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Abstract. In this paper we study a few important tree optimization problems with applications to computational
biology. These problems ask for trees that are consistent with an as large part of the given data as possible. We
show that the maximum homeomorphic agreement subtree problem cannot be approximated within a factor of
N¢, whereN is the input size, for any 8 € < % in polynomial time unless B NP, even if all the given trees are

of height 2. On the other hand, we present@N log N)-time heuristic for the restriction of this problem to
instances wittD (1) trees of heigh©O(1) yielding solutions within a constant factor of the optimum. We prove that

the maximum inferred consensus tree problem is NP-complete, and provide a simple, fast heuristic for it yielding
solutions within one third of the optimum. We also present a more specialized polynomial-time heuristic for the
maximum inferred local consensus tree problem.
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1. Introduction

An evolutionary tree models how different species in a given set have evolved. The leaves
in an evolutionary tree correspond to species and internal nodes represent the species
ancestors.

The problem of constructing a reliable evolutionary tree has been studied extensively
(Farach et al., 1995; Farach and Thorup, 1994a, 1994b; Hein et al., 1996; Henzinger et al.,
1996; Kannan et al., 1995; Kao et al., 1997; Keselman and Amir, 1994; Lam et al., 1996;
Phillips and Warnow, 1996; Steel and Warnow, 1993). There are many different approaches,
depending among other things on what kind of data that is available. Therefore, various
versions of this problem arise in, for example, computational biology when one wants to find
out how different species are related, and comparative linguistics, where it is central to find
out how different languages have evolved. In this paper, we look at some of these problems.

Given a set of alternative evolutionary trees describing possible evolutions for a fixed
set of species, one might want to identify a subtree contained within every given tree such
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that the number of leaves labeled by species is maximized. This problem is knaha as
maximum homeomorphic agreement subtree prolfhhiT) (Keselman and Amir, 1994).

More formally, it is defined as follows. Givenrooted treed;, To,..., Tk, each withn

leaves labeled distinctly with elements chosen from @g#tcardinalityn, find a maximum
cardinality subseB of A such that the minimal homeomorphic subtree3of T, ..., Tk

(i.e., with all degree 2 nodes except for the root contracted) containing exactly the leaves
labeled byB are isomorphic. To measure the input size of an instance of MHT, wé let
denote the total number of nodes contained in the given trees. MHT restricted to instances
with two trees is frequently called MAST; algorithms for MAST have been developed since
1985 (Finden and Gordon, 1985). It has been shown to be solvable in polynomial time,
both for rooted trees (Farach and Thorup, 1994a, 1994b) and for UMAST, a variant of
MAST with unrooted trees (Farach and Thorup, 1994a; Kao et al., 1997; Lam et al., 1996;
Steel and Warnow, 1993). In practice, however, the number of trees is often much larger
than two (Keselman and Amir, 1994). For the special case of MHT in which at least one
of the given trees has bounded degree, there exist polynomial-time algorithms (Farach et
al., 1995; Keselman and Amir, 1994). In contrast, MHT is known to be NP-complete even
for instances with three trees of unbounded degree (Keselman and Amir, 1994). The first
non-approximability result for MHT was published in (Hein et al., 1996). It states that
for three trees with unbounded degree, MHT cannot be approximated within ¥4t 2

in polynomial time for anys < 1 unless NPC DTIME[2P°Y°9"], Here we prove that,
unless P=NP, MHT cannot be approximated within a factordf, forany 0 < ¢ < %

in polynomial time even for instances containing only trees of height 2; see Section 2. On
the other hand, in Section 3, we show that MHT for instances @ith) number of trees

of heightO(1) can be approximated within a constant factor in ti@eN log N). Similar

results also hold for the unrooted version of MHT which is at least as hard as MHT (this
can be seen by an argument analogous to that in (Farach and Thorup, 1994a) for MAST
and UMAST).

Usually MHT instances do not admit a solution containing all the members of the species
set. Therefore, in some applications, other methods may be preferred. One alternative
approach is to attempt to construct an evolutionary tree from a set of constraints that relate
the species to each other. Already during the early eighties, Aho et al. (1981) studied
the problem of inferring a tree from constraints on its lowest common ancestors in the
context of relational data bases. They defined it as follows: Given a set of constraints of
the form{i, j} < {k, I}, where{i, j, k, 1} c {1,2,...,n}, if possible construct a tree on
the set of leave4l, 2, ..., n} such that for each constraint of the aforementioned form, the
lowest common ancestor bfand j is a proper descendant of the lowest common ancestor
of k andl. Aho et al. showed how to decide whether an instance of this problem admits
a solution, and if so, how to construct it, both in ti@&mnlogn), wherem denotes the
number of constraints.

Recently, many authors have studied the related problem of constructing the so-called
consensus tree or local consensus tree (Henzinger et al., 1996; Kannan et al., 1995; Phillips
and Warnow, 1996). For a set of binary rooted trgRs T», . . ., Tx}, each one leaf-labeled
by a subset (T;) of {1, 2, ..., n}, the consensus tree problem asks whether or not there
is atreeT such thatfoi = 1, 2,...,k, Tj is homeomorphic to the subtree Bfinduced



CONSTRUCTING EVOLUTIONARY TREES 185

by the nodes inL(T;) and their ancestors. If the input trees are of constant size it is
termed the local consensus tree problem. A constraint of the fiori < {i, k} (denoted
(i, j1, k) for short) is easily seen to be equivalent to the constraint imposed by a full
binary tree on the leaves j, k in the local consensus tree problem. For this reason, we
shall call the tree inferring problem posed in (Aho et al., 198&)inferred consensus tree
problem

Unfortunately, it is often impossible to construct an exact consensus tree. This creates
a need for an optimization version of the inferred consensus tree problem whose objective
is to find a consensus tree for an as large as possible subset of the input set of constraints
of the form{i, j} < {k,1}. For brevity, we term this optimization problethe maximum
inferred consensus tree problgICT for short). We also distinguish the restricted case
of MICT where all constraints are of the forfi, j}, k) and call itthe maximum inferred
local consensus tree problef®lILCT).

In Section 4 we provide an NP-completeness proof for MICT. Section 5 contains a
simple O((n + m) logn)-time heuristic for MICT yielding solutions within one third of
the optimum and a more involved polynomial-time heuristic for MILCT. Both heuristics
work equally well for the weighted versions of MICT and/or MILCT where the objec-
tive is to find a consensus tree for a subset of the input constraints of maximum total
weight.

2. MHT is hard to approximate
Our main result in this section is the following theorem.

Theorem 1. Forany0 <e¢ < S—l), MHT, even if restricted to trees of height cannot be
approximated within a factor of Nin polynomial time unless P= NP.

Proof. First, we describe a reduction from the maximum independent set problem to
MHT. Next, we show that if MHT can be approximated within a factoNsfin polynomial

time then the problem of finding a maximum independent set in a graphlwitides

can be approximated within a factorIdf+°®, Finally, we apply known results about the
inapproximability of the maximum independent set problem to get our result. In part, our
reduction can be seen as a generalization of the reduction of three-dimensional perfect
matching to MHT restricted to instances with three trees used in (Keselman and Amir,
1994).

LetG = (V, E) be a graph wher® = {v4,...,y}andE = {e, ..., &} withk > 1.
Constructk rooted treed, ..., Ty onl + g labeled leaves that contain all the adjacency
information about the nodes @& as follows. For each edgg® = (va, vp) € E, build a
rooted tre€l; on the set of leaves labeled by, ..., wy, w41, ..., wi4q. Let the roof;
of T; be the parent ofl — 1) + g children, where the first child (“the non-leaf child”) is
a node with two children leaves labeled and wy,, and the remaining children of are
leaves labeled by the elementdin; | 1 < j <l4qandj ¢ {a, b}}. Thusr; has exactly
one pair of grandchildren, and we wri@C(T;) = {wa, wp}.
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Now, let T be a maximum homeomorphic agreement subtreg of. ., T,. We choose
g large enough to guarantee that each of the rogts. ., r¢ will correspond to the root
r of T. Actually,q = 2 is sufficient. (To see this, assume that the non-leaf child of
turned out to be the root for sone By the construction above, all non-leaf children have
two leaf children, so the number of leaves in this agreement subtree can be no larger than
two. But we can always find an agreement subtree with three leaves by sefgetingot
and includingw 11 andw 4 in addition to the path from the root to a fixed leaf, where
1<j=l)

T has no non-leaf children because if it did, then there would exist samdy such that
for eachi, where 1<i <k, GC(T;) would be equal tqwy, wy}. Consequentlys would
have only one edge which contradikts- 1. The children off arem+ q(= m+ 2) leaves
labeledw,,,, w,,, ..., w,,, w1, w2. If va is adjacent tay, in G then at most one ab,
andwy, can be a child off . Otherwise GC(T;) wouldn’t be equal tdw,, wy} for any T;.
Consequentlye # (vq, vp) Would hold for alli, contradicting the adjacency of anduvy
in G. Thus, the nodes,,, v,,., . .., v, form an independent set®. Conversely, given an
independent sétof nodes inG, we can easily construct an agreement subkree the form
of arooted tree withl | 4- 2 leaves uniquely labeled with;, wherev; € |, andwi;1, wio.

By the maximality ofT, m equals the cardinality of the maximum independent sé& of
Thus, an algorithm for MHT would immediately imply an algorithm for the maximum
independent set problem. See figures 1-3 for an example of the reduction.

The total sizeN of the treesTy, ..., Ty isk - O() = O(3) = I13t°D Clearly, they
can be constructed fror® in polynomial time. Also, note that they are of height 2.
Below we will only consider approximations that can be carried out in polynomial time. If
MHT could be approximated within a factor &f, then 92152 < N¢, whereOPT + 2
refers to the number of leaves in an optimal solution for a given instance of MHT and
s + 2 is the number of leaves in its corresponding, approximative solution.s Borl,
it follows that ©1 < 3. 9FT52 < 3N< = |3t° which would imply that the problem
of finding a maximum inciependent set in a graph could be approximated within a factor
of 13+°  However, Histad (1996) proved that this problem isn't approximable within
|/3-% for anys > 0, unless P= NP. Hence, if B NP, MHT cannot be approximated within
a factor ofN€ forany 0< € < % — 0o(1). Finally, since% — 0(1) can be made arbitrarily
close to% by choosingN large enough, there exist insta?ces of MHT which cannot be

approximated within a factor di€ for any constant G< € < 5 in polynomial time (unless

P=NP). O

Figure L  An instance of the maximum independent set problem Invith7 andk = 8.



CONSTRUCTING EVOLUTIONARY TREES

T;: r,
Wy
Wit
W W ww
W W
T3! r3
Wo2
Wi
W WWww
W W
Ts: r,
W2
W41
WO v W W
W W
T r,
Wi
W14
WOW oW W w
W W

187

TZ: r,
Wi
oW W W W
W W
T4: r,
Woy2
Was1
Www ww
W W
T6 T

W2
+1

MWW W W

.

oF
&

8

MWW W W

#f

% W

Figure 2 The treesl; corresponding to the graph in figure 1.

WwwWw W

Wi
W1

Figure 3 The maximum homeomorphic agreement subtreB of. ., Tg tells us thafvy, vs, va, v7} is @ maxi-

mum independent set of the graph in figure 1.



188 GASIENIEC ET AL.

3. Approximations of MHT with O(1) trees of heightO(1)

We know that MHT is hard to approximate, both for instances with three trees (Hein et al.,
1996) and for instances with an arbitrary number of trees of height 2 or more by Theorem 1.
The natural question arises whether or not MHT for instances with a bounded number of
trees, each one of bounded height, can be tightly approximated in polynomial time. The
following result, together with Theorem 1, yields a characterization of the approximability
of MHT restricted to instances with trees ©f(1) height.

Theorem 2. MHT restricted to instances with k trees of height not exceeding h can be
approximated within a factor of'kin time O(nlogn).

To begin the proof of Theorem 2, we need to introduce the following notation. For a tree
T, V(T) stands for the set of nodes ©f Let v be a node of a rooted trde The minimal
subtree ofT rooted atv, includingv and all its descendants is denotedThyL(T,) stands

for the set of labels of the leaves ). The set of children of in T is denoted byC(v).
Furthermore, by &-partite hypergraph Hve shall mean a paiivV, U - - - U Vg, E) where

V1 throughVy are pairwise disjoint sets arielis a subset o¥/; x --- x Vk. The elements

of ViU - .- U V are called theodesof H whereas the elements Bfare called thedges

of H. A matchingof H is a subset ok in which no pair of edges includes a common
node.

LetTy, ..., Tk betheinputtrees. F@oq, ..., vk), wherev; € V(T)fori =1,... Kk, let
Mht(vy, ..., v) denote the maximum size of an agreement subtree of thelyees, Ty re-
stricted t0B = L((Tp)y,) N -+ N L((Tk)y). We can viewMht(vy, ..., v) as the
solution of MHT for (Ty),,, - . ., (Tk)y,- Next, letH (vs, . . ., vk) denote thé-partite hyper-
graph(C(vy) U---UC(wk), C(vy) x --- x C(vk)) whose edgeéws, .. ., wx) have weight
Mht(ws, ..., wy). Finally, letMatch(vy, . .., vk) be the maximum weight of a matching in
hypergraphH (v, . .., vk) andDiag(vy, ..., vx) = max{Mht(wy, ..., wy) | (W, ..., wg)
€ ({vi}UCwp) x -+ x ({fu} U C(vw)) — {(vg, ..., v}

Intuitively, in the final agreement subtree(@t),,, . . ., (Tk),, either the roots of the trees,
i.e.,v1 throughvg, are matched together which forces their children to be optimally matched
together Match), or only some of the roots are matched together with some children of
the remaining rootslfiag). This yields the following lemma which is a straightforward
generalization of the basic lemma in the dynamic programming approach to MAST in (Steel
and Warnow, 1993) (see also Farach and Thorup, 1994a).

Lemmal. Forany(vy,...,v), wherev; € V(Tj) fori =1,...,k, if atleast one of the
vi'sis aleaf then My, ..., v) = [L((T1)y,) N+ N L((TK)y )| else Mhtvy, ..., v) =
max{Match(vy, ..., vk), Diag(vy, ..., v}

It is easy to see that the recursive computatioMbik(vy, ..., vk) for (vy, ..., ) €
V(T1) x --- x V(T) used in Lemma 1 can be bottom-up orderedHsfvy, ..., v) =
Zik:l height(T;),,). Hence, we have the following algorithm for MHT.
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Algorithm 1.

1. inputT,..., Tk

2. for each(vy, ..., ) € V(T1) x --- x V(Ty), in increasing order oHs(vy, ..., vk)
do computeMht(vy, .. ., vk) by using the expression in Lemma 1.

3. output Mhtry, ..., ry) wherer; is the root ofT;, fori =1, ..., k.

Itis hard to compute the exact valueMétch(vy, ..., v) in the expression of Lemma 1
since the problem of computing maximum matching in a 3-partite hypergraph is NP-
complete (Papadimitriou, 1994). For this reason, we shall rely on a greedy method for ap-
proximatingMatch(vy, . . ., vk) yielding an approximation dfiht(vs, . . ., vk). The greedy
method consists of repeatedly picking the heaviest edged removing all edges over-
lapping e. It can be implemented easily using a priority queaecan overlap with at
mostk edges in an optimum solution, and since their total weight- weighte), we
obtain:

Lemma 2. Let H = (V, E) be a k-partite hypergraph on m edges with positive integer
weights. Amatchingin H oftotal weight within afactor k of the maximum can be constructed
in a greedy fashion in time &|E| + |V | + mlogm).

Interestingly, in the unweighted case there are known (much slower, but still) polynomial-
time heuristics yielding solutions within almoélof the optimum (Hurkens and Schrijver,
1989).

By combining the scheme of Algorithm 1 with the greedy method for approximating
Match(vy, ..., vk), we obtain the following lemma, yielding Theorem 2.

Lemma3. Forall (vy,...,v) € V(T1) x---x V(Ty), we can approximate Ml . . .,
vk) within a factor of B, where h= max{height(Ti),) | 1 <i <k} intime O(nlogn).

Proof: For(vy,...,w) € V(T x---xV(Ty), lets(vy, ..., vx) denote the size of the in-
tersections ((T1),,) N - -+ N L((Tk)y,)- Clearly, we havéiht(vy, ..., vk) < S(vs, ..., vk),
and in particular if one of the;'s is a leaf therMht(vy, . . ., vx) = S(vy, ..., vk). For a leaf
label j, we determine alk-tuples(v, ..., vk) for which j € L((T1),,) N--- N L((Tk)y,)
by finding, in eachT;, i = 1,...,k, the nodes on the path of lengtth from the leaf
labeledj to the root. It follows that the number of these tupleghis+ 1)k. Consequently,
the setlL of all k-tuples for whichs(vy, ..., vx) > 0 has size not exceedimgh + 1)%. To
list L efficiently, we sort the pointers to leavesTnthroughTy by the leaf labels. Such a
sorted list of pointers can be produced in ti@€V (Ty)| +- - - + |V (Tx)|). Using it, we can
generatd. by finding appropriate tree paths in tird|V (Ty)| + - - - + |V (T)| + (h+ D)¥).
For thek-tuples(vy, ..., vk) in setL that include at least one leaf, we clearly have
(v1, ..., vx) = 1andMht(vy, ..., vx) = 1. To compute approximations &ht(vy, ..., vk)
for the remainingk-tuples inL, we build a balanced search tr&e for L, with respect
to the lexicographic order df-tuples inV(Ty) x --- x V(Ty), in time O(|L|log|L|).
Next, we follow the scheme of Algorithm 1 using the greedy method to approximate
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Match(vy, . .., vk) inthe hypergraph, (vs, ..., vk) whichisthe hypergrapH (vq, . .., vk)
defined in Lemma 1 restricted to edged.in

Eachk-tuple (wy, ..., wx) € L occurs at most once as an edge in the hypergraphs
Hy (vg, ..., v) for (vg, ..., vk) € L (only whenw; € C(v;), fori =1, ..., k). Hence, the
hypergraph$i, (vy, ..., vk) for (wy, ..., wx) € L, have no more thaj | edges totally and
can be constructed (without weights) by scanniragnd usingS_ intotaltimeO(|L|log|L|).
Clearly, eachH| (vy, ..., vx) has at moss(vy, ..., vk) edges with positive weights. For
each of its edgesws, ..., wx), we haveHs(wy, ..., wx) = Hs(vy, ..., v) — k and
max{heigh{wi) |1 < i < k} = h — 1. Hence, we may inductively assume that we have
alreadyk"~! approximations oMht(wy, . .., wy), i.e., of the weights ofws, ..., wy) in
the hypergraph. Consequently, we obtain an approximatidmedEh(v,, . . ., vk) within a
factor of k" by applying the greedy method. Due to Lemma 2, the total time complexity
of the greedy method is bounded ByKk|L| + (Z<v1 ..... el S, oo, V) logn). By in-
duction onHs(vy, . .., vk), we also obtain an approximation bfag(vs, . . ., vk) within a
factor of k" by considering solelk-tuples(ws, ..., wy) in L N (({v1} U C(v1)) X - -- x
({w} U C(w)) — {(v1, ..., w)}). Each(ws, ..., wx) € L can contribute to the value of
Diag(vs, . .., v) for at most 2 — 1 k-tuples(vy, . . ., v) € L. Hence, the total size of the
subsets of. contributing toDiag(vs, . . ., vk) over all(vy, ..., vx) € L, and consequently
the total cost of finding maxima ®ht-approximations over these subset®ig¥|L |). We
can build these subsets, again by scanmirand usingS , in total time O(2¢|L | log|L|).

Each of the treed; throughT¢ has size not exceedingidy its binarity. Hence, by

forward calculations, we obtain th@(nlogn) bound. O

4. MICT is NP-complete

The problem of deciding whether or not a 3-partite hypergahte) has a perfect matching
(3PM), i.e., if V is covered by a subset of pairwise disjoint edge&ins known to be
NP-complete (Papadimitriou, 1994). To show the NP-completeness of MICT, we provide
a reduction of 3PM to MICT.

Let H = (V, E) be a 3-partite hypergraph akd parameter that will be specified later
on. We let each vertex iW label one leaf. Also, for each edge= E, we introducek + 2
leaveslabeled,wherei =0, ..., k+1. LetC be the minimal set of constraints satisfying:

1. foreacle, f € Ewithe# f: thecontrainté{e, g}, f;)eC,where =0,1, 1 =2,...,
k+1, andj =2,...,k+ 1.

2. for eache = (a, b, ¢) € E: the three constraints, b} < {ep, &1}, {a, ¢} < {eo, &1},
and {b, ¢} < {ey, &1} € C.

Thus,C consists of R?(|E |2 — | E|) constraints of the first type andB| constraints of the
second type.

To characterize consensus trees for large subse®, afe need the following defi-
nitions.
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Definition 1 In a rooted treerl, the lowest common ancestor of a sequence of nodes

v1, ..., vm Will be denoted byica(vy, ..., vym). Furthermore, the path from a nodeto
the root of T will be denoted byR(v). The subtree off induced by a sequence of nodes
v1, ..., Um iS the smallest subtree @fincluding the pathR(vi), i =1,..., m.

Definition 2  The full binary tree on four leaves b, ¢, d, wherelca(a, b) andica(c, d)
form the intermediate level, will be denoted By(a, b, c, d).

Lemma 4. If T is a consensus tree for at led§| — k? + 1 constraints in C then for
eache f € E with e#£ f, the subtree induced of T Kgy, e, fo, f1} is homeomorphic to

Ba(ep, €1, fo, f1).

Proof: By the assumption on the number of constraints satisfief, ligr eache, f € E
with e £ f, there are indicek, j € {2, ...,k + 1} such that foii = 0, 1, the constraints
({e.a}, fj), ({fi, fj}, a) are satisfied by

By ({e0, @}, fj) and ({e1, g}, fj), the pathR(lca(ep, €1, §)) cannot be included in
the pathR(f;). Thus, R(lca(ep, €1, 8)) € R(ca(fy, f1, f;)). Similarly, by ({ fo, fj}, &)
and ({ f1, f;}, @), we haveR(lca(fo, f1, f;)) € R(ca(ep, €1, 6)). This means that the
paths fromica(ey, €, §) to Ica(ep, €1, &, fo, f1, f;) as well as fromica( fo, fy, fj) to
Ica(ep, €1, 8, fo, f1, fj) must be edge-disjoint. O

Corollary 1. Let T be a consensus tree for at le#t — k? + 1 constraints in C. For
each node & V and two different edges é € E, if T satisfies a constraint of the form
{a, -} < {ep, €1} then T cannot satisfy any constraints of the fdam-} < { fo, f1}.

Lemma5. Letk>./3|E|— [V]. The hypergraph H has a perfect matching iff there is a
consensus tree for a subsetf(|E|? — |E|) + |V| constraints in C.

Proof: Suppose first thaH has a perfect matchiniyl. We can construct a consensus
tree T satisfying at leastiZ(|E|?2 — |E|) + |V| of the constraints ifC as follows. The
root of T has|E| children which are in one-to-one correspondence with the edgEs in
For everye € E, a subtree rooted in the corresponding child has as children the leaves
e, €1, ..., &s1. Furthermore, ile = {a, b, ¢} is in M, then the subtree has another child
which in turn is the parent of the leaves labeted, c.

Suppose in turn that there is a consensus Treatisfying X%(|E|? — |E|) + |V| con-
straints inC. The total number of constraints @is 2k?(|E|? — |E|) + 3|E|. It follows by
k > /3[E[ — |V] that T satisfies at leagC| — k? + 1 constraints. Thus, by Corollary 1,
for each noda € V, there is at most one edges E such that some constraint of the form
{a, -} < {ep, 1} is satisfied byl . On the other hand, for a given nodeand a given edge,
at most two constraints of the forfa, -} < {ey, €;} can be satisfied by by the construc-
tion of C. Consequentlyy can be partitioned into three disjoint subs€tsr = 0, 1, 2,
respectively consisting of nodes € V for which T satisfiesr constraints of the form
{a,-} < {-,-}. Atmost|V,| + 'VT” constraints of the fornj-, -} < {-, -} are satisfied byr,
so since there are onlk2(|E|?> — |E|) constraints of the forng{-, -}, -) in C, we conclude
thatV, has to be as large as possible, V.= V. It follows that for each edge € E, if a
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constraint of the fornj-, -} < {ep, &} is satisfied byT, then all the three constraints of this
form are satisfied byf. Hence,H has a perfect matching. O

The construction o€ for k equal, say, tqE| can easily be done in polynomial time.
Hence, MICT is NP-hard by the NP-completeness of 3PM and Lemma 5. The membership
of MICT in NP is obvious.

Theorem 3. MICT is NP-complete.

5. Approximation heuristics for MICT

Our heuristics in fact work for the generalization of MICT where with each input constraint
a positive weightu(c) is associated, and the objective is to construct a consensus tree for
a subset of constraints of maximum total weight.

5.1. Heuristic 1

For a constrainti, j} < {k, |}, where all the leaves are differektandl are said to have an
upper occurrencén the constraint, andand j are said to have wer occurrencen the
constraint. For a constraifit, j} < {i, k}, wherei, j, k are differentj and | are said to
have a lower occurrence in the constraint &rid said to have an upper occurrence in the
constraint. Theotal weightof upper (or lower) occurrences for a léaé equal to the sum
of the weights of all constraints in whid¢thas upper (or lower) occurrences.

Lemma 6. For any instance of MICTthe sum of all leavegotal weights of upper occur-
rences is at least one thirgne half if all constraints contain four leavesf the sum of all
leaves total weight of upper and lower occurrences.

Heuristic 1.

input a setC of m weighted constraints on leaves 1 through
output a consensus trek for a subset o€ whose weight is at least one third (one half if
all constraints contain four leaves) of the total weight of the constrair@®s in

1. LEFT <« C;
LEAVES<« {1,...,n};
T < {uls

2. if LEFT = ¢ thenextendT by addinglLEAVES children tov, label them uniquely with
elements iLEAVES andreturn T;

3. pick aleafy in LEAVESwhich achieves the maximum ratio between the total weight of
y's upper occurrences and the total weighyflower occurrences in the constraints in
LEFT;

. setY to the set of constraints IKEFT which containsy;

5. LEFT <« LEFT\Y;

N
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6. LEAVES<« LEAVES({y};
7. extendTl by adding two children to; label the first child byy; setv to the second child;
8. goto2

Theorem 4. Heuristic1 constructs a consensus tree for a subset of the input set of con-
straints C whose total weight is at least one thifdne half if all constraints contain four
leave$ of the total weight of Cin time O((m + n) logn).

Proof: By Lemma 6 and the choice of, the ratio between the total weight of upper
occurrences and lower occurrenceyafi the constraints ihEFT is at least one third. All
the constraints il in whichy has an upper occurrence are satisfied oy the construction
of T.

To implement Steps 3 and 6 efficiently, we arrah§AVESN a priority queue partially
ordered by the ratio between the total weight of their upper and lower occurrences in
constraints inLEFT. All the priority queue operations, i.e., creating the priority queue,
picking they’s, updating the priority queue after Step 5, take a totaDon + m) logn)
time.

To implement Steps 4 and 5, we lexicographically oifiour times according to four
cyclic permutations of the four leaves in each constraint.ikerd, ..., 4, theith permu-
tation puts theth leaf as the first, the+ 1st (in the cyclic order) as the second etc. Next,
four search trees are built on the basis of the sorted lists. Using the search trees, we can
find Y in LEFT and remove it fromrLEFT in time O(]Y|logn). We conclude that Steps 4
and 5 totally take time&((m + n) logn) (inclusive the preprocessing). O

The absolute factors of one third and half respectively provided by Heuristic 1 are worst-
case optimal. For example, any consensus tree can satisfy at most one constraint from each
consecutive triple of constraints in a sequei@, b}, c), ({bi,c}, &), (c,a},b),

i =1,...,k. Incase all constraints contain four leaves, the sequemch;} < {ci, di},
{ci,di} < {a,b},i =1,...,k, causes the lower bouréi

The consensus tree produced by Heuristic 1 has the form of a linear chain with singular
leaves pending, where only the last chain node can have larger degree. Itis easy to slightly
modify Heuristic 1 to output a subset of the input constraints (a priori) satisfied by the
tree. A minimum height consensus tree for at least one third of the input constraints is then
obtained in timeD (mnlog n) by running the algorithm of Aho et al. (1981) for the inferred
consensus tree problem on this set.

In case the minimum number of constraints necessary to delete in order to build a con-
sensus tree for the remaining part is very small, and the numhsrconstraints relative
to the number of leaves is high (it is alwagin®)), an approach different from that of
Heuristic 1 might be more useful.

5.2. Heuristic 2

Heuristic 2 for MILCT simply mimics the algorithm of Aho et al. (1981) for the inferred
consensus tree problem restricted to constraints of the ¢irm}, k). Their basic idea
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is simple. The input set of leaves 2, ..., n is partitioned into a minimal set of blocks
satisfying the following requirement:

*) If (i, j}, k) is a constraint thenandj are in the same block.

Now, if the number of blocks in the minimal set is at least two, the algorithm of Aho
et al. creates the consensus tree by connecting the roots of the consensus trees recursively
computed for the respective blocks with a common parent root node. Otherwise, the number
is one, and it returns a null consensus tree.

For a subses of leaves, letG(S) denote the auxiliary graph o8 where the edges
are induced by the requirement (*), and their weights are equal to the total weight of the
constraints inducing them.

Whenever the algorithm of Aho et al. is stuck at a non-divisible suBs#tthe set of
leaves and has to return a null tree, Heuristic 2 simply finds a minimum weight edge cut
of the auxiliary graphG(S) (with respect to the current set of constraints). Next, the edges
of the min-cut are deleted fro@(S) and the connected component$xifS) are computed.
Consequently, the constraints corresponding to the edges of the min-cut are also deleted.
Finally, the approximation consensus trees for the connected components are recursively
computed and connected by a common parent node.

Using recent dynamic data structures for graph connectivity, Henzinger et al. gave effi-
cient implementations of the algorithm of Aho et al. restricted to constraints of the form
(i, j}, k) (Henzinger et al., 1996). Their randomized implementation t&kes log® n)
expected time. They use the undirected grépland the directed grapb defined as
follows.

e U = (V, E)with V equal to the s€ftl, 2, .. ., n} of leaves and where for each constraint
({a, b}, ¢) in C edgeda, b} and{b, c} are inE.

e D = (V/, A) where for each constraiiifa, b}, ¢) in C nodes{a, b} and{b, c} are inV’
and{a, b} — {b,c}isin A.

At the beginning the grapll is colored yellow. The graptl is used for finding yellow
components. The consensus tree returned is found by combining the trees constructed for
the yellow components. The grajihis used for finding edges id that can be colored
red, these edges correspond to the so-called maximal nods in

A maximal nodén D is a node with no outgoing edges, and a red edge whose endpoints
are in different yellow components is callegegparable red edge

By slightly modifying the algorithm of Henzinger et al. and combining it with an algo-
rithm for minimum weight edge cut (Karger, 1996), we canimplement Heuristic 2 as follows.

Heuristic 2.
1. Constructy andD. Add weights to the edges lh. The weight of an edgga, b} in U

is equal to the sum of the weights of constraints of the fofab}, -). Color all nodes
in D and edges ity yellow.
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2. ldentify maximal nodes iD. Recolor these nodes and the corresponding edg¥s of
red.

3. If U has no edges, then return the consensusTir@dth a root and all nodes i
children of the root. Otherwise, compute yellow componentd off there is only one
yellow component then find a minimum weight edge cut, delete the edges in the cut from
U and the corresponding nodes frdin and recompute the yellow components. Let

C1, ..., Ck be the current yellow components. Form a tfeby creating the root of
and connecting the root of the consensus trees recursively computed for the components
C1, ..., Cktoit. Foreach currentyellow component, identify thelSgg,of separable red

edges incident to that new component. Delete these edges$fienmd the corresponding
nodes fromD. Go to Step 2.

Lemma 7. Heuristic 2 can be implemented to run in expected time&n®ogn +
mlog®n).

Proof: A minimum weight edge cut can be computed with high probability in time
O(n?logn) (Karger, 1996). In the worst case it has to be doiienes; hence, the calls to
minimum weight edge cut take a total 6f(n®logn) expected time. All other operations
can be performed in expected tinflmlog®n) like in the algorithm of Henzinger et al.
Thus, the total expected time &(n®logn + mlog® n). O

Lemma 8. Let | be an instance of MICTand let T be the tree produced by Heuristic
for 1. The total weight of constraints in | not satisfied by T is at most hé€lghimes the
minimum.

Proof: Let J be a subset of of minimum total weight such that\J has a consen-
sus tree. Next, leD be the set of connected components in the auxiliary graph where
edges corresponding to the constraintd iare deleted. Suppose that Heuristic 2 at some
stage finds a min-cut in a currently connected fragnt&n€learly, C cannot be a subset

of a simple component D since then there wouldn't exist a consensus treel far.
Hence, there is a subsdt of J such that the set of edges corresponding to the con-
straints inJc disconnects5(C) into disjoint components. Clearly, the total weightJf

is not smaller than the weight of a min-cut 8fC). Now, it is sufficient to observe that
the subsets)c for distinct C’'s on the same recursion level of Heuristic 2 are pairwise
disjoint. O

Theorem 5. Letn, w, t be respectively the number of leayése total weight of con-
straints and the minimum total weight of the constraints to remove in an instance | of
MILCT. Heuristic2 constructs a consensus tree for a subset of the constraints in | whose
total weight is not smaller tham — nt.

Note that the number of constraintsliiight be cubic im and that Heuristic 2 yields
a better approximation factor than Heuristic 1 for MILCT whenever 23—'5
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6. Open problems

We do not know whether or not it is possible to find a polynomial-time approximation
scheme for instances of MHT witB (1) trees of heigh©D(1).

Itfollows from Theorem 3 and the definition of MICT that MICT is strongly NP-complete.
Hence, it cannot admit a fully polynomial-time approximation scheme (Papadimitriou,
1994). However, it is an open question whether it admits a polynomial-time approximation
scheme or at least a polynomial-time heuristic with a smaller approximation factor.

The complexity status of MILCT is also an interesting open question. If MILCT is NP-
complete, does it admit a polynomial-time approximation scheme?

On a high level, the definitions of MICT and MILCT resemble those of MAX SAT
and MAX k-SAT (Hochbaum, 1995; Johnson, 1974). In the design of Heuristic 1 we
have utilized this similarity taking inspiration from the early heuristic for MAX k-SAT
due to Johnson (1974). Recently, substantial progress in approximating MAX SAT and
MAX k-SAT has been made by using linear programming, semidefinite programming, and
randomized rounding (Goemans and Williamson, 1994; Hochbaum, 1995). One of the main
obstacles in applying these techniques to MICT is the complexity of “arithmetization” of
the proper-descendant lowest-common-ancestor relation (the case of MILCT seems more
promising).
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