
On the Complex i ty of C o m p u t i n g
Evolut ionary Trees

Leszek G~sieniec 1, Jesper Jansson 2, Andrzej Lingas 2, and Anna Ostlin 2

1 Max-Planck Institut fiir Informatik, Im Stadtwald, D-66123, Saarbriicken,
Germany, emaihleszek@mpi-sb.mpg.de

2 Department of Computer Science, Lund University, Box 118, S-221 00 Lurid,
Sweden~ emaih {Jesper.Jansson, Andrzej.Lingas~ Anna.Ostlin}@dna.lth.se

Abstract . In this paper we study a few important tree optimization
problems with applications to computational biology. These problems ask
for trees that are consistent with an as large part of the given data as
possible. We show that the maximum homeomorphic agreement subtree
problem cannot be approximated within a factor of N ~, where N is the
input size, for any 0 ~_ e < ~ in polynomial time unless P=NP, even
if all the given trees are of height 2. On the other hand, we present an
O(N log N)-time heuristic for the restriction of this problem to instances
with O(1) trees of height O(1) yielding solutions within a constant fac-
tor of the optimum. We prove that the maximum inferred consensus tree
problem is NP-compIete, and we provide a simple fast heuristic for it
yielding solutions within one third of the optimum. We also present a
more specialized polynomial-time heuristic for the maximum inferred lo-
cal consensus tree problem.

1 Introduction

An evolutionary tree models how different species in a given set have evolved.
The leaves in an evolutionary tree correspond to species and internal nodes
represent the species' ancestors.

The problem of constructing a reliable evolutionary tree has been studied a
lot recently [3, 4, 5, 9, 10, 14, 16, 17, 19, 20]. There are many different approaches,
depending on among other things what kind of data that is available. Therefore,
various versions of this problem arise in, for example, computational biology
when one wants to find out how different species are related, and comparative
linguistics, where it is central to find out how different languages have evolved.
In this paper, we look at some of these problems.

Given a set of evolutionary trees dealing with a fixed set of species, one
might want to identify a subtree contained within every given tree such that
the number of leaves labeled by species is maximized. This problem is known
as the max imum homeomorphic agreement subtree problem (MHT) [16]. More
formally, it is defined as follows. Given k rooted trees T1, T2, ..., Tk, each with
n leaves labeled distinctly with elements chosen from a set A of cardinality n,
find a maximum cardinality subset B of A such that the minimal homeomorphic

135

subtrees of T1, T2, ..., Tk (i.e., with all degree 2 nodes except for the root con-
tracted) containing exactly the leaves labeled by B are isomorphic. To measure
the input size of an instance of MHT, we let N denote the total number of nodes
contained in the given trees. MHT restricted to instances with two trees is fre-
quently called MAST; algorithms for MAST have been developed since 1985 [6].
It has been shown to be solvable in polynomial time, both for rooted trees [4, 5]
and for UMAST, a variant of MAST with unrooted trees [17, 20]. In practice,
however, the number of trees is often much larger than two [16]. For the spe-
cial case of MHT in which at least one of the given trees has bounded degree,
there exist polynomial-time algorithms [3, 16]. In contrast, MHT is known to be
NP-complete even for instances with three trees of unbounded degree [16]. The
first non-approximability result for MHT was published in [9]. It states that for
three trees with unbounded degree, MHT cannot be approximated within ratio
2log ~ n in polynomial time for any 5 < 1 unless NP _C DTIME[2P°Iyl°gn]. Here we
prove that, unless P=NP, MHT cannot be approximated within a factor of N ~,
for any 0 < c < 1~ in polynomial time even for instances containing only trees
of height 2; see Section 2. On the other hand, in Section 3, we show that MHT
for instances with O(1) number of trees of height O(1) can be approximated
within a constant factor in time O(NlogN) . Similar results also hold for the
unrooted version of MHT which is at least as hard as MHT (this can be seen by
an argument analogous to that in [4] for MAST and UMAST).

Usually MHT instances do not admit a solution containing all the members
of the species set. Therefore, in some applications, other methods may be pre-
ferred. One alternative approach is to at tempt to construct an evolutionary tree
from a set of constraints that relate the species to each other. Already during
the early eighties, Aho et al. [1] studied the problem of inferring a tree from
constraints on its lowest common ancestors in the context of data bases and bi-
ological applications. They defined it as follows: Given a set of constraints of the
form {i, j} < {k, l}, where {i, j, k, l} C {1, 2, ..., n}, if possible construct a tree
on the set of leaves {1, 2, ..., n} such that for each constraint of the aforemen-
tioned form, the lowest common ancestor of i and j is a proper descendant of the
lowest common ancestor of k and 1. Aho et al. showed how to decide whether an
instance of this problem admits a solution, and if so, how to construct it, both
in time O(mn log n), where m denotes the number of constraints.

Recently, many authors have studied the related problem of constructing
the so called consensus tree or local consensus tree [10, 14, 19]. For a set of
binary rooted trees {T1,T2, ...,Tk}, each one leaf-labeled by a subset L(Ti) of
{1,2, ...,n}, the consensus tree problem asks whether or not there is a tree T
such that for i = 1, 2, ..., k, Ti is homeomorphic to the subtree of T induced by
the nodes in L(T~) and their ancestors. If the input trees are of constant size it is
termed the local consensus tree problem. A constraint of the form {i, j} < {i, k}
(denoted ({i, j}, k) for short) is easily seen to be equivalent to the constraint
imposed by a full binary tree on the leaves i, j , k in the local consensus tree
problem. For this reason, we shall call the tree inferring problem posed in [1] the
inferred consensus tree problem.

136

Unfortunately, it is often impossible to construct an exact consensus tree.
This creates a need to deal with an optimization version of the inferred consensus
tree problem whose objective is to find a consensus tree for an as large as possible
subset of the input set of constraints of the form {i , j} < {k, l}. For brevity, we
term this optimization problem the maximum inferred consensus tree problem
(MICT for short). We also distinguish the restricted case of MICT where all
constraints are of the form ({ i , j } , k) and call it the maximum inferred local
consensus tree problem (MILCT).

In Section 4 we provide an NP-completeness proof for MICT. Section 5 con-
tains a simple O ((n + m) log n)-time heuristic for MICT yielding solutions within
one third of the optimum and a more involved polynomial-time heuristic for
MILCT. Both heuristics work equally well for the weighted versions of MICT
and /o r MILCT where the objective is to find a consensus tree for a subset of
the input constraints of maximum total weight.

2 M H T is H a r d t o A p p r o x i m a t e

Our main result in this section is as follows.

T h e o r e m 1, For any 0 < c < ~s , MHT, even if restricted to trees of height 2,
cannot be approximated within a factor of N ~ in polynomial time, unless P=NP.

Proof. We show tha t if MHT can be approximated within a factor of N E in
polynomial time then the problem of finding a maximum independent set in a
graph with l nodes can be approximated within a factor of l 3~+°(1). In part , our
reduction ca~ be seen as a generalization of the reduction of three-dimensional
perfect matching to MHT restricted to instances with three trees used in [1@

Let G = (V,E) be a graph where V = {vl , . . . ,vt} and E = {el, ..., ek}. For
1 < i < k and 1 < j < l, let e(i , j) = e~ if vj is incident to ei, otherwise let
e(i , j) = (i , j) . Furthermore, for 1 < i < k, let El = Ul<y<~{e(i,j)}, and for
1 < j < l, let ~ = Ul<~<k{e(i , j)}.T~otethat]E~] = l - l~b~ all i.

Remark I For distinct 1 < j, j~ < l, 1/3- \ Vj, 7 ~ 0.

Remark 2 Two nodes vj, vj, are adjacent in G iff Vj n Vj, ~ 9.

Remark 3 For 1 < i < k, 1 < j , j ' < l, w i t h j ~ j ' , a t most two sets Vj, Vj,
contain e~.

Now, generalizing the reduction in [16], we construct the trees T1, ...,Tk as
follows. Each tree T~ has root r~ which is a parent of (l - 1) + q children. The
first l - 1 children are in one-to-one correspondence with the elements of Ei. The
remaining q are leaves labeled by Zl, ...,Zq. Next, for each 1 < j < l, we at tach
a child labeled ~ to the child of r~ corresponding to e(i, j).

Suppose that the roots r l , ..., rk correspond to the root of a maximum agree-
ment subtree T of T~, ..., Tk. Then, no two overlapping sets ~ , Vj, can simulta-
neously label leaves in T by the construction of T1 through Tk and Remark 1.
Hence, by Remark 2, the maximum independent set in G has cardinality m iff
T has m + q leaves.

137

In order to force the roots rl, ...,rk to correspond to the root of T we set q
to 2. To see that this is sufficient, assume that one of the non-leaf children of
ri turned out to be the root, for some i. By Remark 3, each non-leaf child of r~
has at most two leaf children in Ti, so the size of this tree can be no larger than
two. But we can always find an agreement tree of size 3 by selecting ri as root
and including zl, z2 in addition to one leaf child.

The total size N of the trees T1, ..., Tk is k . O(l) = O(l 3) = 13+o0). Clearly,
they can be constructed in polynomial time from G. Also, note that they are
of height 2. Below we will only consider approximations that can be carried out
in polynomial time. If MHT could be approximated within a factor of N e, then
OPT+2 < j~e, where O P T + 2 refers to the number of leaves in an optimal

s + 2 - -

solution for a given instance of MHT and s + 2 is the number of leaves in
its corresponding, approximative solution. For s >_ 1, it follows that OPT ,~ $

3" OPT+2 <~ 3N ~ = 13~+o(1), which would imply that the problem of finding a
s + 2 - -

maximum independent set in a graph could be approximated within a factor
of 13~+°(1). However, Bellare and Sudan proved in [2] that this problem isn't
approximable within l 1/6-~ for any 5 > 0, unless P=NP. Hence, if P ~ NP, MHT
cannot be approximated within a factor of N ~ for any 0 < ~ < ~ - o(I). Finally,
since ~ - o(I) can be made arbitrarily close to ~ by choosing N large enough,
there exist instances of MHT which cannot be approximated within a factor of
N ~ for any constant 0 _< e < 1 in polynomial time (unless P=NP). []

3 A p p r o x i m a t i o n s o f M H T w i t h O (1) T r e e s o f H e i g h t

o(1)

We know that MHT is hard to approximate, both for instances with three
trees [9] and for instances with an arbitrary number of trees of height 2 or more
by Theorem 1. The natural question arises whether or not MHT for instances
with a bounded number of trees, each one of bounded height, can be tightly ap-
proximated in polynomial time. The following result, together with Theorem 1,
yields a characterization of the approximability of MHT restricted to instances
with trees of O(1) height.

T h e o r e m 2. MHT restricted to instances with k trees of height not exceeding h
can be approximated within a factor of k h in time O(nlogn) .

To begin the proof of Theorem 2, we need to introduce the following notation.
For a tree T, V(T) stands for the set of nodes of T. Let v be a node of a rooted
tree T. The minimal subtree of T rooted at v, including v and all its descendants
is denoted by Tv. L(Tv) stands for the set of labels of the leaves in Tv. The set
of children of v in T is denoted by C(v). Furthermore, by a k-partite hypergraph
we shall mean a pair (V1 U ... U Vk, E) where V1 through Vk are pairwise disjoint
sets and E is a subset of V1 × ... x Vk. The elements of V1 U ... U Vk are called
the nodes of H whereas the elements of E are called the edges of H. A matching
of H is a subset of E in which no pair of edges includes a common node.

138

Let T1, ..., Tk be the input trees. For (vl , . . . ,vk) , where vi E V(T~) for
i = 1, _., k, let Mht (v l , ..., vk) denote the maximum size of an agreement sub-
tree of the trees T1,... ,Tk restricted to B = L((T1)vl) N ... N L((Tk)v~). We
can view Mht(v l , . . . , vk) as the solution of MHT for (T1)vl, ..., (Tk)v~. Next,
let H(v l , .-, vk) denote the k-partite hypergraph (C(vl) U ... U C(vk), C(vl) x
... x C(vk)) whose edges (Wl , . . ,wk) have weight Mht (w l , . . . ,wk) . Finally, let
Match(v1, . . , vk) be the maximum weight of a matching in H(v l , ...,vk) and
D i a g (v l , . . , v k) = max{Mht (Wl , . . . ,wk) l (wl , . . . ,w~) c ({vl} U C(vl)) x ... x
({vk} u C (v k)) - {(vl,..., vk)}.

Intuitively, in the final agreement subtree of (T1)~1, ..., (T~).~ either the roots
of the trees, i.e., vl through v~, are matched together which forces their chil-
dren to be optimally matched together (Match), or only some of the roots are
matched together with some children of the remaining roots (Diag). This yields
the following lemma which is a straightforward generalization of the basic lemma
in the dynamic programming approach to MAST in [20] (see also [4]).

L e m m a 3 . For any (vl , . . . ,vk), where v~ E V(T~) for i = 1,. . . ,k, if at least
one of the vi 's is a leaf then Mh t (v l , ...,vk) = IL((T1)~) N ... C? L((Tk)~,~)I else
M ht(vl , ..., vk) = max{Match(v1, . . . , vk), Diag(vl , ..., vk)}.

It is easy to see that the recursive computation of M ht (vl, ..., vk) for (vl, ..., vk)
E V(T1) x ... x V(Tk) suggested by Lemma 3 can be bottom-up ordered by
H s (v l , . - , vk) k = ~i=1 height((Ti)v~). Hence, we have the following algorithm
for MHT.

A l g o r i t h m 1
1o input T1, o-, Tk
2. fo_rr each (vl, . . . , vk) e V (T1) x ... x V (Tk), in increasing order of H S(Vl, ..., Vk)

d_p_o compute Mht(v l , . . . , vk) by using the expression of Lemma 3.
3. output Mht (r l , ...,rk) where ri is the root of Ti for i = 1, ..., k.

It is hard to compute the exact value of Match(v l , . . . , vk) in the expres-
sion of Lemma 3 since the problem of computing maximum matching in a
3-partite hypergraph is NP-complete [18]. For this reason, we shall rely on a
greedy method for approximating Match(v1,. . . , vk) yielding an approximation
of Mht(v l , . . . , vk). The greedy method consists in repeatedly picking the heav-
iest edge e and removing all edges overIapping e. It can be easily implemented
using a priority queue. Since e can overlap with at most k edges in an optimum
solution having total weight <_ k . weight(e), we obtain:

L e m m a 4. Let H = (V, E) be a k-partite hypergraph on m edges with positive
integer weights. A matching in H of total weight within k of the maximum can
be constructed in a greedy fashion in time O(k tE] + IVI + mlogm).*

By combining the scheme of Algorithm I with the greedy method for approx-
imating Match(Vl , . . . , vk), we obtain the following lemma, yielding Theorem 2.

* Interestingly, in the unweighted case there are known (much slower, but still)
of the optimum [12]. polynomial-time heuristics yielding solutions within almost 7

139

L e m m a h . For all (v~, ...,vu) G V(T~) × ... x V(Tk), we can approximate
Mht(v l , ...,v~) within a factor of k h, where h = max{height((Ti) , ,) l l < i < k}
in time O(n log n).

Proof. For (vl , . . . ,vk) C V(T1) x ... x V(Tk), let 8(vl, . . . ,vk) denote the size of
the intersections L ((T1),~) N ... n L((Tk)vk). Clearly, we have M ht(Vl , ..., vk) <
s(vl, ..., vk), and in particular if one of the v~'s is a leaf then Mht(v l , ..., v~) =
s(vl, ...,v~). For a leaf label j, we determine all k-tuples (vl, ...,vk) for which
j C L((T1)v~)N.. .NL((Tk)~) by finding, in each T~, i = 1, ...,k, the nodes on the
path of length < h from the leaf labeled j to the root. It follows that the number
of these tuples is (h + 1) k. Consequently, the set L of all k-tuples for which
s (vl, ..., vk) > 0 has size not exceeding n(h + 1)~. To list L efficiently, we sort the
pointers to leaves in T1 through Tk by the leaf labels. Such a sorted list of pointers
can be produced in time O(IV(T1)I + ... + IY(Tk)l). Using it, we can generate L
by finding appropriate tree paths in time O(IV(T1)I + ... + IY(Tk)l + (h + 1)k).

For the k-tuples (vl, . . . ,vk) in L that include at least one leaf, we clearly
have S(Vl, ...,vk) = 1 and Mht(v l , ...,vk) = 1. To compute approximations of
Mht(vl , . . . , vk) for the remaining k-tuples in L, we build a balanced search tree
SL for L, with respect to the lexicographic order of k-tuples in V (T1) ×... × V (Tk),
in time O(IL I log ILl). Next, we follow the scheme of Algorithm 1 using the greedy
method to approximate Match(v1,.. . , v~) in the hypergraph HL (vl,. . . , v~) which
is the hypergraph H(vl , . . . , vk) defined in Lemma 3 restricted to edges in L.

Each k-tuple (Wl, ...,wk) G L occurs at most once as an edge in the hyper-
graphs HL(Vl, ...,vk) for (Vl,...,Vk) E L (only when wi C C(vi) for i = 1, ...,k).
Hence, the hypergraphs HL (vl,.. . , Vk) for (wl,..., w~) E L, have no more than
ILl edges totally and can be constructed (without weights) by scanning L and
using SL in total time O(]Lllog]LI). Clearly, each HL(Vl,.. . ,Vk) has at most
s(vl, ...,vk) edges with positive weights. For each of its edges (wl, ...,wk), we
have Hs(wl , ..., Wk) = H s(vz, ..., Vk) - -k and max { height(wi)l l < i < k} = h - 1 .
Hence, we may inductively assume that we have already k h-1 approximations
of Mht(wl , . . . , w~), i.e., of the weights of (wl, ..., wk) in the hypergraph. Conse-
quently, we obtain an approximation of Match(v1, ..., vk) within a factor of k h by
applying the greedy method. By Lemma 4, the total cost of the greedy method is
O(klLI + (Y~(~ ~)eL S(Vl, ...,Vk))logn) time. By induction on Hs(vl , ..., vk),
we also obtain an approximation of Diag(vl , . . . ,vk) within a factor of k h by
considering solely k-tuples (wl, ...,wk) in L N (({vl} U C(vl)) × ... × ({vk} U
C(vk)) - {(vl,...,vk)}). Each (Wl,.. . ,wk) E L can contribute to the value of
Diag(vl, ...,vk) for at most 2 k - 1 k-tuples (vl, ...,vk) E L. Hence, the total size
of the subsets of L contributing to Diag(vl, ...,vk) over all (vl, ...,vk) E L, and
consequently the total cost of finding maxima of Mht-approximations over these
subsets, is 0(2 k ILl). We can build these subsets, again by scanning L and using
SL, in total time 0(2 k ILl log ILl).

Each of the trees T1 through Tk has size not exceeding 2n by its binarity.
Hence, by ILl < (h + 1)kn, Y~.(v~ ~)eLs(V~,...,VU) <_ (h + 1)~n, h = Oil),
k = O(1), and straightforward calculations, we obtain the O(nlogn) bound. []

140

4 M I C T is N P - C o m p l e t e

The problem of deciding whether or not a 3-partite hypergraph (V, E) has a
perfect matching (3PM), i.e., if V is covered by a subset of pairwise disjoint
edges in E, is known to be NP-complete [18]. To show the NP-completeness of
MICT, we provide a reduction of 3PM to MICT.

Let H = (V, E) be a 3-partite hypergraph and k a parameter that will be
specified later on. Let C be the minimal set of constraints satisfying:

1. for each e, f E E with e ~ f , ({ei, el}, f j) E C, where i = 0, 1, 1 = 2, ..., k + 1,
and j = 2,...,k + 1.

2. for each e = (a,b,c) C E, the three constraints {a,b} < {eo, el}, {a,c} <
{eo,el}, and {b,c} < {eo, el} C C.

Thus, C consists of 2k2(IEt 2 - IEI) constraints of the first type and 31E I
constraints of the second type.

To characterize consensus trees for large subsets of C, we need the following
definitions.

Def ini t ion 6. In a rooted tree T, the lowest common ancestor of a sequence of
nodes vl, . . . , vm will be denoted by Ica(vl,..., vm). Furthermore, the path from a
node v to the root of T will be denoted by R(v). The subtree of T induced by
a sequence of nodes Vl, ...,v,~ is the smallest subtree of T including the paths
R (v d , i = 1, ... , m .

Defini t ion 7. The full binary tree on four leaves a, b, c, d, where Ica(a, b) and
lea(c, d) form the intermediate level, will be denoted by B4(a, b, c, d).

L e m m a 8 . I f T is a consensus tree for at least ICI - k 2 + 1 constraints in C,
then for each e, f C E with e 7 ~ f , the subtree induced o f t by {eo, el, fO , f l } is
homeomorphic to B4(eo, el, fo, f l) .

Proof. By the assumption on the number of constraints satisfied by T, for each
e, f C E with e ~ f, there are indices 1,j C {2,...,k + 1} such that for i = 0,1,
the constraints ({e~, ez}, fj), ({f~, f j } , el) are satisfied by T.

By ({eo, et}, fj) and ({el, el}, fj), the path R(Ica(eo, el, ez)) cannot be in-
cluded in the path R(f j) . Thus, R(lca(eo, el, el)) ~ R(lea(fo, f l , f j)) . Similarly,
by ({f0, f j }, el) and ({fl, f j }, el), we have R(Ica(fo, f l , f j)) ~= R(Ica(eo, el, el)).
This means that the paths from lca(eo, el, el) to Ica(eo, el, et, fo, f l , f j) and from
lea(fo, f l , f j) to tca(eo, el, eL, fo, f l , f j) must be edge-disjoint. D

Corol la ry 9. Let T be a consensus tree for at least ICI - k 2 + 1 constraints in C.
For each node a C V and two different edges e, f in E, i f T satisfies a constraint
of the form {a, } < {eo, el} then T cannot satisfy any constraints of the form
{a, } < {fo, f l} .

L e m m a 10. Let k > v/31EI - IVI. The hypergraph H has a perfect matching iff
there is a consensus tree for a subset of 2k2(IEI 2 -]El) + IYl constraints in C.

141

Proof. Suppose first that H has a perfect matching M. We can construct a
consensus tree T satisfying at least 2k2(IEt 2 - tEl) + IVI of the constraints in C
as follows. The root of T has I EI children which are in one-to-one correspondence
with the edges in E. For every e C E, a subtree rooted in the corresponding child
has as children the leaves eo, el, ...,ek+1. Furthermore, if e = {a, b,e} is in M,
then the subtree has another child which in turn is the parent of the leaves
labeled a, b, c.

Suppose in turn that there is a consensus tree T satisfying 2k2(IEI 2 -IEI)+IVI
constraints in C. The total number of constraints in C is 2k2(IEI 2 - 1EI) + 31El.
It follows by k > v/31EI -]V I that T satisfies at least ICI - k 2 + 1 constraints.
Thus, by Corollary 9, for each node a E V, there is at most one edge e E E
such that some constraint of the form {a, } < {e0,el} is satisfied by T. On
the other hand, for a given node a and a given edge e, at most two constraints
of the form (a, } < {e0,el} can be satisfied by T by the construction of C.
Consequently, V can be partitioned into three disjoint subsets Vr, r = 0, 1, 2,
respectively consisting of nodes a E V for which T satisfies r constraints of the
form {a, } < { } . A t most IV21+ V]Z~ constraints of the form { } < { }

' 2 ' '

are satisfied by T, so since there are only 2k2(IEI 2 - tel) constraints of the form
({ , },) in C, we conclude that V2 has to be as large as possible, i.e., V2 = V.
It follows that for each edge e C E, if a constraint of the form { , } < {e0, el}
is satisfied by T, then all the three constraints of this form are satisfied by T.
Hence~ H has a perfect matching. [3

The construction of C for k equai, say, to IE! can easily be done in polynomial
time. Hence, MICT is NP-hard by the NP-completeness of 3PM and Lemma 10.
The membership of MICT in NP is obvious.

T h e o r e m 11. MICT is NP-complete.

5 A p p r o x i m a t i o n H e u r i s t i c s f o r M I C T

Our heuristics in fact work for the generalization of MICT where with each input
constraint c a positive weight w(c) is associated, and the objective is to construct
a consensus tree for a subset of constraints of maximum total weight.

5.1 H e u r i s t i c 1

For a constraint { i , j} < {k,l}, where all the leaves are different, k and l are
said to have an upper occurrence in the constraint, and i and j are said to have a
lower occurrence in the constraint. For a constraint {i , j} < {i, k}, where i, j , k
are different, i and j are said to have a lower occurrence in the constraint and
k is said to have an upper occurrence in the constraint. The weight of an upper
or lower occurrence in a constraint equals the weight of the constraint.

L e m m a 1 2 . For any instance I o/MICT, the total weight of upper occurrences
is at least one third (one hal / i f all constraints contain/our leaves) of the total
weight of all occurrences in the constraints in I.

I42

H e u r i s t i c 1

input: a set C of m weighted constraints on leaves 1 through n;
output: a consensus tree T for a subset of C whose weight is at least one third
(one haft if all constraints contain four leaves) of the total weight of the con-
straints in C;

1. L E F T +- C~
L E A V E S +- {1, ..., n};
T {v};

2. if L E F T = ~ then extend T by adding]LEAVES I children to v, label them
uniquely with elements in L E A V E S , and return T;

3. pick a leaf y in L E A V E S which achieves the maximum ratio between the
total weight of its upper occurrences and the total weight of its lower occur-
rences in the constraints in LEFT;

4. set Y to the set of constraints in L E F T which contain y;
5. L E F T +-- L E F T \ Y;
6. L E A V E S +- L E A V E S \ {y};
7. extend T by adding two children to v; label the first child by y; set v to the

second child;
8. go to 2

T h e o r e m 13. Heuristic 1 constructs a consensus tree for a subset of the input
set of constraints C, whose total weight is at least one third (one half if all
constraints contain four leaves) of the total weight of C~ in time 0 ((m + n) log n).

Proof. By Lemma 12 and the choice of y, the ratio between the total weight of
upper occurrences and lower occurrences of y in the constraints in L E F T is at
least orie third. All the constraints in Y in which y has an upper occurrence are
satisfied by T by the construction of T.

To implement Steps 3, 6 efficiently, we arrange L E A V E S in a priority queue
partially ordered by the ratio between the total weight of their upper and lower
occurrences in constraints in LE F T . All the priority queue operations, i.e., creat-
ing the priority queue, picking the y's, updating the priority queue after Step 5,
take a total of O((n + m) logn) time.

To implement Steps 4, 5~ we lexicographically sort C four times according to
four cyclic permutations of the four leaves in each constraint. For i = 1, ..., 4, the
i-th permutation puts the i-th leaf as the first, the i + 1-st (in the cyclic order) as
the second etc. Next, four search trees are built on the basis of the sorted lists.
Using the search trees, we can find Y in L E F T and remove it from L E F T in
time O(IYI logn). We conclude that Steps 4, 5 totally take time O((m+n) logn)
(inclusive the preprocessing).

The absolute factors of one third and half respectively provided by Heuris-
tic 1 are worst-case optimal. For example, any consensus tree can satisfy at
most one constraint from each consecutive triple of constraints in a sequence
({ai, b~},ci), ({bi, c~},ai), ({c~,ai}, hi), i = 1, ..., k. In case all constraints con-
tain four leaves, the sequence {a~, bi} < {ei, dl}, {ci, di} < {a~, bi}, i = 1, ..., k,
causes the lower bound 1 3"

143

The consensus tree produced by Heuristic 1 has the form of a linear chain
with singular leaves pending, where only the last chain node can have larger
degree. It is easy to slightly modify Heuristic 1 to output a subset of the input
constraints (a priori) satisfied by the tree. A minimum height consensus tree for
at least one third of the input constraints is then obtained in time O(mn log n)
by running the algorithm of Aho et al. [1] for the inferred consensus tree problem
on this set.

In case the minimum number of constraints necessary to delete in order to
build a consensus tree for the remaining part is very small, and the number m
of constraints relative to the number of leaves is high (it is always O(n4)), an
approach different from that of Heuristic 1 might be more useful.

5.2 Heur is t ic 2

Heuristic 2 for MILCT simply mimics the algorithm of Aho et al. [1] for the
inferred consensus tree problem restricted to constraints of the form ({i, j}, k).
Their basic idea is simple. The input set of leaves 1, 2, ..., n is partitioned into a
minimal set of blocks satisfying the following requirement:

(*) If ({i,j}, k) is a constraint then i and j are in the same block.

Now, if the number of blocks in the minimal set is at least two, the algorithm
of Aho et al. creates the consensus tree by connecting the roots of the consensus
trees recursively computed for the respective blocks with a common parent root
node. Otherwise, the number is one, and it returns a null consensus tree.

For a subset S of leaves, let G(S) denote the auxiliary graph on S where
the edges are induced by the requirement (*), and their weights are equal to the
total weight of the constraints inducing them.

Whenever the algorithm of Aho et al. is stuck at a non-divisible subset S
of the set of leaves and has to return a null tree, Heuristic 2 simply finds a
minimum weight edge cut of the auxiliary graph G(S) (with respect to the
current set of constraints). Next, the edges of the min-cut are deleted from
G(S) and the connected components of G(S) are computed. Consequently, the
constraints corresponding to the edges of the min-cut are also deleted. Finally,
the approximation consensus trees for the connected components are recursively
computed and connected by a common parent node.

In the full version of our paper [7], we present an implementation of Heuris-
tic 2 based on the recent, efficient implementation of the algorithm of Aho et al.
restricted to constraints of the form ({i, j}, k) due to Henzinger et al. [10]. As a
result, we obtain the following lemma.

L e m m a 14. Heuristic 2 can be implemented to run in expected time O(n 3 logn+
m log 3 n).

Proof. A minimum weight edge cut can be computed with high probability in
time O(n 2 log n) [15]. In the worst case it has to be done n times; hence, the calls

t 44

to minimum weight edge cut take a total of O(n 3 log n) expected time. All other
operations can be performed in expected time O(m log 3 n) like in the algorithm
of Henzinger et al. Thus, the total expected time is O(n 3 logn + mlog 3 n). []

L e m m a 15. Let I be an instance of MICT, and let T be the tree produced by
Heuristic 2 for I. The total weight of constraints in I not satisfied by T is within
height(T) of the minimum.

Proof. Let J be a subset of I of minimum total weight such that I \ J has a
consensus tree. Next, let D be the set of connected components in the auxiliary
graph where the edges corresponding to the constraints in J are deleted. Suppose
that Heuristic 2 at some stage finds a min-cut in a currently connected fragment
C. Clearly, C cannot be a subset of a simple component in D since then there
wouldn't exist a consensus tree for I \ J. Hence, there is a subset Jc of J such
that the set of edges corresponding to the constraints in Jc disconnects G(C)
into disjoint components. Clearly, the total weight of Jc is not smaller than the
weight of a rain-cut of G(C). Now, it is sufficient to observe that the subsets Jc
for distinct C~s on the same recursion level of Heuristic 2 are pairwise disjoint.

[]

T h e o r e m 16. Let n, w, t be respectively the number of leaves, the total weight
of constraints, and the minimum total weight of the constraints to remove in an
instance I of MILCT. Heuristic 2 constructs a consensus tree]or a subset of the
constraints in I whose total weight is not smaller than w - nt.

Note that the number of constraints in I might be even cubic in n and that
Heuristic 2 yields a better approximation factor than Heuristic 1 for MILCT

2u~ whenever t < ~7~,-

6 O p e n P r o b l e m s

We do not know whether or not it is possible to find a polynomial-time approx-
imation scheme for instances of MHT with O(1) trees of height O(1).

It follows from Theorem 11 and the definition of MICT that MICT is strongly
NP-complete. Hence, it cannot admit a fully polynomial-time approximation
scheme [18]. However, it is an open question whether it admits a polynomial-
time approximation scheme or at least a polynomial-time heuristic with a smaller
approximation factor.

The complexity status of MILCT is also an interesting open question. If
MILCT is NP-complete, does it admit a polynomial-time approximation scheme?

On a high level, the definitions of MICT and MILCT resemble those of MAX
SAT and MAX k-SAT (see [11, 13]). In the design of Heuristic 1 we have utilized
this similarity taking inspiration from the early heuristic for MAX k-SAT due
to Johnson [13]. Recently, substantial progress in approximating MAX SAT and
MAX k-SAT has been made by using linear programming, semidefinite program-
ming, and randomized rounding [8, 11]. One of the main obstacles in applying

145

these techniques to MICT is the complexity of "ari thmetization" of the proper-
descendant lowest-common-ancestor relation (the case of M I L C T seems more
promising).

R e f e r e n c e s

1. A.V. Aho, Y. Sagiv, T.G. Szymanski, and J.D. Ullman. Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions.
SIAM Journal of Computing, Vol. 10, No. 3, 1981, pp. 405-421.

2. M. Bellare and M. Sudan. Improved non-approximability results. Proc. of the
26th ACM STOC, 1994, pp. 184-193.

3. M. Farach, T. Przytycka, and M. Thorup. Computing the agreement of trees with
bounded degrees. Proc. of the 3rd ESA, 1995, pp. 381-393.

4. M. Farach and M. Thorup. Fast Comparison of Evolutionary Trees. Proc. of the
5th ACM-SIAM SODA, 1994, pp. 481-488.

5. M. Farach and M. Thorup. Optimal evolutionary tree comparison by sparse dy-
namic programming. Proc. of the 35th FOCS, 1994, pp. 770-779.

6. C.R. Finden and A.D. Gordon. Obtaining common pruned trees. Journal of
Classification 2, 1985, pp. 255-276.

7. L. G~sieniec, J. Jansson, A. Lingas, and A. ()stlin. On the complexity of comput-
ing evolutionary trees. Technical Report MPI-I-96-1-031, Max-Planck Institut fiir
Informatik, Saarbr/icken, November 1996.

8. M.X. Goemans and D.P. Williamson. New ~-approximation algorithms for MAX
SAT. SIAM Journal of Discrete Mathematics, 7, 1994, pp. 656-666.

9. J. Hein, T. Jiang, L. Wang, and K. Zhang. On the Complexity of Comparing
Evolutionary Trees. Discrete Applied Mathematics, 71, 1996, pp. 153-169.

10. M.R. Henzinger, V. King, and T. Warnow. Constructing a Tree from Homeo-
morphic Subtrees, with Applications to Computational Biology. Proc. of the 7th
ACM-SIAM SODA, 1996, pp. 333-340.

11. D.S. Hochbaum (editor). Approximation Algorithms for NP-hard Problems. PWS
Publishing Company, Boston, 1995.

12. C.A.J. Hurkens and A. Schrijver. On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM Journal of Discrete Mathematics, Vol. 2, No. 1, 1989, pp. 68-72.

13. D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9, 1974, pp. 256-278.

14. S. Kannan, T. Warnow, and S. Yooseph. Computing the Local Consensus of Trees.
Proc. of the 6th ACM-SIAM SODA, 1995, pp. 68-77.

15. D.R. Karger. Minimum Cuts in Near-Linear Time. Proc. of the 28th ACM STOC,
1996, pp. 56-63.

16. D. Keselman and A. Amir. Maximum agreement subtree in a set of evolutionary
trees - Metrics and efficient algorithms. Proc. of the 35th FOCS, 1994, pp. 758-769.

17. T.W. Lam, W.K. Sung, and H.F. Ting. Computing the Unrooted Maximum Agree-
ment Subtree in Sub-quadratic Time. Proc. of the 5th SWAT, 1996, pp. 124-135.

18. C.H. Papadimitriou. Computational Complexity, Addison-Wesley, Reading, 1994.
19. C. Phillips and T.J. Warnow. The Asymmetric Median Tree - A New Model for

Building Consensus Trees. Proc. of the 7th CPM, LNCS 1075, 1996, pp. 234-252.
20. M. Steel and T. Warnow. Kalkoura tree theorems: Computing the maximum

agreement subtree. Information Processing Letters 48, 1993, pp. 77-82.

