraints of the form
({i, j }, k) (Henzinger et al., 1996). Their randomized implementation takesO(m log3 n)
expected time. They use the undirected graphU and the directed graphD defined as
follows.

• U = (V, E) with V equal to the set{1,2, . . . ,n} of leaves and where for each constraint
({a,b}, c) in C edges{a,b} and{b, c} are inE.
• D = (V ′, A) where for each constraint({a,b}, c) in C nodes{a,b} and{b, c} are inV ′

and{a,b} → {b, c} is in A.

At the beginning the graphU is colored yellow. The graphU is used for finding yellow
components. The consensus tree returned is found by combining the trees constructed for
the yellow components. The graphD is used for finding edges inU that can be colored
red, these edges correspond to the so-called maximal nodes inD.

A maximal nodein D is a node with no outgoing edges, and a red edge whose endpoints
are in different yellow components is called aseparable red edge.

By slightly modifying the algorithm of Henzinger et al. and combining it with an algo-
rithm for minimum weight edge cut (Karger, 1996), we can implement Heuristic 2 as follows.

Heuristic 2.

1. ConstructU andD. Add weights to the edges inU . The weight of an edge{a,b} in U
is equal to the sum of the weights of constraints of the form({a,b}, ·). Color all nodes
in D and edges inU yellow.

CONSTRUCTING EVOLUTIONARY TREES 195

2. Identify maximal nodes inD. Recolor these nodes and the corresponding edges ofU
red.

3. If U has no edges, then return the consensus treeT with a root and all nodes inU
children of the root. Otherwise, compute yellow components ofU . If there is only one
yellow component then find a minimum weight edge cut, delete the edges in the cut from
U and the corresponding nodes fromD, and recompute the yellow components. Let
C1, . . . , Ck be the current yellow components. Form a treeT by creating the root ofT
and connecting the root of the consensus trees recursively computed for the components
C1, . . . , Ck to it. For each current yellow component, identify the setEsepof separable red
edges incident to that new component. Delete these edges fromU and the corresponding
nodes fromD. Go to Step 2.

Lemma 7. Heuristic 2 can be implemented to run in expected time O(n3 logn+
m log3 n).

Proof: A minimum weight edge cut can be computed with high probability in time
O(n2 logn) (Karger, 1996). In the worst case it has to be donen times; hence, the calls to
minimum weight edge cut take a total ofO(n3 logn) expected time. All other operations
can be performed in expected timeO(m log3 n) like in the algorithm of Henzinger et al.
Thus, the total expected time isO(n3 logn+m log3 n). 2

Lemma 8. Let I be an instance of MICT, and let T be the tree produced by Heuristic2
for I . The total weight of constraints in I not satisfied by T is at most height(T) times the
minimum.

Proof: Let J be a subset ofI of minimum total weight such thatI \J has a consen-
sus tree. Next, letD be the set of connected components in the auxiliary graph where
edges corresponding to the constraints inJ are deleted. Suppose that Heuristic 2 at some
stage finds a min-cut in a currently connected fragmentC. Clearly,C cannot be a subset
of a simple component inD since then there wouldn’t exist a consensus tree forI \J.
Hence, there is a subsetJC of J such that the set of edges corresponding to the con-
straints inJC disconnectsG(C) into disjoint components. Clearly, the total weight ofJC

is not smaller than the weight of a min-cut ofG(C). Now, it is sufficient to observe that
the subsetsJC for distinct C′s on the same recursion level of Heuristic 2 are pairwise
disjoint. 2

Theorem 5. Let n, w, t be respectively the number of leaves, the total weight of con-
straints, and the minimum total weight of the constraints to remove in an instance I of
MILCT. Heuristic2 constructs a consensus tree for a subset of the constraints in I whose
total weight is not smaller thanw − nt.

Note that the number of constraints inI might be cubic inn and that Heuristic 2 yields
a better approximation factor than Heuristic 1 for MILCT whenevert < 2w

3n .

196 GA̧SIENIEC ET AL.

6. Open problems

We do not know whether or not it is possible to find a polynomial-time approximation
scheme for instances of MHT withO(1) trees of heightO(1).

It follows from Theorem 3 and the definition of MICT that MICT is strongly NP-complete.
Hence, it cannot admit a fully polynomial-time approximation scheme (Papadimitriou,
1994). However, it is an open question whether it admits a polynomial-time approximation
scheme or at least a polynomial-time heuristic with a smaller approximation factor.

The complexity status of MILCT is also an interesting open question. If MILCT is NP-
complete, does it admit a polynomial-time approximation scheme?

On a high level, the definitions of MICT and MILCT resemble those of MAX SAT
and MAX k-SAT (Hochbaum, 1995; Johnson, 1974). In the design of Heuristic 1 we
have utilized this similarity taking inspiration from the early heuristic for MAX k-SAT
due to Johnson (1974). Recently, substantial progress in approximating MAX SAT and
MAX k-SAT has been made by using linear programming, semidefinite programming, and
randomized rounding (Goemans and Williamson, 1994; Hochbaum, 1995). One of the main
obstacles in applying these techniques to MICT is the complexity of “arithmetization” of
the proper-descendant lowest-common-ancestor relation (the case of MILCT seems more
promising).

Acknowledgments

The authors were supported in part by TFR (Swedish Research Council for Engineering
Sciences) and in part by NUF-NAL (The Nuffield Foundation Awards to Newly Appointed
Lecturers).

References

A.V. Aho, Y. Sagiv, T.G. Szymanski, and J.D. Ullman, “Inferring a tree from lowest common ancestors with
an application to the optimization of relational expressions,”SIAM Journal of Computing, vol. 10, no. 3,
pp. 405–421, 1981.

M. Farach, T. Przytycka, and M. Thorup, “Computing the agreement of trees with bounded degrees,” inProc. of
the 3rd ESA, 1995, pp. 381–393.

M. Farach and M. Thorup, “Fast comparison of evolutionary trees,” inProc. of the 5th ACM-SIAM SODA, 1994a,
pp. 481–488.

M. Farach and M. Thorup, “Optimal evolutionary tree comparison by sparse dynamic programming,” inProc. of
the 35th FOCS, 1994b, pp. 770–779.

C.R. Finden and A.D. Gordon, “Obtaining common pruned trees,”Journal of Classification, vol. 2, pp. 255–276,
1985.

M.X. Goemans and D.P. Williamson, “New34-approximation algorithms for MAX SAT,”SIAM Journal of
Discrete Mathematics, vol. 7, pp. 656–666, 1994.

J. Håstad, “Testing of the long code and hardness for clique,” inProc. of the 28th ACM STOC, 1996, pp. 11–19.
J. Hein, T. Jiang, L. Wang, and K. Zhang, “On the complexity of comparing evolutionary trees,”Discrete Applied

Mathematics, vol. 71, pp. 153–169, 1996.
M.R. Henzinger, V. King, and T. Warnow, “Constructing a tree from homeomorphic subtrees, with applications

to computational biology,” inProc. of the 7th ACM-SIAM SODA, 1996, pp. 333–340.

CONSTRUCTING EVOLUTIONARY TREES 197

D.S. Hochbaum, Ed.,Approximation Algorithms for NP-hard Problems, PWS Publishing Company: Boston,
1995.

C.A.J. Hurkens and A. Schrijver, “On the size of systems of sets everyt of which have an SDR, with an application
to the worst-case ratio of heuristics for packing problems,”SIAM Journal of Discrete Mathematics, vol. 2, no. 1,
pp. 68–72, 1989.

D.S. Johnson, “Approximation algorithms for combinatorial problems,”Journal of Computer and System Sciences,
vol. 9, pp. 256–278, 1974.

S. Kannan, T. Warnow, and S. Yooseph, “Computing the local consensus of trees,” inProc. of the 6th ACM-SIAM
SODA, 1995, pp. 68–77.

M.Y. Kao, T.W. Lam, T. Przytycka, W.K. Sung, and H.F. Ting, “General techniques for comparing unrooted
evolutionary trees,” inProc. of the 29th ACM STOC, 1997, pp. 54–65.

D.R. Karger, “Minimum cuts in near-linear time,” inProc. of the 28th ACM STOC, 1996, pp. 56–63.
D. Keselman and A. Amir, “Maximum agreement subtree in a set of evolutionary trees—Metrics and efficient

algorithms,” inProc. of the 35th FOCS, 1994, pp. 758–769.
T.W. Lam, W.K. Sung, and H.F. Ting, “Computing the unrooted maximum agreement subtree in sub-quadratic

time,” in Proc. of the 5th SWAT, 1996, pp. 124–135.
C.H. Papadimitriou, “Computational Complexity,” Addison-Wesley: Reading, 1994.
C. Phillips and T.J. Warnow, “The asymmetric median tree—a new model for building consensus Trees,” inProc.

of the 7th CPM, LNCS 1075, 1996, pp. 234–252.
M. Steel and T. Warnow, “Kaikoura tree theorems: Computing the maximum agreement subtree,”Information

Processing Letters, vol. 48, pp. 77–82, 1993.

