
Discrete Applied Mathematics 353 (2024) 44–64

Y
T
a

b

c

d

e

Contents lists available at ScienceDirect

Discrete AppliedMathematics

journal homepage: www.elsevier.com/locate/dam

Polynomial-time equivalences and refined algorithms for
longest common subsequence variants✩

uichi Asahiro a, Jesper Jansson b, Guohui Lin c, Eiji Miyano d,∗, Hirotaka Ono e,
adatoshi Utashima d

Kyushu Sangyo University, Fukuoka, Japan
Kyoto University, Kyoto, Japan
University of Alberta, Edmonton, Canada
Kyushu Institute of Technology, Iizuka, Japan
Nagoya University, Nagoya, Japan

a r t i c l e i n f o

Article history:
Received 31 December 2023
Received in revised form 2 April 2024
Accepted 4 April 2024
Available online xxxx

Keywords:
Longest common subsequence
Repetition-bounded
Multiset-restricted
One-side-filled
Two-side-filled
Dynamic programming
Exact algorithm
Approximation algorithm

a b s t r a c t

The problem of computing the longest common subsequence of two sequences (LCS
for short) is a classical and fundamental problem in computer science. In this article,
we study four variants of LCS: the Repetition-Bounded Longest Common Subsequence
problem (RBLCS), the Multiset-Restricted Common Subsequence problem (MRCS), the
Two-Side-Filled Longest Common Subsequence problem (2FLCS), and the One-Side-
Filled Longest Common Subsequence problem (1FLCS). Although the original LCS can
be solved in polynomial time, all these four variants are known to be NP-hard. Recently,
an exact, O(1.44225n)-time, dynamic programming (DP) based algorithm for RBLCS was
proposed, where the two input sequences have lengths n and poly(n). Here, we first
establish that each of MRCS, 1FLCS, and 2FLCS is polynomially equivalent to RBLCS.
Then, we design a refined DP-based algorithm for RBLCS that runs in O(1.41422n) time,
which implies that MRCS, 1FLCS, and 2FLCS can also be solved in O(1.41422n) time.
Finally, we give a polynomial-time 2-approximation algorithm for 2FLCS.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Longest common subsequence problems with occurrence constraints

The problem of computing the longest common subsequence of two sequences (LCS for short) is a classical and
fundamental problem in computer science [4,5,10,16]. Indeed, many polynomial-time algorithms have been published for
LCS [9,10,12,16]. A natural extension of LCS is to impose constraints on the occurrences of the symbols in the solution. It
has been shown that even very simple constraints may make the problem computationally much harder. As an example,
the Repetition-Free Longest Common Subsequence problem (RFLCS), introduced by Adi et al. [1] is: Given two sequences
X and Y over an alphabet Σ , the goal of RFLCS is to find a ‘‘repetition-free’’ longest common subsequence of X and Y ,

✩ A preliminary version of this article appeared in Proceedings of 33rd Annual Symposium on Combinatorics Pattern Matching (CPM 2022), Article
No. 12, pp.12:1–12:18, 2022 (Asahiroet al., 2022 [3]).

∗ Corresponding author.
E-mail addresses: asahiro@is.kyusan-u.ac.jp (Y. Asahiro), jj@i.kyoto-u.ac.jp (J. Jansson), guohui@ualberta.ca (G. Lin), miyano@ai.kyutech.ac.jp

(E. Miyano), ono@nagoya-u.jp (H. Ono), utashima.tadatoshi965@mail.kyutech.jp (T. Utashima).
https://doi.org/10.1016/j.dam.2024.04.006
0166-218X/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.dam.2024.04.006
https://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2024.04.006&domain=pdf
mailto:asahiro@is.kyusan-u.ac.jp
mailto:jj@i.kyoto-u.ac.jp
mailto:guohui@ualberta.ca
mailto:miyano@ai.kyutech.ac.jp
mailto:ono@nagoya-u.jp
mailto:utashima.tadatoshi965@mail.kyutech.jp
https://doi.org/10.1016/j.dam.2024.04.006

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

w
i
a
o
i

p

M

e
i

O

here each symbol appears at most once in the obtained subsequence. Adi et al. [1] proved that RFLCS is APX-hard even
f each symbol appears at most twice in each of the given sequences. On the positive side, they showed that RFLCS admits
polynomial-time occmax-approximation algorithm, where occmax is defined as follows: Let occ(W , σ) be the number of
ccurrences of a symbol σ in a sequence W . Then occmax is the maximum of min{occ(X, σ), occ(Y , σ)} taken over all σ ’s
n two sequences X and Y .

Mincu and Popa [13] introduced a general form of RFLCS, called the Multiset Restricted Common Subsequence
roblem (MRCS): Given two sequences X and Y , and a multiset M over the alphabet Σ , the goal of MRCS is to find

a common subsequence ZM of X and Y , that contains the maximum number of symbols from M. If M = Σ , then MRCS
is essentially equivalent to RFLCS. Therefore, MRCS is also APX-hard. In [13], the authors showed that there exists an
exact algorithm solving MRCS with running time O(|X ||Y |(t + 1)|Σ |), where t is the maximum multiplicity of symbols in

. Also, they provided a polynomial-time 2
√
min{|X |, |Y |}-approximation algorithm for MRCS [13].

Recently, Asahiro et al. [2] introduced a slightly different generalization of RFLCS, called the Repetition-Bounded
Longest Common Subsequence problem (RBLCS for short): Let Σ = {σ1, σ2, . . . , σk} be an alphabet of k symbols and
Cocc be an occurrence constraint Cocc : Σ → N, assigning an upper bound on the number of occurrences of each symbol
in Σ . Given two sequences X and Y over the alphabet Σ and an occurrence constraint Cocc , the goal of RBLCS is to find
a ‘‘repetition-bounded’’ longest common subsequence of X and Y , where each symbol σi appears at most Cocc(σi)-times in
the obtained subsequence for i = 1, 2, . . . , k. In [2], Asahiro et al. provided a dynamic programming (DP) based algorithm
for RBLCS and proved that its running time is O(1.44225|X |) for any occurrence constraint Cocc , assuming |X | ≤ |Y | and
|Y | = poly(|X |), and even less in certain special cases. In particular, for RFLCS, that algorithm runs in O(1.41422|X |) time.
NP-hardness and APX-hardness results for RBLCS on restricted instances were also shown in [2].

1.2. Longest common subsequence problems on incomplete sequences

The comparison of biological sequences is a widely investigated field of bioinformatics, in which the genomic features
including DNA sequences and genes of different organisms are compared in order to identify biological differences and
similarities. In genomic analyses, however, the considered genomes are usually incomplete and thus there are cases where
we have to reconstruct complete genomes from incomplete genomes (so-called scaffolds) by filling in missing molecular
data. For this purpose, Muñoz et al. [15] formulated the following combinatorial optimization problem, called the One-
Sided Scaffold Filling problem (1SF): Given an incomplete genome Y , a multiset M of missing genes, and a reference
genome X , the goal of 1SF is to insert the missing genes into Y so that the number of common adjacencies between the
resulting Y ∗ and X is maximized. Subsequently, Jiang et al. [11] proposed the Two-Sided Scaffold Filling problem (2SF):
Given two scaffolds (incomplete genomes), the goal of 2SF is to fill the missing genes into those two scaffolds respectively
to result in such two genomes that the number of common adjacencies between them is maximized.

Inspired by methods for genome comparison based on LCS and by 1SF/2SF, Castelli et al. [6] introduced a new variant
of LCS, called the One-Side-Filled Longest Common Subsequence problem (1FLCS), which aims to compare a complete
sequence with an incomplete one, i.e., with some missing elements: Given a complete sequence X , an incomplete sequence
Y , and a multiset MY of symbols missing in Y , 1FLCS asks for a sequence Y+ obtained by inserting a subset of the symbols
ofMY into Y so that Y+ induces a common subsequence with X of maximum length. The authors proved the APX-hardness
of 1FLCS and designed a polynomial-time 5

3 -approximation algorithm for 1FLCS. They also presented an exponential-time
xact algorithm for 1FLCS. (However, they did not analyze its time complexity in detail.) In [7], Castelli et al. showed that
f the alphabet size |Σ | is a constant, then there is a polynomial-time algorithm for 1FLCS, and concluded by introducing
the Two-Side-Filled Longest Common Subsequence problem (2FLCS), i.e., LCS on two incomplete sequences and two
multisets of missing symbols: Given two incomplete sequences X and Y , and two multisets MX and MY , 2FLCS asks for
two sequences X+ and Y+ obtained by inserting subsets of the symbols of MX and MY into X and Y , respectively, so
that X+ and Y+ induce a common subsequence of maximum length. They conjectured that 2FLCS can be approximated
within a constant factor in polynomial time, and that the following simple method gives a 2-approximation:

(1) Find a longest common subsequence Z1 of X and Y . Let X and Y be the subsequences remaining after deleting the
symbols corresponding to Z1 from X and Y , respectively.

(2) Obtain a sequence Z2 from X and Y that maximizes the number of symbols matched by inserting the symbols in
MX into X and the ones in MY into Y , respectively.

(3) If |Z1| ≥ |Z2|, then output Z1; otherwise, output Z2.

Moreover, they conjectured that 2FLCS can be solved in polynomial time if the alphabet size is a constant.

1.3. Our contributions

Suppose that there exist an O(TA)-time algorithm for an optimization problem PA and an O(TB)-time algorithm for
another optimization problem PB. In this article, we say that two problems PA and PB are polynomially equivalent, or that
polynomial-time equivalence between PA and PB holds, if an optimal solution for an instance IA of PA can be obtained in
O(TB) + O(poly(|IA|)) time and an optimal solution for an instance IB of PB can be obtained in O(TA) + O(poly(|IB|)) time.
ur contributions are:
45

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64
1. We establish that MRCS is polynomially equivalent to RBLCS by showing the following: (i) From an input
(X, Y ,M) of MRCS, we construct an input (X, Y , Cocc) of RBLCS in O(poly(|(X, Y ,M)|)) time. Then, from an
optimal solution ZR of RBLCS on (X, Y , Cocc), we construct an optimal solution ZM of MRCS on (X, Y ,M) in
O(poly(|(X, Y ,M)|)) time. Conversely, (ii) from an input (X, Y , Cocc) of RBLCS, we construct an input (X, Y ,M) of
MRCS in O(poly(|(X, Y , Cocc)|)) time. Then, from an optimal solution ZM of MRCS on (X, Y ,M), we construct an
optimal solution ZR of RBLCS in O(poly(|(X, Y , Cocc)|)) time. It is important to note that our constructions between
two inputs are ‘‘input-sequences preserving reductions’’, i.e., X and Y in (X, Y ,M) and (X, Y , Cocc) are identical.

2. Similarly to the above, we show the polynomial-time equivalence between 1FLCS and RBLCS: (i) From an input
(X, Y ,MY) of 1FLCS, we construct an input (X, Y , Cocc) of RBLCS in O(poly(|(X, Y ,MY)|)) time. Then, from an
optimal solution ZR of RBLCS on (X, Y , Cocc), we construct an optimal solution Z1F of 1FLCS on (X, Y ,MY) in
O(poly(|(X, Y ,MY)|)) time. Conversely, (ii) from an input (X, Y , Cocc) of RBLCS, we construct an input (X, Y ,MY) of
1FLCS in O(poly(|(X, Y , Cocc)|)) time. Then, from an optimal solution Z1F of 1FLCS on (X, Y ,MY), we construct an
optimal solution ZR of RBLCS on (X, Y , Cocc) in O(poly(|(X, Y , Cocc)|)) time.

3. We prove the polynomial-time equivalence between 2FLCS and RBLCS. Due to the second contribution and 1FLCS
being a special case of 2FLCS (see Remark 1 below), we only need to show one direction: (i) From an input
(X, Y ,MX ,MY) of 2FLCS, we construct an input (X, Y , Cocc) of RBLCS in O(poly(|(X, Y ,MX ,MY)|)) time. Then, from
an optimal solution ZR of RBLCS on (X, Y , Cocc), we construct an optimal solution Z2F of 2FLCS on (X, Y ,MX ,MY)
in O(poly(|ZR|)) time.

4. We design a refined DP-based algorithm that runs in O(1.41422n) time for RBLCS on two sequences X of length
n and Y of length m (assuming that n ≤ m and m = O(poly(n))), while the previously known running time was
O(1.44225n) in [2].

5. We give a simple polynomial-time 2-approximation algorithm for 2FLCS, thus resolving one of the conjectures
in [7].

Remark 1. One sees that 1FLCS on (X, Y ,MY) is equivalent to 2FLCS on (X, Y ,∅,MY); 1FLCS can be solved by using
an algorithm for 2FLCS. From item (ii) in the second contribution, RBLCS can also be solved by using the algorithm
for 2FLCS with some extra polynomial-time calculations. Therefore, the one-way equivalence in the third contribution
demonstrates the ‘‘two-way’’ polynomial-time equivalence between 2FLCS and RBLCS. Furthermore, interestingly, an
algorithm for 1FLCS can solve 2FLCS within an extra polynomial-time factor.

Remark 2. None of the constructions between inputs described above change the sequences X and Y . In particular, |X |

and |Y | remain the same, so the above polynomial-time equivalences by the first, the second, and the third contributions
imply that MRCS, 1FLCS, and 2FLCS can also be solved in O(1.41422n) time by the fourth contribution.

Remark 3. We also remark that the polynomial-time equivalence between 1FLCS and 2FLCS gives an affirmative answer
to the conjecture on the polynomial-time solvability of 2FLCS for a constant size alphabet in [7] since we do not change
Σ .

2. Preliminaries

2.1. Notation

An alphabet Σ = {σ1, σ2, . . . , σk} is a set of k symbols. Let X be a sequence over the alphabet Σ and |X | be the length
of the sequence X . Throughout the article, a sequence X is often regarded as a multiset of the same symbols. For example,
X = ⟨x1, x2, . . . , xn⟩ is a sequence of length n, where xi ∈ Σ for 1 ≤ i ≤ n, i.e., |X | = n. A subsequence of X is obtained
by deleting zero or more symbols from X . Then, we say that a sequence Z is a common subsequence of X and Y if Z
is a subsequence of both X and Y . Given two sequences X and Y over the alphabet Σ as input, the goal of the Longest
Common Subsequence problem (LCS) is to find a longest common subsequence of X and Y , which is denoted by LCS(X, Y).
Let L(X, Y) denote the length of LCS(X, Y).

For the sequence X , the consecutive subsequence, i.e., substring ⟨xi, xi+1, . . . , xj⟩ is denoted by Xi..j. Then, we define
the ith prefix of X , for i = 1, . . . , n, as X1..i = ⟨x1, x2, . . . , xi⟩. Also, we define the ith suffix of X , for i = 1, . . . , n, as
Xi..n = ⟨xi, xi+1, . . . , xn⟩. X1..n is X .

Let X = ⟨x1, x2, . . . , xn⟩ and Y = ⟨y1, y2, . . . , ym⟩ be the given two sequences of length n and length m, respectively.
Assume that n ≤ m and m = poly(n) from now on. Suppose that Z = ⟨z1, z2, . . . , zp⟩ is a common subsequence with
length p of X and Y . Then, we can consider two strictly increasing sequences IX = ⟨i1, i2, . . . , ip⟩ of indices of X and
IY = ⟨j1, j2, . . . , jp⟩ of indices of Y such that zℓ = xiℓ = yjℓ holds for each ℓ = 1, 2, . . . , p. We call the pair (IX , IY) of such
sequences an index-expression of the common sequence Z of X and Y . A pair (xiℓ , yjℓ) is called the ℓth match. Also, we say
that the ℓth match is zℓ, xiℓ , or yiℓ .

For two sequences A = ⟨a1, . . . , ai⟩ of length i and B = ⟨b1, . . . , bj⟩ of length j, let A ⊕ B be the concatenation of A and
B, i.e., the sequence A ⊕ B = ⟨a1, . . . , ai, b1, . . . , bj⟩ of length i + j. For X = ⟨x1, x2, . . . , xn⟩ of length n, let X \ ⟨i⟩ denote

the sequence obtained by deleting the ith symbol xi from X , i.e., X \ ⟨i⟩ = X1..i−1 ⊕ Xi+1..n = ⟨x1, x2, . . . , xi−1, xi+1, . . . , xn⟩.

46

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

S
.

M

M
e
M

h
a

2

t
L
o
a

c

imilarly, for 1 ≤ i1 < i2 < · · · < ip ≤ n, let X \ ⟨i1, i2, . . . , ip⟩ be the sequence obtained by deleting p symbols xi1 , xi2 ,
. . , xip from X .
Let M be a multiset of symbols inΣ and let |M| be the cardinality of M. Let occ(M, σ) denote the occurrences (i.e., the

multiplicity) of a symbol σ ∈ Σ in a multiset M. Let M\ {σ ℓ} be the multiset obtained by removing ℓ σ ’s from a multiset
. Let M \ {σ ∗

} be the multiset obtained by removing all σ ’s from a multiset M.
Consider a multiset M of cardinality ℓ and obtain an arbitrarily fixed sequence M = ⟨µ1, µ2, . . . , µℓ⟩ of ℓ symbols in
, called a sequence-expression of the multiset M. In the following, the multiset M is often regarded as its sequence-

xpression M; M and M are used interchangeably. Similarly to the above, for 1 ≤ i1 < i2 < · · · < ip ≤ ℓ, let
\ ⟨i1, i2, . . . , ip⟩ be the sequence obtained by deleting p symbols µi1 , µi2 , . . . , µip from M .
An algorithm ALG is called an α-approximation algorithm and ALG’s approximation ratio is α if OPT (x)/ALG(x) ≤ α

olds for every input x of an LCS-type problem, where ALG(x) and OPT (x) are the lengths of solutions obtained by ALG
nd an optimal algorithm, respectively.

.2. Repetition-bounded longest common subsequence

Recall that occ(W , σ) is the number of occurrences of σ ∈ Σ in a sequence W . Without loss of generality, we assume
hat two input sequences X and Y have all k symbols in Σ , and thus occ(X, σi) ≥ 1 and occ(Y , σi) ≥ 1 for every symbol σi.
et Cocc be an occurrence constraint, i.e., a function Cocc : Σ → N assigning an upper bound on the number of occurrences
f each symbol in Σ . The Repetition-Bounded Longest Common Subsequence problem (RBLCS) can be formally defined
s follows [2]:

Repetition-Bounded Longest Common Subsequence problem (RBLCS)
Input: A pair of sequences X and Y over the alphabet Σ , and an occurrence constraint Cocc .
Goal: Find a longest common subsequence Z of X and Y such that occ(Z, σ) ≤ Cocc(σ) is satisfied for every σ ∈ Σ .

We call Z a repetition-bounded longest common subsequence. Let LCS(X, Y , Cocc) denote the repetition-bounded longest
ommon subsequence for the input triple (X, Y , Cocc). Also, L(X, Y , Cocc) denotes the length of LCS(X, Y , Cocc).

Example 1. Let (X, Y , Cocc) be an instance of RBLCS defined by:

X = ⟨t, g, t, c, a, c, g, t, g, a, a, g⟩, Y = ⟨a, t, g, c, a, t, g, g, a, c, a, g, c⟩; and
Cocc(a) = 1, Cocc(c) = 1, Cocc(g) = 2, Cocc(t) = 1.

Z = ⟨g, c, t, g, a⟩ of length five is an optimal solution of RBLCS since occ(Z, a) = 1, occ(Z, c) = 1, occ(Z, g) = 2,
occ(Z, t) = 1, and

∑
σ∈{a,c,g,t} Cocc(σ) = 5, i.e., L(X, Y , Cocc) = 5. As a side note, ⟨t, g, c, a, t, g, a, a, g⟩ of length nine

is an optimal solution of the original LCS.

Consider an input triple (X, Y , Cocc) of RBLCS and a feasible solution ZR for (X, Y , Cocc). Then, for every σ ∈ Σ , the
number of occurrences occ(ZR, σ) of σ must be bounded from above by Cocc(σ). If Cocc(σ ′) > min{occ(X, σ ′), occ(Y , σ ′)}
for some σ ′, then the constraint Cocc is somewhere redundant. Therefore, if the input (X, Y , Cocc) of RBLCS satisfies
Cocc(σ) ≤ min{occ(X, σ), occ(Y , σ)} for every σ ∈ Σ , then we call (X, Y , Cocc) the standard input. Without loss of
generality, we assume that every input of RBLCS is standard in the following.

2.3. Multiset restricted common subsequence

The formal definition of the Multiset Restricted Common Subsequence problem (MRCS) is as follows [13]:

Multiset Restricted Common Subsequence problem (MRCS)
Input: A pair of sequences X and Y , and a multiset M over the alphabet Σ .
Goal: Find a common subsequence Z of X and Y such that Z contains the maximum number of symbols from M.

That is, the goal of MRCS is to maximize |M ∩ Z | as a multiset intersection or, equivalently, to minimize |M \ Z | as a
multiset difference (if Z is regarded as the corresponding multiset). The optimal solution Z is denoted by LCS(X, Y ,M) in
the following. The length of LCS(X, Y ,M) is denoted by L(X, Y ,M).

Example 2. Consider the following input triple (X, Y ,M) of MRCS:

X = ⟨t, g, t, c, a, c, g, t, g, a, a, g⟩, Y = ⟨a, t, g, c, a, t, g, g, a, c, a, g, c⟩, and
M = {a, c, g, g, t}.

One sees that a common subsequence ⟨g, c, t, g, a⟩ of X and Y is an optimal solution of MRCS since |M| = 5 and solutions
of length five with all the symbols in M are equally as good as longer solutions. For example, the objective function value
of a longer common subsequence Z = ⟨g, c, t, g, a, a, g⟩ is also five since |M ∩ Z | = 5.
47

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

2

X

w

.4. Filled longest common subsequence

Let MX (MY , resp.) be a multiset of symbols in Σ . Then, we denote the cardinality of the multiset MX (MY , resp.)
by |MX | (|MY |, resp.), i.e.,

∑
σ∈MX

occ(MX , σ) (
∑

σ∈MY
occ(MY , σ), resp.). A filling X+ (Y+, resp.) of the sequence X (Y ,

resp.) is defined as a sequence obtained from X (Y , resp.) by inserting a subset of the symbols from MX (MY , resp.) into
X (Y , resp.). That is, for some 0 ≤ p ≤ |MX | and M′

X = {χ1, . . . , χp} ⊆ MX , the filling X+ obtained by inserting M′

X into
is the following concatenation of 2p + 1 subsequences (some might be a null sequence):

X+
= X1..j1 ⊕ ⟨χi1⟩ ⊕ Xj1+1..j2 ⊕ ⟨χi2⟩ ⊕ · · · ⊕ ⟨χip⟩ ⊕ Xjp+1..n,

here X = X1..j1 ⊕Xj1+1..j2 ⊕· · ·⊕Xjp+1..n and {i1, . . . , ip} = {1, . . . , p}. For some 0 ≤ q ≤ |MY | and M′

Y = {ψ1, . . . , ψq} ⊆

MY , the filling Y+ obtained by inserting M′

Y into Y is similarly defined. Let X∗ and Y ∗ be fillings such that the length
of LCS(X∗, Y ∗) is the longest among the length of LCS(X+, Y+) over all pairs of X+ and Y+. The Two-Side-Filled Longest
Common Subsequence problem (2FLCS) is defined as follows [7]:

Two-Side-Filled Longest Common Subsequence problem (2FLCS)

Input: A pair of sequences X and Y , and a pair of multisets MX and MY over the alphabet Σ .

Goal:Find two fillings X∗ and Y ∗ such that the length of LCS(X∗, Y ∗) is the longest among the lengths of LCS(X+, Y+)
over all pairs of X+ and Y+.

In the following, the longest common subsequence LCS(X∗, Y ∗) of two fillings X∗ and Y ∗ is written as
LCS(X, Y ,MX ,MY). The length of LCS(X, Y ,MX ,MY) is denoted by L(X, Y ,MX ,MY). As a special case, if MX = ∅, then
the problem is called the One-Side-Filled Longest Common Subsequence problem (1FLCS) [7]:

One-Side-Filled Longest Common Subsequence problem (1FLCS)

Input: A pair of sequences X and Y , and a multiset MY over the alphabet Σ .

Goal: Find a filling Y ∗ such that the length of LCS(X, Y ∗) is the longest among the length of LCS(X, Y+) over all
fillings Y+.

Let LCS(X, Y ,MY) and L(X, Y ,MY) be the longest common subsequence LCS(X, Y ∗) and its length, respectively.

Example 3. Now we consider the following two sequences X and Y , and two multisets MX and MY , as input to 2FLCS:

X = ⟨g, t, c, a, c, t, g, a⟩, Y = ⟨g, a, t, c, c, g, t, g⟩,

MX = {g, t}, and MY = {c, t, t}

Here, for example, occ(X, c) = 2 and occ(MY , c) = 1. One sees that for the input quadruple (X, Y ,MX ,MY), an optimal
pair of fillings is as follows:

X∗
= ⟨t, g, t, c, a, c, g, t, g, a⟩ and Y ∗

= ⟨t, g, t, c, a, t, c, c, g, t, g⟩.

That is, the leftmost t and the seventh g in X∗ are inserted into the original X from MX . For Y ∗, the first, third,
and fourth symbols (t , t , and c , respectively) are inserted into Y from MY . Then, the longest common subsequence
LCS(X∗, Y ∗) of those fillings X∗ and Y ∗ is ⟨t, g, t, c, a, c, g, t, g⟩. Note that IX∗ = ⟨1, 2, 3, 4, 5, 6, 7, 8, 9⟩ and IY∗ =

⟨1, 2, 3, 4, 5, 7, 9, 10, 11⟩. One can verify that, for example, the first symbol t in LCS(X∗, Y ∗) originally comes from MX
and MY , but the second symbol g comes from X and Y .

Now let X+
= ⟨x1, x2, . . . , xn⟩ and Y+

= ⟨y1, y2, . . . , ym⟩ be two fillings of X and Y , respectively. Let (IX+ , IY+) be an
index-expression of a common subsequence of two fillings X+ and Y+. Then, the ℓth match (xiℓ , yjℓ) is one of the following
four types of matches:

• MXMY -match: xiℓ and yiℓ are inserted from MX and MY , respectively.
• MXY -match: xiℓ is inserted from MX but yiℓ is originally in Y .
• XMY -match: xiℓ is originally in X but yjℓ is inserted from MY .
• XY -match: xiℓ and yiℓ are originally in X and Y , respectively.

Let X∗ and Y ∗ denote optimal fillings for the quadruple (X, Y ,MX ,MY) of 2FLCS. If there exists at least one symbol,
say, σ , in MY that does not appear in an optimal filling Y ∗, then the length of LCS(X∗, Y ∗

⊕ ⟨σ ⟩) is equal to one of
LCS(X∗, Y ∗), which implies that Y ∗

⊕ ⟨σ ⟩ is another optimal filling. Similarly, if σ ′
∈ MX does not appear in X∗, then

X∗
⊕ ⟨σ ′

⟩ is another optimal filling. Therefore, without loss of generality, we assume that all the symbols in MX and MY
are inserted to the optimal fillings.
48

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

2

e

P
a

3

s
|

Z
o
M

.5. Known results on exact/approximation algorithms

Here, we summarize the previously known results on exact and approximation algorithms. For RBLCS, the following
xact exponential-time algorithm is known:

roposition 1 ([2]). There is an O(1.44225n)-time algorithm for RBLCS on two sequences X and Y , where |X | = n, |Y | = m,
nd n ≤ m, assuming that m = poly(n).

If Cocc(σ) = 1 for every symbol σ ∈ Σ , then a faster exact algorithm can be designed:

Proposition 2 ([2]). There is an O(1.41422n)-time algorithm for RFLCS on two sequences X and Y , where |X | = n, |Y | = m,
and n ≤ m, assuming that m = poly(n).

Furthermore, the following approximation algorithm is known for RFLCS:

Proposition 3 ([1]). There is a polynomial-time occmax-approximation algorithm for RFLCS on X and Y , where occmax =

maxσ∈Σ {min{occ(X, σ), occ(Y , σ)}}.

For MRCS, the following exact exponential-time algorithm and the polynomial-time approximation algorithm are
proposed in [13]:

Proposition 4 ([13]). There is an O(nm(t + 1)k)-time algorithm for MRCS on two sequences X and Y , and a multiset M,
where t and k are the maximum multiplicity of M and the alphabet size |Σ |, respectively.1

Proposition 5 ([13]). There is a polynomial-time 2
√
min{n,m}-approximation algorithm for MRCS on two sequences X and

Y , and a multiset M, where |X | = n and |Y | = m.

For 1FLCS, an FPT-algorithm parameterized by the number k of XMY -matches in the optimal subsequence is known [7].
Note that k may be as large as the length of X , i.e., n.

Proposition 6 ([7]). There is an O(2O(k)poly(n + m + |MY |))-time algorithm for 1FLCS on an input triple (X, Y ,MY) if the
number of XMY -matches in LCS(X, Y ∗) is k.

The following algorithm for 1FLCS runs in polynomial time if |Σ | is a constant [7]:

Proposition 7 ([7]). There is an O(n|Σ |+2m)-time algorithm for 1FLCS on (X, Y ,MY).

The following approximability result is also known for 1FLCS:

Proposition 8 ([7]). There is a polynomial-time 5
3 -approximation algorithm for 1FLCS.

. Polynomial-time equivalence of RBLCS and MRCS

In this section we show the polynomial-time equivalence between RBLCS and MRCS. First consider any optimal
olution ZM for an input (X, Y ,M) of MRCS. Recall that the objective function value of MRCS is |M ∩ ZM|. That is,
M ∩ ZM| can be regarded as the summation of occurrences of all the symbols appearing both in M and in the solution
M. Furthermore, intuitively, the number occ(M, σ) of occurrences of every symbol σ ∈ M can be regarded as the
ccurrence constraint Cocc(σ) of the solution for RBLCS, and vice versa. One sees that we can transform from/to a multiset
of symbols in Σ to/from an occurrence constraint Cocc of symbols in Σ such that Cocc(σ) = occ(M, σ) for every σ ∈ Σ

clearly in polynomial time; all we have to do is count the multiplicity/occurrences of every symbol in M. Then, we can
obtain the following theorem:

Theorem 1. Consider a pair of a multiset M in an input for MRCS and an occurrence constraint Cocc of symbols in Σ in an
input for RBLCS such that Cocc(σ) = occ(M, σ) for every σ ∈ Σ . Then, the followings hold: (1) Given an optimal solution ZR
for an input (X, Y , Cocc) of RBLCS, we can obtain an optimal solution for an input (X, Y ,M) of MRCS in polynomial time.
(2) Given an optimal solution ZM for an input (X, Y ,M) of MRCS, we can obtain an optimal solution for an input (X, Y , Cocc)
of RBLCS in polynomial time.

1 We remark that the time complexity shown in Theorem 3 of [13] is O(nmtk), but the correct one must be O(nm(t + 1)k) because the algorithm
has to store t + 1 values from 0 through t for the maximum multiplicity. As described before, if M = Σ , i.e., t = 1, then MRCS is essentially
equivalent to RFLCS and thus MRCS is NP-hard. If we could solve MRCS with t = 1 in O(nmtk) = O(nm) time, then that would imply P = NP.
49

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

P
a
s
o

roof. In the following, we show that (1) if an optimal solution ZR for RBLCS on (X, Y , Cocc) is given, then ZR itself is
n optimal solution for MRCS on (X, Y ,M), and (2) if an optimal solution ZM for MRCS on (X, Y ,M) is given, then the
ubsequence consisting of symbols in M∩ZM is an optimal solution for RBLCS on (X, Y , Cocc). Here we make the following
bservations:

(i) Suppose that we are now given an optimal solution ZR for RBLCS on (X, Y , Cocc). Note that ZR is a feasible solution
for MRCS since any common subsequence of X and Y is feasible for MRCS on the triple (X, Y ,M). Then, considering
a multiset intersection M ∩ ZR, we get |M ∩ ZR| =

∑
σ∈Σ min {occ(ZR, σ), occ(M, σ)} =

∑
σ∈Σ occ(ZR, σ) = |ZR|

since ZR satisfies the occurrence constraint Cocc(σ) for every σ .
(ii) Suppose that we are now given an optimal solution ZM for MRCS on the triple (X, Y ,M). Then, we can obtain

another (probably shorter) optimal solution Z ′
M for the same input that satisfies Z ′

M = M∩ ZM in polynomial time
by removing arbitrarily every symbol in ZM \ M. Note that for every σ ∈ Σ , occ(Z ′

M, σ) ≤ occ(M, σ) = Cocc(σ).
That is, Z ′

M is a feasible solution for RBLCS on (X, Y , Cocc).

From the above observations, |ZR| = |M ∩ ZR| ≤ |M ∩ ZM| = |Z ′
M| holds since ZM is optimal for MRCS, and

|ZR| ≥ |M ∩ ZM| = |Z ′
M| holds since ZR is optimal for RBLCS. Namely, |ZR| = |Z ′

M| holds. Therefore, (1) given an optimal
solution ZR for an input (X, Y , Cocc) of RBLCS, we can regard ZR as an optimal solution for an input (X, Y ,M) of MRCS;
(2) given an optimal solution ZM for an input (X, Y ,M) of MRCS, we can obtain M ∩ ZM as an optimal solution for an
input (X, Y , Cocc) of RBLCS in polynomial time. □

4. Polynomial-time equivalence of RBLCS , 1FLCS, and 2FLCS

4.1. Proof tools

In this subsection we give some proof tools. Now, we introduce two partially cyclic permutations, for example, one of
which transforms a sequence ⟨1, 2, 3, 4, 5, 6⟩ to ⟨1, 3, 4, 5, 2, 6⟩. More precisely, we define the following two permutations
δi,j+ and δi,j−, and two sequences X ⟨i⟩→⟨j⟩+ and X ⟨i⟩→⟨j⟩− for a sequence X = ⟨x1, x2, . . . , xn⟩ as follows:

Definition 1. (1) The (cyclic) index permutation δi,j+ is defined as follows:

(i) if i < j, then δi,j+(ℓ) =

⎧⎨⎩
ℓ 1 ≤ ℓ ≤ i − 1 or j + 1 ≤ ℓ ≤ n
j ℓ = i
ℓ− 1 i + 1 ≤ ℓ ≤ j; and

(ii) if i > j, then δi,j+(ℓ) =

⎧⎨⎩
ℓ 1 ≤ ℓ ≤ j or i + 1 ≤ ℓ ≤ n
j + 1 ℓ = i
ℓ+ 1 j + 1 ≤ ℓ ≤ i − 1.

(2) Let X ⟨i⟩→⟨j⟩+ denote a sequence obtained by removing the ith symbol xi from X and then inserting it right after the
jth symbol of X for i ̸= j, i.e., for the inverse δ−1

i,j+ of δi,j+,

X ⟨i⟩→⟨j⟩+
= ⟨x

δ−1
i,j+(1), xδ−1

i,j+(2), . . . , xδ−1
i,j+(n)⟩.

One sees that ⟨1, 2, 3, 4, 5, 6⟩ is permuted to ⟨1, 3, 4, 5, 2, 6⟩ by δ2,5+.

Definition 2. (1) The (cyclic) index permutation δi,j− is defined as follows:

(i) if i < j, then δi,j−(ℓ) =

⎧⎨⎩
ℓ 1 ≤ ℓ ≤ i − 1 or j ≤ ℓ ≤ n
j − 1 ℓ = i
ℓ− 1 i + 1 ≤ ℓ ≤ j − 1; and

(ii) if i > j, then δi,j−(ℓ) =

⎧⎨⎩
ℓ 1 ≤ ℓ ≤ j − 1 or i + 1 ≤ ℓ ≤ n
j ℓ = i
ℓ+ 1 j ≤ ℓ ≤ i − 1.

(2) Let X ⟨i⟩→⟨j⟩− denote a sequence obtained by removing the ith symbol xi from X and then inserting it right before
the jth symbol of X for i ̸= j, i.e., for the inverse δ−1

i,j− of δi,j−,

X ⟨i⟩→⟨j⟩−
= ⟨x

δ−1
i,j−(1), xδ−1

i,j−(2), . . . , xδ−1
i,j−(n)⟩.

The first tool reduces the numbers of XY -matches and MXMY -matches in an output subsequence.

Lemma 1. Suppose that (X, Y ,MX ,MY) is an input for 2FLCS, and X∗ and Y ∗ are optimal fillings of (X, Y ,MX ,MY).
Also, suppose that the numbers of XY-matches, MXMY -matches, XMY -matches, and MXY-matches of some σ in the index-
expression (IX∗ , IY∗) of X∗ and Y ∗ are α > 0, β > 0, ζ ≥ 0, and η ≥ 0, respectively. Then, we can obtain in polynomial time

∗∗ ∗∗
another pair of optimal fillings X and Y such that (i) the numbers of XY-matches, MXMY -matches, XMY -matches, and

50

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

M

i

X
c

I
s
I
t
i
Y
o

Y

XY-matches of σ in the index-expression (IX∗∗ , IY∗∗) of X∗∗ and Y ∗∗ are α − 1, β − 1, ζ + 1, and η + 1, respectively, and
(ii) all the matches of any different symbol σ ′

̸= σ do not change.

Proof. Let X∗
= ⟨x1, . . . , xn⟩, Y ∗

= ⟨y1, . . . , ym⟩, IX∗ = ⟨i1, . . . , ik⟩, and IY∗ = ⟨j1, . . . , jk⟩ assuming that L(X∗, Y ∗) = k.
Now assume that the numbers of XY -matches, MXMY -matches, XMY -matches, and MXY -matches of the symbol σ in
the index-expression (IX∗ , IY∗) are α, β , ζ , and η, respectively, where 1 ≤ α, β ≤ k. Suppose that the pth match (xip , yjp)
s an MXMY -match of σ and the qth match (xiq , yjq) is an XY -match of σ .

Now recall that any symbol in the multiset MX (MY , resp.) can be inserted into any position in X (Y , resp.). Thus,
∗⟨p⟩→⟨q⟩+ (Y ∗⟨p⟩→⟨q⟩−, resp.) must be a valid filling of X and MX (Y and MY , resp.) since the symbol of the pth match
omes originally from MX or MY .
Consider the following two sequences of indices for the case where p ̸= q + 1 and p ̸= q − 1:

I = ⟨δp,q+(i1), . . . , δp,q+(iq), δp,q+(ip), δp,q+(iq+1), . . . , δp,q+(ik)⟩; and
I ′ = ⟨δp,q−(j1), . . . , δp,q−(jq−1), δp,q−(jp), δp,q−(jq), . . . , δp,q−(jk)⟩.

f p = q+1, then we set I = I\⟨δp,q+(ip)⟩ since δp,q+(ip) is identical to δp,q+(iq+1); if p = q−1, then we set I ′ = I ′\⟨δp,q−(jp)⟩
ince δp,q−(jp) is identical to δp,q−(jq−1). One can verify that (i) if p < q, then the (q−1)st match (δp,q+(iq) in I and δp,q−(jp) in
′) is an XMY -match of σ and the qth match (δp,q+(ip) in I and δp,q−(jq) in I ′) is an MXY -match of σ , and (ii) if p > q, then
he qth match (δp,q+(iq) in I and δp,q−(jp) in I ′) is an XMY -match of σ , and the (q + 1)st match (δp,q+(ip) in I and δp,q−(jq)
n I ′) is an MXY -match of σ . Furthermore, (I, I ′) is the index-expression of a common subsequence of X∗⟨p⟩→⟨q⟩+ and
∗⟨p⟩→⟨q⟩−. Hence, the numbers of XY -matches and MXMY -matches decrease by one; on the other hand, the numbers
f XMY -matches and MXY -matches increase by one. Since the length of (I, I ′) is k, X∗⟨p⟩→⟨q⟩+ and Y ∗⟨p⟩→⟨q⟩− are also

optimal fillings. The running time to obtain those two sequences X∗⟨p⟩→⟨q⟩+ and Y ∗⟨p⟩→⟨q⟩− is clearly in polynomial. □

If we use the above tool iteratively α-times for α ≤ β (β-times for β ≤ α, resp.), then we can obtain so-called an
‘‘XY -match-free’’ (‘‘MXMY -match-free’’, resp.) output subsequence.

Lemma 2. Suppose that an input quadruple (X, Y ,MX ,MY) satisfies occ(X, σ) > 0 and occ(MY , σ) > 0 for some σ ∈ Σ .
Let X = ⟨x1, . . . , xn⟩ and MY = ⟨ψ1, . . . , ψℓ⟩. Then,

L(X, Y ,MX ,MY) = max
σ=xi=ψj

L(X \ ⟨i⟩, Y ,MX ,MY \ ⟨j⟩) + 1.

Proof. Suppose that for a symbol σ ∈ Σ and a pair of i and j such that σ = xi = ψj, X+

1 = ⟨x+

1,1, . . . , x
+

1,n′⟩ and
+

1 = ⟨y+

1,1, . . . , y
+

1,m′⟩ are two optimal fillings of (X \ ⟨i⟩, Y ,MX ,MY \ ⟨j⟩). Also suppose that LCS(X+

1 , Y
+

1) is Z1, where
|Z1| = k − 1, and (A, B) is the index-expression of Z1, where A = ⟨a1, . . . , ak−1⟩ and B = ⟨b1, . . . , bk−1⟩. Since X+

1
is a filling of X \ ⟨i⟩ and MX , X \ ⟨i⟩ is a subsequence of X+

1 . Therefore, there exists a strictly increasing sequence
C = ⟨c1, . . . , ck−1⟩ such that for each 1 ≤ t < i, x+

1,ct = xt , and for each i < t ≤ k − 1, x+

1,ct−1 = xt . Here consider
a sequence X+

2 = ⟨x+

1,1, . . . , x
+

1,ci−1, xi, x
+

1,ci
, . . . , x+

1,n′⟩. One sees that X+

2 is a filling of X and MX .
Assume that ap < ci ≤ ap+1 holds for some p, where 1 ≤ p ≤ k − 2. Consider Y+

2 =

⟨y+

1,1, . . . , y
+

1,bp , ψj, y+

1,bp+1, . . . , y
+

1,m′⟩. Then, Y+

2 is a filling of Y and MY . It follows that the pair of I = ⟨a1, . . . , ap, i, ap+1+

1, . . . , ak−1 + 1⟩ and J = ⟨b1, . . . , bp, bp + 1, bp+1 + 1, . . . , bk−1 + 1⟩ must be the index-expression of a common
subsequence Z2 = ⟨xa1 , . . . , xap , xi, xap+1+1, . . . , xak−1+1⟩ of X+

2 and Y+

2 . Since the length of I and J is k, the longest length
L(X, Y ,MX ,MY) ≥ |Z2| = |Z1| + 1 for some symbol σ .

Note that the above discussions can be applied to the case where the symbol σ is matched at the head or tail position.
For example, if i = 1, then we consider X+

2 = ⟨xi, x+

1,1, . . . , x
+

1,ci−1, x
+

1,ci
, . . . , x+

1,n′⟩ as a filling of X and MX . As another
example, if j = k− 1, then we consider Y+

2 = ⟨y+

1,1, . . . , y
+

1,bp , y
+

1,bp+1, . . . , y
+

1,m′ , ψj⟩ as a filling of Y and MY . Furthermore,
for every match of every symbol, we can follow the same lines as the above. Hence, the following inequality holds:

L(X, Y ,MX ,MY) ≥ max
σ=xi=ψj

L(X \ ⟨i⟩, Y ,MX ,MY \ ⟨j⟩) + 1.

Next, suppose that a solution of (X, Y ,MX ,MY) is a pair of X∗ and Y ∗. Also suppose that the index-expression of
Z = LCS(X∗, Y ∗) is (IX∗ , IY∗) where IX∗ = ⟨i1, . . . , ik⟩ and IY∗ = ⟨j1, . . . , jk⟩.

(1) If (IX∗ , IY∗) has an XMY -match of a symbol σ at the qth position, then we can obtain a common subsequence Z \⟨q⟩
of two fillings X∗

\ ⟨iq⟩ and Y ∗
\ ⟨jq⟩ by removing σ at the qth position from X∗ and Y ∗.

(2) If (IX∗ , IY∗) does not have any XMY -match of σ , then, from Lemma 1, either (i) all the matches of σ in (IX∗ , IY∗)
are XY -matches or (ii) all the matches of σ in (IX∗ , IY∗) are MXMY -matches. (i) Suppose that all are XY -matches. Then,
for j such that σ = ψj, L(X, Y ,MX ,MY) = L(X, Y ,MX ,MY \ ⟨j⟩) is satisfied since any other matches are not affected.
Furthermore, if the ith symbol xi of X is σ and xi is removed from X , then the number of matches is reduced by at most
one. Hence, L(X, Y ,MX ,MY) − 1 ≤ L(X \ ⟨i⟩, Y ,MX ,MY) = L(X \ ⟨i⟩, Y ,MX ,MY \ ⟨j⟩) holds. (ii) Suppose that all are
MXMY -matches. One sees that if ψj = σ is removed, then the number of matches is reduced by at most one. Also, even
if xi = σ is removed, any other matches do not change. Therefore, L(X, Y ,MX ,MY) − 1 ≤ L(X \ ⟨i⟩, Y ,MX ,MY \ ⟨j⟩)

holds.

51

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

a

Therefore, by applying a similar discussion to all matches in (IX∗ , IY∗), we have

L(X, Y ,MX ,MY) ≤ max
σ=xi=ψj

L(X \ ⟨i⟩, Y ,MX ,MY \ ⟨j⟩) + 1.

In summary,

L(X, Y ,MX ,MY) = max
σ=xi=ψj

L(X \ ⟨i⟩, Y ,MX ,MY \ ⟨j⟩) + 1

holds. □

We can apply very similar arguments to the pair Y and MX , which gives:

Corollary 1. Suppose that an input quadruple (X, Y ,MX ,MY) satisfies occ(Y , σ) > 0 and occ(MX , σ) > 0 for some σ ∈ Σ .
Let Y = ⟨y1, . . . , ym⟩ and MX = ⟨χ1, . . . , χℓ⟩. Then,

L(X, Y ,MX ,MY) = max
σ=yi=χj

L(X, Y \ ⟨i⟩,MX \ ⟨j⟩,MY) + 1.

The following lemma and corollary deal with symbol additions to multisets:

Lemma 3. Let X+ be a filling of X and MX , and let Y+ be a filling of Y and MY . Suppose that a common subsequence Z of X+

nd Y+ satisfies occ(Z, σ) < occ(Y+, σ) for some symbol σ ∈ Σ . Then, we can find in polynomial time a new filling X++ of X
and MX ∪{σ } and a common subsequence Z ′ of X++ and Y+ satisfying the following conditions: (1) occ(Z, σ)+1 = occ(Z ′, σ),
and (2) for every σ ′ except for σ occ(Z, σ ′) = occ(Z ′, σ ′).

Proof. Suppose that X+
= ⟨x1, . . . , xn⟩ and Y+

= ⟨y1, . . . , ym⟩. Also, suppose that (A, B) is the index-expression of
Z = LCS(X+, Y+) where A = ⟨a1, . . . , ak⟩ and B = ⟨b1, . . . , bk⟩. Since occ(Z, σ) < occ(Y+, σ), there exists an index i such
that yi = σ and i /∈ B. For ease of exposition, assume that bp < i < bp+1 holds for some 1 ≤ p ≤ k− 1 (even if yb1 = σ or
ybk = σ , we can have the same discussion as the following). Then we consider X++

= ⟨x1, . . . , xap , σ , xap+1, . . . , xn⟩,
I = ⟨a1, . . . , ap, ap + 1, ap+1 + 1, . . . , ak + 1⟩ and J = ⟨b1, . . . , bp, i, bp+1, . . . , bk⟩. Then, we can obtain a common
subsequence Z ′

= ⟨yb1 , . . . , ybp , yi, ybp+1 , . . . , ybk⟩ of X++ and Y+ that has the index-expression (I, J). One sees that
Z ′

\ ⟨p + 1⟩ = Z and yi = σ . Therefore, Z ′ satisfies occ(Z, σ) + 1 = occ(Z ′, σ) and occ(Z, σ ′) = occ(Z ′, σ ′) for every
σ ′

̸= σ . Clearly, we can construct X++ as follows: (i) Scan Y+ to find the index i, (ii) scan B to find the index p, and
(iii) insert the corresponding symbol into X+. The running times is O(|X+

| + |Y+
|). This completes the proof. □

From the symmetry of X and Y , we obtain:

Corollary 2. Let X+ be a filling of X and MX , and let Y+ be a filling of Y and MY . Suppose that a common subsequence Z of X+

and Y+ satisfies occ(Z, σ) < occ(X+, σ) for some symbol σ ∈ Σ . Then, we can find in polynomial time a new filling Y++ of Y
and MY ∪{σ } and a common subsequence Z ′ of Y++ and X+ satisfying the following conditions: (1) occ(Z, σ)+1 = occ(Z ′, σ),
and (2) for every σ ′ except for σ , occ(Z, σ ′) = occ(Z ′, σ ′).

4.2. RBLCS and 1FLCS

In this subsection we show that 1FLCS is polynomially equivalent to RBLCS. Consider an input triple (X, Y ,MY) of
1FLCS. In [14], Mincu and Popa observed that a filling-procedure of a symbol σ ∈ MY into Y to match some σ in X can be
seen as a deleting-procedure of the matched σ from X [14]. Our basic ideas are based on their observation: Every symbol
σ ∈ MY can be matched to σ at any position in X without restrictions. After all σ ’s in MY are matched, the number of
remaining unmatched σ ’s in X is occ(X, σ) − occ(MY , σ), which can be seen as the occurrence constraint Cocc(σ) of the
input (X, Y , Cocc) for RBLCS. In the following, we show that (i) from the input (X, Y ,MY) for 1FLCS, we can construct the
input (X, Y , Cocc) for RBLCS such that Cocc(σ) = occ(X, σ) − occ(MY , σ) for every σ ∈ Σ in polynomial time, and vice
versa; (ii) from an optimal solution of the former problem, we can construct an optimal solution of the latter problem in
polynomial time, and vice versa.

Consider an input triple (X, Y ,MY) of 1FLCS and a feasible solution Z1F . Then, for every symbol σ , occ(Z1F , σ) ≤

occ(X, σ) holds. If occ(X, σ) < occ(MY , σ), then occ(MY , σ) − occ(X, σ) σ ’s in MY are clearly redundant. If the input
(X, Y ,MY) of 1FLCS satisfies occ(X, σ) ≥ occ(MY , σ) for every σ ∈ Σ , then we call (X, Y ,MY) the standard input.
Without loss of generality, we assume that every input of 1FLCS is standard.

Lemma 4. Suppose that a triple (X, Y ,MY) is a standard input for 1FLCS, Y ∗ is an optimal filling, and Z is the longest
common subsequence of X and Y ∗. Then, for every σ in Σ , occ(Z, σ) ≥ occ(MY , σ) is satisfied.

Proof. Let X = ⟨x1, . . . , xn⟩, Y ∗
= ⟨y∗

1, . . . , y
∗
m⟩, and Z = ⟨z1, . . . , zℓ⟩ = ⟨xi1 , . . . , xiℓ⟩ = ⟨y∗

j1
, . . . , y∗

jℓ
⟩. Since the input is

standard, for every σ , occ(M , σ) ≤ occ(X, σ) holds.
Y

52

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

a
s
t
t
(
W

Now suppose for the purpose of obtaining a contradiction that there exists at least one symbol, say, σ ′, occ(Z, σ ′) <
occ(MY , σ

′) ≤ occ(X, σ ′) holds. Since occ(Z, σ ′) < occ(X, σ ′) holds, we can find an index q such that the qth symbol xq
in X is σ ′ but q is not in IX = ⟨i1, i2, . . . , iℓ⟩. First, we assume that ip < q < ip+1 holds for some p where 1 ≤ p ≤ ℓ− 1.
Then, we construct a new sequence Z ′

= ⟨xi1 , . . . , xip⟩ ⊕ ⟨σ ′
⟩ ⊕ ⟨xip+1 . . . , xiℓ⟩ of length ℓ + 1. If q < i1 (iℓ < q, resp.),

then we insert σ ′ to the head position, i.e., Z ′
= ⟨σ ′

⟩ ⊕ ⟨xi1 , . . . , xiℓ⟩ (to the tail position, i.e., Z ′
= ⟨xi1 , . . . , xiℓ⟩ ⊕ ⟨σ ′

⟩,
resp.). Moreover, since occ(Z, σ ′) < occ(MY , σ

′), we can find an index q′ such that the q′th symbol yq′ inserted into Y ∗ is
σ ′ but q′ is not in IY∗ = ⟨j1, j2, . . . , jℓ⟩. Then we construct a new filling Y ∗∗ as follows: (1) First remove the q′th symbol
yq′ (= σ ′) from Y ∗, and then (2) insert yq′ right after yjp of Y ∗. Note that the (p + 1)st symbol in the new sequence Z ′

is σ ′. It follows that LCS(X, Y ∗∗) = Z ′ and thus we can obtain the sequence of length ℓ + 1 from (X, Y ,MY), which is a
contradiction. Therefore, for all σ in Σ , occ(Z, σ) ≥ occ(MY , σ) holds. □

Consider an input triple (X, Y ,MY) of 1FLCS and its optimal solution Z1F . Suppose that there is a symbol σ such that
occ(X, σ) > occ(Y , σ) + occ(MY , σ). Let ℓ = occ(X, σ) − (occ(Y , σ) + occ(MY , σ)) ≥ 0. Then, at least ℓ σ ’s in X do not
ppear in Z1F . Let Sσ be a multiset of ℓ σ ’s. Now, suppose that for a new triple (X, Y ,MY ∪Sσ), we can obtain an optimal
olution Z . Then, the length of Z must be equal to |Z1F | + ℓ. Moreover, by removing ℓ σ ’s in Sσ from Z , we can easily find
he original optimal solution Z1F for (X, Y ,MY). For every symbol σ ′ in Σ satisfying occ(X, σ ′) > occ(Y , σ ′)+occ(MY , σ

′),
he similar discussion as the above can be applied. Let S =

⋃
σ ′:occ(X,σ ′)>occ(Y ,σ ′)+occ(MY ,σ ′) Sσ ′ . If we are given the triple

X, Y ,MY ∪S), then by finding its optimal solution Z ′ first, and then removing all the symbols in S from Z ′, we obtain Z1F .
e call the triple (X, Y ,MY ∪ S) obtained by merging S with MY an extended triple. If the extended triple (X, Y ,MY) of

1FLCS satisfies occ(X, σ) ≥ occ(MY , σ) for every σ ∈ Σ then it is called ex-standard. If occ(X, σ) < occ(MY , σ) holds for
a symbol σ ∈ Σ , (occ(MY , σ)− occ(X, σ)) σ ’s in X can easily be matched as observed in Lemma 2. Therefore, to simplify
the discussion, we assume that every input triple (X, Y ,MY) of 1FLCS is always ex-standard.

The following lemma is quite trivial but plays an important role:

Lemma 5. (1) Suppose that an input triple (X, Y ,MY) for 1FLCS is ex-standard. Then, we can construct a standard input triple
(X, Y , Cocc) for RBLCS satisfying Cocc(σ) = occ(X, σ) − occ(MY , σ) for every σ ∈ Σ in polynomial time. (2) Suppose that
an input triple (X, Y , Cocc) for RBLCS is standard. Then, we can construct an ex-standard input triple (X, Y ,MY) for 1FLCS
satisfying occ(MY , σ) = occ(X, σ) − Cocc(σ) for every σ ∈ Σ in polynomial time.

Proof. (1) Since the (ex-standard) triple (X, Y ,MY) is standard, occ(X, σ) − occ(MY , σ) ≥ 0 for every σ . Therefore, we
can always obtain the valid occurrence constraint such that Cocc(σ) = occ(X, σ) − occ(MY , σ) for every σ . Furthermore,
since the triple (X, Y ,MY) is extended, Cocc(σ) = occ(X, σ) − occ(MY , σ) ≤ occ(Y , σ). It follows that Cocc(σ) ≤

min{occ(X, σ), occ(Y , σ)}. Hence, the triple (X, Y , Cocc) must be standard for RBLCS.
(2) Since the triple (X, Y , Cocc) is standard, Cocc(σ) ≤ min{occ(X, σ), occ(Y , σ)}. Therefore, we can always obtain the

valid multiset MY such that occ(MY , σ) = occ(X, σ) − Cocc(σ) ≥ 0 for every σ .
Both of the above constructions can be executed in polynomial time by scanning X , Y , and M. □

Lemma 6. Consider an ex-standard input (X, Y ,MY) for 1FLCS and a standard input (X, Y , Cocc) for RBLCS such that
Cocc(σ) = occ(X, σ) − occ(MY , σ) holds for every σ ∈ Σ . Let ZF = LCS(X, Y ,MY) and Y ∗ be an optimal filling for 1FLCS.
Also, let ZR = LCS(X, Y , Cocc) be an optimal solution for RBLCS. Then, |ZR| + |MY | = |ZF | holds.

Proof. First, from Lemma 5, we always find a pair of triples (X, Y ,MY) and (X, Y , Cocc) such that the former and the
latter are the ex-standard input for 1FLCS and the standard input for RBLCS satisfying Cocc(σ) = occ(X, σ) − occ(MY , σ)
for every σ ∈ Σ , respectively.

(1) We first show that |ZF | ≤ |ZR| + |MY | holds. Let X = ⟨x1, . . . , xn⟩, Y = ⟨y1, . . . , ym⟩, and MY = ⟨ψ1, . . . , ψℓ⟩,
where MY is the sequence-expression of MY . By the assumption that (X, Y ,MY) is ex-standard, there exists a sequence
⟨i1, i2, . . . , iℓ⟩ of indices of X satisfying L(X, Y ,MY) = L (X \ ⟨i1, . . . , iℓ⟩, Y ,∅) + ℓ, by regarding L(X, Y ,∅,MY) as
L(X, Y ,MY), and by using the formula in Lemma 2 recursively. Since MY = ∅, L(X \ ⟨i1, . . . , iℓ⟩, Y ,∅) is clearly equal
to the length of the longest common subsequence Z ′ of X \ ⟨i1, . . . , iℓ⟩ and Y . Therefore, |ZF | = |Z ′

| + |MY |. Note that Z ′

is a common subsequence of the original X and Y and satisfies the following for every σ :

occ(X, σ) − occ(MY , σ) = occ(X \ ⟨i1, . . . , iℓ⟩, σ) ≥ occ(Z ′, σ).

That is, every symbol in Z ′ satisfies the occurrence constraint Cocc = occ(X, σ)−occ(MY , σ) of RBLCS, which implies that
|Z ′

| ≤ |ZR|. As a result, |ZF | = |Z ′
| + |MY | ≤ |ZR| + |MY | holds.

(2) Next, we show that |ZR| + |MY | ≤ |ZF |. Recall that for every σ , occ(ZR, σ) ≤ Cocc(σ) = occ(X, σ) − occ(MY , σ)
is satisfied. Here, from the viewpoint of 1FLCS, we can obtain a longer sequence than ZR by filling symbols of MY into
Y . Suppose that ZR is a common subsequence for RBLCS on (X, Y , Cocc) and (X, Y ,∅) is an input triple for 1FLCS. From
Corollary 2, by setting a multiset M′

Y = {σ } and filling σ into Y as matched with some σ in X , we can obtain a common
subsequence Z1 such that |Z1| = |ZR| + 1, occ(Z1, σ) = occ(ZR, σ)+ 1, and occ(Z1, σ ′) = occ(ZR, σ ′) for every σ ′ except for
σ . By repeating the merge M′

Y ∪ {σ } and the filling of σ occ(MY , σ)-times for every σ ∈ Σ , we can eventually obtain
MY , the filling of Y and MY , and a common subsequence Z satisfying |Z | = |ZR|+

∑
σ∈Σ occ(MY , σ) = |ZR|+ |MY |. Since

ZF is the longest, |Z | ≤ |ZF |. Hence, |ZR| + |MY | = |Z | ≤ |ZF | holds.

From (1) and (2), |ZR| + |MY | = |ZF |. This completes the proof. □

53

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

T
C

heorem 2. Consider an ex-standard input (X, Y ,MY) for 1FLCS and a standard input (X, Y , Cocc) for RBLCS such that
occ(σ) = occ(X, σ) − occ(MY , σ) holds for every σ ∈ Σ . Let ZF = LCS(X, Y ,MY) and Y ∗ be an optimal filling for 1FLCS.

Also, let ZR = LCS(X, Y , Cocc) be an optimal solution for RBLCS. Then, the followings hold: (1) Given an optimal solution ZR for
RBLCS, we can obtain an optimal solution for 1FLCS in polynomial time. (2) Given an optimal filling Y ∗ for 1FLCS, we can
obtain an optimal solution for RBLCS in polynomial time.

Proof. Consider two sequences X and Y , a multiset MY , and an occurrence constraint Cocc such that Cocc(σ) = occ(X, σ)−
occ(MY , σ) holds for every σ ∈ Σ .

(1) Suppose that the optimal solution ZR for RBLCS is now given. From Lemma 6, every optimal solution for 1FLCS is
of length |ZR| + |MY |. Hence, it is enough to prove that we can obtain an optimal filling Y ∗ of Y and MY from ZR and a
common subsequence ZF of X and Y ∗ such that |ZR| + |MY | = |ZF | in polynomial time. As seen in the proof of Lemma 6,
by repeating the merge M′

Y = M′
Y ∪ {σ } and the filling of σ occ(MY , σ)-times for every σ ∈ Σ , we eventually obtain

Y ∗ and ZF satisfying |ZF | = |ZR| +
∑

σ∈Σ occ(MY , σ) = |ZR| + |MY |. The total number of iterations is |MY |. Since each
iteration of the procedure in part (2) of the proof of Lemma 6 can be done in polynomial time, Y ∗ and ZF of 1FLCS can
be obtained in polynomial time.

(2) Suppose that the optimal filling Y ∗ is now given. The longest common subsequence ZF of X and Y ∗, and its
index-expression (IX , IY∗) can be obtained in polynomial time. From Lemma 4, occ(ZF , σ) ≥ occ(MY , σ) holds for every
σ ∈ Σ . Therefore, we can find |ZF | − |MY | XY -matches in (IX , IY∗). Letting zℓ be the symbol of the ℓth XY -match
(1 ≤ ℓ ≤ |ZF |−|MY |), we construct the sequence Z−

F = ⟨z1, z2, . . . , z|ZF |−|MY |⟩ of length |ZF |−|MY |. Note that Z−

F must be
a common subsequence of X and Y . Moreover, Z−

F satisfies the occurrence constraint Cocc(σ) = occ(X, σ)− occ(MY , σ) ≥

occ(ZF , σ)−occ(MY , σ) for every σ ∈ Σ . Since |Z−

F | = |ZF |−|MY |, Z−

F is an optimal solution for RBLCS from Lemma 6. The
construction of Z−

F can be easily executed by scanning the index-expression (IX , IY∗) and thus it can be done in polynomial
time. □

4.3. RBLCS and 2FLCS

In this subsection we consider the polynomial-time equivalence between 2FLCS and RBLCS. Since 1FLCS on (X, Y ,MY)
is equivalent to 2FLCS on (X, Y ,∅,MY), 1FLCS can be solved by using any algorithm for 2FLCS. From the polynomial-time
equivalence between 1FLCS and RBLCS in the previous subsection, RBLCS can also be solved by the same algorithm with
some extra polynomial-time calculations. Therefore, to establish the equivalence between RBLCS and 2FLCS, only one
direction remains to be proved. To do so, we first give a pair of two inputs (X, Y ,MX ,MY) for 2FLCS and (X, Y , Cocc) for
RBLCS. Then, we show that given an optimal solution ZR of RBLCS on (X, Y , Cocc), we can obtain optimal fillings X∗ and
Y ∗ of 2FLCS on (X, Y ,MXMY) in polynomial time.

Lemma 7. Suppose that an input (X, Y ,MX ,MY) of 2FLCS satisfies occ(X, σ) = p < occ(MY , σ) = q and
min {occ(MX , σ), occ(Y , σ) + q − p} = λ ≥ 0 for some positive integers p and q. Then the following holds:

L(X, Y ,MX ,MY) ≤ L(X, Y ,MX \ {σ ∗
},MY \ {σ q−p

}) + λ

Proof. Suppose that an input quadruple (X, Y ,MX ,MY) of 2FLCS satisfies occ(X, σ) = p < occ(MY , σ) = q. If we set
X = ⟨x1, . . . , xn⟩ and MY = ⟨ψ1, . . . , ψℓ⟩, and apply the formula in Lemma 2 recursively, then there exist two sequences
of ⟨i1, . . . , ip⟩ and ⟨j1, . . . , jp⟩ of indices such that σ = xir = ψjr for every 1 ≤ r ≤ p. Therefore, we obtain

L(X, Y ,MX ,MY) = L(X \ ⟨i1, . . . , ip⟩, Y ,MX ,MY \ ⟨j1, . . . , jp⟩) + p.

Suppose that X+ and Y+ are optimal fillings of (X\⟨i1, . . . , ip⟩, Y ,MX ,MY \⟨j1, . . . , jp⟩). Then, occ(X+, σ) ≤ occ(MX , σ)
since σ ̸∈ X \ ⟨i1, . . . , ip⟩ and occ(Y+, σ) ≤ occ(Y , σ) + q − p. Therefore, we obtain

occ(Z, σ) ≤ min {occ(MX , σ), occ(Y , σ) + q − p}

for Z = LCS(X+, Y+). Now, we set min {occ(MX , σ), occ(Y , σ) + q − p} = λ. Then, we have:

L(X \ ⟨i1, . . . , ip⟩, Y ,MX \ {σ ∗
},MY \ {σ ∗

}) + λ ≥

L(X \ ⟨i1, . . . , ip⟩, Y ,MX ,MY \ ⟨j1, . . . , jp⟩).

As defined above, the sequence ⟨j1, . . . , jp⟩ of indices satisfies σ = ψjr for 1 ≤ r ≤ p. Suppose also that ⟨jp+1, . . . , jq⟩
satisfies ψjr′ = σ for every p + 1 ≤ r ′

≤ q. Then, we obtain:

L(X, Y ,MX ,MY) =L(X \ ⟨i1, . . . , ip⟩, Y ,MX ,MY \ ⟨j1, . . . , jp⟩) + p
≤L(X \ ⟨i1, . . . , ip⟩, Y ,MX \ {σ ∗

},MY \ {σ ∗
}) + λ+ p

=L(X, Y ,MX \ {σ ∗
},MY \ ⟨jp+1, . . . , jq⟩) + λ.

This completes the proof. □
54

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

T

p

heorem 3. Suppose that an input quadruple (X, Y ,MX ,MY) of 2FLCS satisfies occ(X, σ) = p < occ(MY , σ) = q for some
positive integers p and q, and optimal fillings X+

1 and Y+

1 of (X, Y ,MX \ {σ ∗
},MY \ {σ q−p

}) are given. Then, optimal fillings
X+

2 and Y+

2 of an input quadruple (X, Y ,MX ,MY) can be obtained in polynomial time.

Proof. Suppose that Z1 is the longest common subsequence of X+

1 and Y+

1 such that the index-expression of Z1 is (I, J),
where I = ⟨i1, . . . , ik⟩ and J = ⟨j1, . . . , jk⟩. Also suppose that Z2 is the longest common subsequence of X+

2 and Y+

2 . From
Lemma 7, for λ = min {occ(MX , σ), occ(Y , σ) + q − p}, |Z1| + λ ≥ |Z2| holds.

Now suppose that X+

1 = ⟨x1, . . . , xn⟩ and Y+

1 = ⟨y1, . . . , ym⟩. Also suppose that Y+

2 = Y+

1 ⊕ ⟨

q−p
σ , . . . , σ ⟩. One can

see that occ(Y+

2 , σ) = occ(Y , σ) + q ≥ q. Therefore, occ(Z1, σ) ≤ p < occ(MY , σ) = q ≤ occ(Y+

2 , σ) and Z1 is
a common subsequence of X+

1 and Y+

2 . We can get the target sequence X+

2 in polynomial time by applying Lemma 3
min {occ(MX , σ), occ(Y , σ) + q − p}-times. □

It is important to note that (X, Y ,MX \ {σ ∗
},MY \ {σ q−p

}) does not satisfy both occ(X, σ) < occ(MY , σ) and
occ(Y , σ) < occ(MX , σ). For Y and MX , we have:

Corollary 3. Suppose that an input quadruple (X, Y ,MX ,MY) of 2FLCS satisfies occ(Y , σ) = p < occ(MX , σ) = q for some
ositive integers p and q, and optimal fillings X+

1 and Y+

1 of (X, Y ,MX \ {σ q−p
},MY \ {σ ∗

}) are given. Then, optimal fillings
X+

2 and Y+

2 of an input quadruple (X, Y ,MX ,MY) can be obtained in polynomial time.

From Theorem 3 and Corollary 3, any input of 2FLCS can be reduced in polynomial time to the quadruple
(X, Y ,MX ,MY) such that for every σ , both occ(X, σ) ≥ occ(MY , σ) and occ(Y , σ) ≥ occ(MX , σ) are satisfied. Therefore,
if the input (X, Y ,MX ,MY) of 2FLCS satisfies both occ(X, σ) ≥ occ(MY , σ) and occ(Y , σ) ≥ occ(MX , σ) for every σ ∈ Σ ,
then we call (X, Y ,MX ,MY) the standard input.

Theorem 4. For a standard input quadruple (X, Y ,MX ,MY) of 2FLCS, consider an occurrence constraint Cocc such that for
every σ ∈ Σ , Cocc(σ) = min {occ(X, σ) − occ(MY , σ), occ(Y , σ) − occ(MX , σ)} holds. Then, the triple (X, Y , Cocc) must be
standard for RBLCS. If an optimal solution ZR of RBLCS on (X, Y , Cocc) is given, then we can obtain optimal fillings X∗ and Y ∗

of 2FLCS on a standard input quadruple (X, Y ,MX ,MY) in polynomial time.

Proof. Suppose that the input (X, Y ,MX ,MY) of 2FLCS is standard, |MX | = p, and |MY | = q. Let X = ⟨x1, . . . , xn⟩ and
Y = ⟨y1, . . . , ym⟩. Then, by applying the arguments of Lemma 2 and Corollary 1 to all the symbols recursively, we can
obtain the sequences ⟨i1, . . . , iq⟩ and ⟨j1, . . . , jp⟩ of different indices that satisfy the following:

L(X, Y ,MX ,MY) = L(X \ ⟨i1, . . . , iq⟩, Y \ ⟨j1, . . . , jp⟩,∅,∅) + p + q.

One can verify that for the input (X \ ⟨i1, . . . , iq⟩, Y \ ⟨j1, . . . , jp⟩,∅,∅) of 2FLCS, the longest common subsequence of
X \ ⟨i1, . . . , iq⟩ and Y \ ⟨j1, . . . , jp⟩ is clearly an optimal solution of the classical LCS. Let Z ′ be such a sequence. Here, note
that for every σ ∈ Σ , we can obtain:

occ(X \ ⟨i1, . . . , iq⟩, σ) = occ(X, σ) − occ(MY , σ), and
occ(Y \ ⟨j1, . . . , jp⟩, σ) = occ(Y , σ) − occ(MX , σ).

Therefore, we have:

occ(Z ′, σ) ≤ min {occ(X, σ) − occ(MY , σ), occ(Y , σ) − occ(MX , σ)} .

Since Z ′ is a common subsequence of X and Y , Z ′ is a feasible solution of RBLCS on (X, Y , Cocc). Therefore, |ZR| ≥ |Z ′
|

holds. It follows that |ZR| + |MX | + |MY | ≥ |Z ′
| + |MX | + |MY | = L(X, Y ,MX ,MY).

As for ZR,

occ(ZR, σ) ≤ Cocc(σ)
= min {occ(X, σ) − occ(MY , σ), occ(Y , σ) − occ(MX , σ)}

holds for every σ . Therefore, by applying Lemma 3 occ(MX , σ)-times to X for every symbol σ ∈ Σ , we can construct in
polynomial time the filling X+ of X and MX , and a common subsequence Z1 of X+ and Y such that |Z1| = |ZR| + |MX |

and occ(Z1, σ) ≤ Cocc(σ) + |MX |.
Note that for every σ , occ(X+, σ) = occ(X, σ) + occ(MX , σ) and occ(Z1, σ) ≤ occ(X, σ) − occ(MY , σ) + occ(MX , σ)

hold. Hence, by applying Corollary 2 occ(MY , σ)-times to Y for every symbol σ , we can construct in polynomial time the
filling Y+ of Y and MY , and a common subsequence Z2 of X+ and Y+ such that |Z2| = |Z1| + |MY | = |ZR| + |MX | + |MY |.
Recall that |ZR| + |MX | + |MY | ≥ L(X, Y ,MX ,MY). Therefore, |Z2| ≥ L(X, Y ,MX ,MY) holds.

As a result, X+ and Y+ are optimal fillings of 2FLCS on (X, Y ,MX ,MY) and those can be obtained in polynomial time
if Z is given. This completes the proof. □
R

55

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

5

O

s
c

s
o
c
n
(
o
O

T
o
h
d
s
h

T
|

t

C
|

P
(
O

5

σ
o
|

l
r
o
o
(

a

T
a

. O(1.41422n)-Time exact algorithm for RBLCS

5.1. Overview

Let us first explain the overview of the strategy to design a new DP-based algorithm. In [2], a dynamic programming
(DP) based algorithm for RBLCS was provided whose running time is O(1.44255n). We improve the running time from
(1.44255n) to O(1.41422n).
Now, consider the original LCS and its typical DP-based algorithm. Let L(i, j) denote the length of a longest common

ubsequence of the ith prefix X1..i of X and the jth prefix Y1..j of Y . In the process of execution, each value of L(i, j) is
omputed and is stored into a two-dimensional DP-table of size (n + 1) × (m + 1). For more details, see, e.g., [8].
For RBLCS, the previous DP-based algorithm proposed in [2] has to store not only the length of a subsequence,

ay, Z , but also the occurrence occ(Z, σ) of every σ in Z not to break the occurrence constraint Cocc(σ). To store the
ccurrences, the algorithm introduces an occurrence vector v. Let L(i, j, v) be the length of a repetition-bounded longest
ommon subsequence of X1..i and Y1..j satisfying the occurrence vector v, i.e., the length of the subsequence which does
ot break the occurrence constraint. Then, each value of L(i, j, v) is stored into a three-dimensional DP-table of size
n + 1) × (m + 1) ×

∏
σ (Cocc(σ) + 1), where Cocc(σ) + 1 is the number of candidates 0, 1, . . . , Cocc(σ) of occurrences

f a symbol σ . In [2], the authors showed that the size of this three-dimensional DP-table is bounded from above by
(1.44255n).
Our new DP-based algorithm prepares another three-dimensional DP-table whose size is smaller than the one in [2].

o this end, using a concise form of the occurrence vector v, we narrow down the range of values that each component
f v takes. More specifically, we switch values to store with respect to symbol σ : if Cocc(σ) ≤ occ(X, σ)/2, then we store
ow many σ ’s can still be used, or otherwise, we store how many σ ’s must be deleted hereafter. This strategy narrows
own the range of values to store from 0, 1, . . . , Cocc(σ) to 0, 1, . . . ,min{Cocc(σ), occ(X, σ) − Cocc(σ)}, which reduces the
ize of DP-table to (n + 1) × (m + 1) ×

∏
σ (min{Cocc(σ), occ(X, σ) − Cocc(σ)} + 1). We will show that this new DP-table

as size O(1.41422n), and hence the next theorem is obtained (its proof is given in Section 5.3).

heorem 5. There is an O(1.41422n)-time DP-based algorithm to solve RBLCS for two input sequences X and Y where
X | = n, |Y | = poly(n), and |X | ≤ |Y |.

Recall that all reductions in the previous sections preserve X and Y . By our polynomial-time equivalences, we obtain
he following corollary.

orollary 4. MRCS, 1FLCS, and 2FLCS for two input sequences X and Y can be solved in O(1.41422n) time, where |X | = n,
Y | = poly(n), and |X | ≤ |Y |

roof. By Theorem 5, RBLCS can be solved in O(1.41422n) time. By the polynomial-time equivalence between MRCS
1FLCS, or 2FLCS) and RBLCS in Theorem 1 (2 or 4), MRCS (1FLCS, or 2FLCS) can be solved in O(1.41422n

+ poly(n)) =

(1.41422n) time, since reductions between these problems take O(poly(n)) time. □

.2. Previous DP-based algorithm

In this subsection we review the DP-based algorithm proposed in [2]. Note that if Cocc(σ) ≤ occ(X, σ) for a symbol
, then we do not need to worry about the occurrences of σ in a common subsequence. Thus, let Σ>Cocc = {σi |

cc(X, σi) > Cocc(σi)}, a set of symbols such that each σi occurs at least Cocc(σi) + 1 times in X . Now suppose that
Σ>Cocc | = ℓ and, without loss of generality, Σ>Cocc = {σ1, σ2, . . . , σℓ}. Then, we prepare an occurrence vector of
ength ℓ, denoted by v = (v1, v2, . . . , vℓ). The pth component vp of v represents how many σp’s appear in a (temporal)
epetition-bounded common subsequence for 1 ≤ p ≤ ℓ and vp ∈ {0, 1, . . . , Cocc(σp)}. Maintaining v, not to break the
ccurrence constraint, the algorithm solves a subproblem of finding a repetition-bounded longest common subsequence
f X1..i and Y1..j. For the occurrence vector v = (v1, v2, . . . , vp−1, vp, vp+1 . . . , vℓ), we define a new vector v|p=q =

v1, v2, . . . , vp−1, q, vp+1, . . . , vℓ). Note that if vp = q in the original occurrence vector v, then v|p=q = v.
First, the algorithm is based on the optimal substructure of a repetition-bounded longest common subsequence of X1..i

nd Y1..j [2].

heorem 6 ([2]). There is a repetition-bounded longest common subsequence Z1..h = ⟨z1, z2, . . . , zh⟩ of X1..i and Y1..j satisfying
n occurrence vector v and the following properties:

(1) If xi = yj = σp and σp ̸∈ Σ>Cocc , then zh = σp and Z1..h−1 is a repetition-bounded longest common subsequence of X1..i−1
and Y1..j−1 satisfying v.

(2) If xi = yj = σp, σp ∈ Σ>Cocc , and vp > 0, then zh = σp implies that Z1..h−1 is a repetition-bounded longest common
subsequence of X1..i−1 and Y1..j−1 satisfying v|p=vp−1.

(3) If xi = yj = σp, σp ∈ Σ>Cocc , and vp = 0, then zh ̸= σp and Z1..h is a repetition-bounded longest common subsequence
of X and Y satisfying v.
1..i−1 1..j−1

56

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64
(4) If xi ̸= yj, then

(a) zh ̸= xi implies that Z1..h is a repetition-bounded longest common subsequence of X1..i−1 and Y1..j satisfying v;
(b) zh ̸= yj implies that Z1..h is a repetition-bounded longest common subsequence of X1..i and Y1..j−1 satisfying v.

Then, the above optimal substructure gives the following recursive formula:

L(i, j, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
if i = 0 or j = 0

L(i − 1, j − 1, v) + 1
if i, j > 0, xi = yj = σp, and σp /∈ Σ>Cocc

L(i − 1, j − 1, v|p=vp−1) + 1
if i, j > 0, xi = yj = σp, σp ∈ Σ>Cocc , and vp > 0

L(i − 1, j − 1, v)
if i, j > 0, xi = yj = σp, σp ∈ Σ>Cocc , and vp = 0

max{L(i − 1, j, v), L(i, j − 1, v)}
otherwise, i.e., if i, j > 0, and xi ̸= yj,

where L(i, j, v) is the length of the repetition-bounded longest common subsequence for (X1..i, Y1..j, C ′
occ) when the

following is satisfied:

C ′

occ(σp) =

{
vp σp ∈ Σ>Cocc

occ(X, σp) σp /∈ Σ>Cocc .

Note that σp /∈ Σ>Cocc appears at most occ(X, σp)-times in the solution and thus the necessary condition of C ′
occ(σp) is only

C ′
occ(σp) ≥ occ(X, σp).
As described in Proposition 1, the algorithm implementing the above recursive formula can solve RBLCS in O(1.44225n)

time [2].

5.3. New DP-based algorithm

In this subsection, we propose a new DP-based algorithm. First, we group symbols in Σ>Cocc into two types in
Section 5.3.1, and introduce a new occurrence vector w in Section 5.3.2. Section 5.3.3 describes how to initialize the table
used by the proposed algorithm. Then, we rewrite Theorem 6 with regard to the new occurrence vector w in Sec 5.3.4.
Section 5.3.5 gives recursive formulas on the table based on Section 5.3.4. Finally, we estimate the time complexity of the
proposed algorithm in Section 5.3.6.

5.3.1. Type
We define Type : Σ>Cocc → {0, 1} that divides the alphabet into two types as follows:

Type(σ) =

{
0 Cocc(σ) ≤ occ(X, σ)/2
1 Cocc(σ) > occ(X, σ)/2.

(1)

That is, if the occurrence constraint on σ is tight/small, then Type(σ) = 0. Otherwise, i.e., if the occurrence constraint
on σ is loose/large, then Type(σ) = 1. Then, if Type(σ) = 0 (or 1) for a symbol σ , Cocc(σ) ≤ occ(X, σ) − Cocc(σ) (or
occ(X, σ) − Cocc(σ) < Cocc(σ)).

5.3.2. Occurrence vector w
For symbols in Σ>Cocc , we introduce a new occurrence vector w = (w1, . . . , wℓ) of length ℓ, assuming without loss of

generality that Σ>Cocc = {σ1, σ2, . . . , σℓ}. In case of Type(σp) = 0, wp stores how many σp’s we can still use in (the later
part of) a common subsequence. On the other hand, if Type(σp) = 1, then wp stores how many σp’s in (the later part of)
X must be deleted. Thus, if type(σp) = 0, 0 ≤ wp ≤ Cocc(σp)(≤ occ(X, σp) − Cocc(σp)), and otherwise (i.e., Type(σp) = 1),
0 ≤ wp ≤ occ(X, σp) − Cocc(σp)(< Cocc(σp)). If there is an index p such that wp of w is not in this range of values, we say
that w is invalid. This switch of the values to store based on the type of a symbol reduces the number of candidates of w
as seen below.

The occurrence vector w is initialized for each 1 ≤ p ≤ ℓ as follows:

wp =

{
Cocc(σp) Type(σp) = 0
occ(X, σp) − Cocc(σp) Type(σp) = 1.

(2)

Example 4. Let Σ = {a, b, c}, Cocc(a) = 2, Cocc(b) = 3, and Cocc(c) = 4. Consider two sequences X = ccaabbabccbab

and Y = abcabcabcabcabc , where occ(X, a) = 4, occ(X, b) = 5, and occ(X, c) = 4. Then, Σ>Cocc = {a, b} (e.g., σ1 = a and

57

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

σ

1
H
c
n

f

E
(
a
i

2 = b), Type(a) = 0, and Type(b) = 1. By these, w is initialized as w = (2, 2), which means that the symbol a in X can
be used at most twice in a solution and the symbol b must be deleted at least twice from X to obtain a solution. When
we consider a temporal solution Z ′

= abb of X1..6 = ccaabb and Y1..5 = abcab, we set w = (1, 2), which means that a
can be used at most once and b must be deleted at least twice later. In a repetition-bounded subsequence, a appears 0,
, or 2 times, and b appears 0, 1, 2, or 3 times by respectively deleting 5, 4, 3, or 2 times (c appears 0 through 4 times).
ence, the original occurrence vector v has 3 × 4 = 12 candidates. A crucial point here is that one value 2 in the second
omponent (corresponding to b) of w covers all the cases of deleting 2, 3, 4, and 5 occurrences of b. This reduces the
umber of candidates of w to 3 × 3 = 9 from 12 of v.

5.3.3. Base cases
We prepare a three-dimensional table L. Let LCS(i, j,w) represent a repetition-bounded longest common subsequence

of X1..i and Y1..j satisfying the occurrence vector w. Then, L(i, j,w) stores the length of LCS(i, j,w). We let L(i, j,w) = −∞

or i < 0, j < 0, or invalid w’s.
To demonstrate how to define the base cases of the recurrences, we return to Example 4.

xample 5. As in Example 4, let X = ccaabbabccbab and Y = abcabcabcabcabc. Only three occurrence vectors (0, 2),
1, 2), and (2, 2) give repetition-bounded common subsequences; (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), or (2, 1) does not give
ny feasible solution, since the number of deletion of b from X is at most 1 and hence they correspond to a sequence
ncluding at least 4 b’s which breaks the condition Cocc(b) = 3. Also it is obvious that a repetition-bounded longest common
subsequence of X and Y under the occurrence vector (2, 2) is longer than that under (0, 2) and (1, 2). Thus, it is sufficient
to start only with the occurrence vector (2, 2).

To conclude the example, we would like the following relations to hold:

L(0, 0, (2, 2)) = 0
L(0, 0, (0, 0)) = L(0, 0, (0, 1)) = L(0, 0, (0, 2)) = −∞

L(0, 0, (1, 0)) = L(0, 0, (1, 1)) = L(0, 0, (1, 2)) = −∞

L(0, 0, (2, 0)) = L(0, 0, (2, 1)) = −∞.

Following the idea in Example 5, we now define the base cases of the recurrence in general. First, for i = j = 0, we
let:

L(0, 0,w) =

{
0 w satisfies (2).
−∞ w does not satisfy (2).

Since the occurrence vector w maintains the number of symbols from X , we then define the following relations for
i = 0 and j > 0:

L(0, j,w) =

{
0 j > 0 and w satisfies (2)
−∞ j > 0 and w does not satisfy (2)

Next let us consider the case j = 0 and i > 0. For example, increasing i from 0 to 1 under the condition j = 0
corresponds to deleting x1 from X , since a repetition-bounded longest common subsequence of X1..1 and the empty string
(Y1..0) is also the empty string. If xi ̸∈ Σ>Cocc , then w is not related to xi. Thus,

L(i, 0,w) = L(i − 1, 0,w). (3)

Consider the case that xi = σp ∈ Σ>Cocc and Type(σp) = 0. Since w maintains how many σp’s can be used later, wp will
not change and hence

L(i, 0,w) = L(i − 1, 0,w). (4)

As the last case, suppose that xi = σp ∈ Σ>Cocc and Type(σp) = 1. Since one σp in X is deleted, we basically decrease wp
by one. One exception is the case wp = 0. Although we may have already deleted sufficient number of σp’s so far, we
delete σp further. In such a case, we keep wp = 0. Therefore, if wp ≥ 1, then

L(i, 0,w) = L(i − 1, 0,w|p=wp+1),

and if wp = 0, then
L(i, 0,w) = max{L(i − 1, 0,w|p=wp+1), L(i − 1, 0,w)}.

58

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64
In summary, we define the base cases of the recurrence by:

L(i, j,w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
i = 0, j ≥ 0, and w satisfies (2)

−∞

i = 0, j ≥ 0, and w does not satisfy (2)
L(i − 1, 0,w|p=wp+1)

i ≥ 1, j = 0, xi = σp ∈ Σ>Cocc , Type(σp) = 1, and wp ≥ 1
max{L(i − 1, 0,w|p=wp+1), L(i − 1, 0,w)}
i ≥ 1, j = 0, xi = σp ∈ Σ>Cocc , Type(σp) = 1, and wp = 0

L(i − 1, 0,w)
i ≥ 1, j = 0, and xi ̸∈ Σ>Cocc

(5)

5.3.4. Optimal substructure
We rewrite the optimal substructure of a repetition-bounded longest common subsequence of X1..i and Y1..j satisfying

an occurrence vector v in Theorem 6 with regard to the new occurrence vector w. Basically, the optimal substructure is
the same, and what we need to do is updating the occurrence vector w following its definition. We give three theorems.
The first one is for a symbol not in Σ>occ . Then, the second (or the third) theorem is for a symbol σ ∈ Σ>occ such that
Type(σ) = 0 (or Type(σ) = 1).

Theorem 7. Suppose that xi ̸∈ Σ>Cocc . There is a repetition-bounded longest common subsequence Z1..h = ⟨z1, z2, . . . , zh⟩ of
X1..i and Y1..j satisfying an occurrence vector w and the following properties:

1. If xi = yj, then zh = xi and Z1..h−1 is a repetition-bounded longest common subsequence of X1..i−1 and Y1..j−1 satisfying
w

2. If xi ̸= yj, then (a) zh ̸= xi implies that Z1..h is a repetition-bounded longest common subsequence of X1..i−1 and Y1..j
satisfying w; and (b) zh ̸= yj implies that Z1..h is a repetition-bounded longest common subsequence of X1..i and Y1..j−1
satisfying w.

Proof. Since w is independent of a symbol σp ̸∈ S>Cocc , the proofs of Theorem 6(1) and (4) can be also applied. □

Theorem 8. Suppose that xi = σp ∈ Σ>Cocc and Type(σp) = 0. There is a repetition-bounded longest common subsequence
Z1..h = ⟨z1, z2, . . . , zh⟩ of X1..i and Y1..j satisfying an occurrence vector w and the following properties:

1. If xi = yj, then (a) zh = xi implies that Z1..h−1 is a repetition-bounded longest common subsequence of X1..i−1 and Y1..j−1
satisfying w|p=wp+1; and (b) zh ̸= xi implies that Z1..h−1 is a repetition-bounded longest common subsequence of X1..i−1
and Y1..j−1 satisfying w.

2. If xi ̸= yj, then (a) zh ̸= xi implies that Z1..h is a repetition-bounded longest common subsequence of X1..i−1 and Y1..j
satisfying w; and (b) zh ̸= yj implies that Z1..h is a repetition-bounded longest common subsequence of X1..i and Y1..j−1
satisfying w.

Proof. 1(a): The proof of Theorem 6(2) applies, except for the following point. Since we use σp(= xi) for zh from X , we
need to decrease wp from the value for X1..i−1 and Y1..j−1.

1(b): The proof of Theorem 6(3) applies, since w does not change.
2(a) and 2(b): The proof of Theorem 6(4) applies, since w does not change. □

Theorem 9. Suppose that xi = σp ∈ Σ>Cocc and Type(σp) = 1. There is a repetition-bounded longest common subsequence
Z1..h = ⟨z1, z2, . . . , zh⟩ of X1..i and Y1..j satisfying an occurrence vector w and the following properties:

1. If xi = yj, then (a) zh = xi implies that Z1..h−1 is a repetition-bounded longest common subsequence of X1..i−1 and Y1..j−1
satisfying w; and (b) zh ̸= xi implies that Z1..h−1 is an repetition-bounded longest common subsequence of X1..i−1 and
Y1..j−1 satisfying w|p=wp+1 if wp ≥ 1, w|p=wp+1 or w if wp = 0.

2. If xi ̸= yj, then (a) zh ̸= xi implies that Z1..h is a repetition-bounded longest common subsequence of X1..i−1 and Y1..j
satisfying w|p=wp+1 if wp ≥ 1, w|p=wp+1 or w if wp = 0; and (b) zh ̸= yj implies that Z1..h is a repetition-bounded
longest common subsequence of X1..i and Y1..j−1 satisfying w.

Proof. 1(a): The proof of Theorem 6(2) applies, since w does not change.
1(b): The proof of Theorem 6(3) applies, except for the following point. Since we delete σp(= xi) for zh from X , we need

to decrease wp from the value for X1..i−1 and Y1..j−1 if wp > 0. When wp = 0, σp might be deleted even after sufficient

number of σp’s are deleted, and hence wp = 0 may also hold for the subsequence Z1..h−1.

59

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

T

5

2(a): The proof of Theorem 6(4) applies, and similarly to 1(b), we decrease wp from that for X1..i−1 and Y1..j−1 if wp ≥ 0.
hen, in case wp = 0, Z1..h−1 may satisfy w.
2(b): The proof of Theorem 6(4) applies, since w does not change. □

.3.5. Recursive formula
For i ≥ 1 and j ≥ 1, the recursive formula is obtained as follows, based on Theorems 7, 8, and 9.

L(i, j,w) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(i − 1, j − 1,w) + 1
xi ̸∈ Σ>Cocc and xi = yj (Theorem 7-1)

max{L(i − 1, j,w), L(i, j − 1,w)}
xi ̸∈ Σ>Cocc and xi ̸= yj (Theorem 7-2)

max{L(i − 1, j − 1,w|p=wp+1) + 1, L(i − 1, j − 1,w)}
xi = σp ∈ Σ>Cocc , Type(σp) = 0, and xi = yj (Theorem 8-1)

max{L(i − 1, j,w), L(i, j − 1,w)}
xi = σp ∈ Σ>Cocc , Type(σp) = 0, and xi ̸= yj (Theorem 8-2)

max{L(i − 1, j − 1,w) + 1, L(i − 1, j − 1,w|p=wp+1)}
xi = σp ∈ Σ>Cocc , Type(σp) = 1, xi = yj, and wp ≥ 1 (Theorem 9-1)

max{L(i − 1, j − 1,w) + 1, L(i − 1, j − 1,w|p=wp+1), L(i − 1, j − 1,w)}
xi = σp ∈ Σ>Cocc , Type(σp) = 1, xi = yj, and wp = 0 (Theorem 9-1)

max{L(i − 1, j,w|p=wp+1), L(i, j − 1,w)}
xi = σp ∈ Σ>Cocc , Type(σp) = 1, xi ̸= yj, and wp ≥ 1 (Theorem 9-2)

max{L(i − 1, j,w|p=wp+1), L(i − 1, j,w), L(i, j − 1,w)}
xi = σp ∈ Σ>Cocc , Type(σp) = 1, xi ̸= yj, and wp = 0 (Theorem 9-2)

(6)

Note that since L(i − 1, j − 1,w) + 1 ≥ L(i − 1, j − 1,w) clearly holds, the fifth and the sixth formulas above for the
case of Theorem 9-1 can be merged into just one formula

max{L(i − 1, j − 1,w) + 1, L(i − 1, j − 1,w|p=wp+1)}

for the case xi = σp ∈ Σ>Cocc , Type(σp) = 1, and xi = yj. Similarly, for the last formula in the above can be simplified to

max{L(i − 1, j,w), L(i, j − 1,w)},

since L(i − 1, j,w|p=wp+1) ≤ L(i − 1, j,w) holds. However, we write the recursive formula as above to make it easier to
check the correspondence between the formulas and the theorems.

Let W be a subset of the candidates of occurrence vector w such as

{(w1, w2, . . . , wk) | 0 ≤ wp ≤ Cocc(σp) if Type(σp) = 0 and;
wp = 0 if Type(σp) = 1}.

Note that for σp with Type(σp) = 1, wp must be 0 for a repetition-bounded longest common subsequence which
means that we successfully delete sufficient number of σp’s to satisfy Cocc(σp). Finally, we can obtain the length of a
repetition-bounded longest common subsequence by computing

max
w∈W

{L(|X |, |Y |,w)}. (7)

Although the table L only maintains the lengths of repetition-bounded common subsequences, a repetition-bounded
longest common subsequence that corresponds to the maximum length can be found by adding a trace-back step (without
increasing the time complexity).

5.3.6. Time complexity
We estimate the time complexity of the new DP-based algorithm.
First we consider the maximum value of each wp in w. See the initial value (2) of wp again. Since wp does not increase

during the calculations of the recursive formulas, the maximum value of wp is Cocc(σp) if Type(σp) = 0; otherwise,
i.e., if Type(σp) = 1, then occ(X, σp) − Cocc(σp). Recall that for a symbol σp with Type(σp) = 0, Cocc(σp) ≤

1
2occ(X, σp)

must be satisfied from the definition (1). Moreover, for a symbol σp with Type(σp) = 1, occ(X, σp) − Cocc(σp) <

occ(X, σp) −
1
2occ(X, σp) =

1
2occ(X, σp) holds from the inequality Cocc(σp) > occ(X, σp)/2 in (1). Since wp is an integer

for every 1 ≤ p ≤ ℓ, w ≤ ⌊
1occ(X, σ)⌋ holds for every p.
p 2 p

60

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

w

i

w
t

l
c
i

6

a

A
o
A

(

(

E

Recall that for L(i, j,w), 0 ≤ i ≤ |X | and 0 ≤ j ≤ |Y |. Also, for σp ∈ Σ>Cocc , 0 ≤ wp ≤ ⌊
1
2occ(X, σp)⌋ as explained in the

above. Therefore, the size of the DP-table L is

(|X | + 1)(|Y | + 1)
∏

σp∈Σ>Cocc

(⌊
1
2
occ(X, σp)

⌋
+ 1

)
,

here
∏
σp∈Σ>Cocc

(⌊ 1
2occ(X, σp)

⌋
+ 1

)
corresponds to the number of candidates of w.

Let f (i) = |{σp | occ(X, σp) = i, σp ∈ Σ>Cocc }|× i, i.e., f (i)
i denotes the number of symbols in Σ>Cocc , that appear exactly

times in X . Then, the number of candidates of w is bounded from above by the following:∏
σp∈Σ>Cocc

(⌊
1
2
occ(X, σp)

⌋
+ 1

)

=

|X |∏
i=1

(⌊
i
2

⌋
+ 1

) f (i)
i

=1f (1)
× 2

1
2 f (2) × 2

1
3 f (3) ×

|X |∏
i=4

i
f (i)
i

≤(2
1
2)f (1) × (2

1
2)f (2) × (2

1
2)f (3) ×

|X |∏
i=4

(2
1
2)f (i)

=(2
1
2)Σ

|X |

i=1f (i)

=(2
1
2)|X |

<1.414214|X |, (8)

here the first inequality comes from the following facts: (i) 1 ≤ 21/2, (ii) 21/3
≤ 21/2, and (iii) i1/i ≤ 21/2 for i ≥ 4. Thus,

he size of the DP-table L is O(1.414214|X |(|X | + 1)(|Y | + 1)) = O(1.41422n), where |X | = n, |Y | = poly(n), and |X | ≤ |Y |.
Each entry of the DP-table L can be obtained in constant time by (5) and (6). Then (the length of) a repetition-bounded

ongest common subsequence of X and Y is obtained by (7) in O(1.414214n) time since |W | is at most the total number of
andidates of w whose upper bound is given by (8). In summary, the time complexity of the proposed DP-based algorithm
s O(1.41422n). This completes the proof of Theorem 5.

. A polynomial-time 2-approximation algorithm for 2FLCS

In this section, we give a polynomial-time algorithm for 2FLCS and show that its approximation ratio is bounded from
bove by two by using the proof tools introduced in Section 4.1.

lgorithm. Suppose that a standard input quadruple (X, Y ,MX ,MY) is given, i.e., occ(X, σ) ≥ occ(MY , σ) and
cc(Y , σ) ≥ occ(MX , σ) are satisfied. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. Here is an outline of our algorithm
LG:

Step 1) Let Xb = ε and Yf = ε be two empty sequences.

(1-1) While scanning from x1 to xn of X , if the ith symbol xi in X matches a symbol, say, σy, in MY , then xi (= σy) is
concatenated to Yf , i.e., Yf = Yf ⊕⟨σy⟩ and removed from MY . Then, obtain a filling Y+

= Yf ⊕ Y of Y and MY .
(1-2) While scanning from y1 to ym of Y , if the ith symbol yi in Y matches a symbol, say, σx, in MX , then yi (= σx)

is concatenated to Xb, i.e., Xb = Xb ⊕ ⟨σx⟩ and removed from MX . Then, obtain a filling X+
= X ⊕ Xb of X and

MX (n.b., not Xb ⊕ X , while Y+
= Yf ⊕ Y).

(Step 2) Obtain a longest common subsequence Z of two fillings X+ and Y+.
Step 3) Output a solution triple (X+, Y+, Z).

xample 6. Consider the input quadruple (X, Y ,MX ,MY) for 2FLCS given in Example 3 again:

X = ⟨g, t, c, a, c, t, g, a⟩, Y = ⟨g, a, t, c, c, g, t, g⟩,

MX = {g, t}, and MY = {c, t, t}

In Step (1-1), ALG first constructs Yf = ⟨t, c, t⟩ by scanning X from left to right, and then obtains a filling Y+
= Yf ⊕ Y =

⟨t, c, t, g, a, t, c, c, g, t, g⟩. In Step (1-2), ALG constructs Xb = ⟨g, t⟩ by scanning Y from left to right, and then obtains a
filling X+

= X ⊕Xb = ⟨g, t, c, a, c, t, g, a, g, t⟩. In Step 2, ALG finds a longest common subsequence Z = ⟨t, c, t, g, a, g, t⟩
of X+ and Y+, and finally outputs the triple (X+, Y+, Z) in Step 3.
See Algorithm 1 for the detailed description of ALG.

61

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

b
⟨

C

o

t

Algorithm 1: ALG

Input: Two sequences X = ⟨x1, . . . , xn⟩ and Y = ⟨y1, . . . , ym⟩; and two multisets MX and MY
Output: Two fillings X+ of X and MX , Y+ of Y and MY , and a common subsequence Z of X+ and Y+

1 Xb := ε, Yf := ε;
2 for i = 1 to n do
3 if xi = σy for σy ∈ MY then
4 Yf := Yf ⊕ ⟨σy⟩, MY := MY \ {σy};
5 Y+

:= Yf ⊕ Y ;
6 for i = 1 to m do
7 if yi = σx for σx ∈ MX then
8 Xb := Xb ⊕ ⟨σx⟩, MX := MX \ {σx};
9 X+

:= X ⊕ Xb;
10 Find a longest common subsequence Z of the two sequences X+ and Y+;
11 return (X+, Y+, Z);

Theorem 10. Algorithm ALG is a polynomial-time 2-approximation algorithm for 2FLCS on a standard input quadruple
(X, Y ,MX ,MY).

Proof. Suppose that the input (X, Y ,MX ,MY) of 2FLCS is standard. Let X = ⟨x1, . . . , xn⟩ and Y = ⟨y1, . . . , ym⟩. Then,
y applying the arguments of Lemma 2 and Corollary 1 to all the symbols recursively, we can obtain the sequences
i1, . . . , i|MY |⟩ and ⟨j1, . . . , j|MX |⟩ of different indices that satisfy the following:

L(X, Y ,MX ,MY)
=L(X \ ⟨i1, . . . , i|MY |⟩, Y \ ⟨j1, . . . , j|MX |⟩,∅,∅) + |MY | + |MX |.

learly, the first term L(X \ ⟨i1, . . . , i|MY |⟩, Y \ ⟨j1, . . . , j|MX |⟩,∅,∅) of the right-hand side is at most L(X, Y) since
X \ ⟨i1, . . . , i|MY |⟩ and Y \ ⟨j1, . . . , j|MX |⟩ are subsequences of X and Y , respectively. Therefore, the longest length OPT
f 2FLCS is at most L(X, Y) + |MX | + |MY |.
Let ALG = |Z | be the length obtained by our algorithm ALG for the input (X, Y ,MX ,MY), i.e., ALG = L(X+, Y+). Since

a longest common subsequence of X and Y is a common subsequence of X+ and Y+, ALG ≥ L(X, Y) holds. Furthermore,
since LCS(X, Yf) ⊕ LCS(Xb, Y) is another common subsequence of X+ and Y+, ALG ≥ L(X, Yf) + L(Xb, Y) = |MY | + |MX |

holds. As a result, the approximation ratio of ALG is bounded as follows:

OPT
ALG

≤
L(X, Y) + |MX | + |MY |

max{L(X, Y), |MX | + |MY |}

=
2(L(X, Y) + |MX | + |MY |)

2(max{L(X, Y), |MX | + |MY |})

≤
2(L(X, Y) + |MX | + |MY |)
L(X, Y) + |MX | + |MY |

= 2.

Clearly, ALG runs in polynomial time. This completes the proof. □

For non-standard inputs, we can also obtain a 2-approximation algorithm by slightly modifying ALG. If the input is
not standard, then after Line 10 of ALG, MX and MY are not empty. Roughly speaking, all we have to do is to add
MXMY -matches for those ‘‘redundant’’ symbols.

Suppose that |MX ∩ MY | = ℓ at the end of Line 10 of ALG. Let Z ′ be an arbitrarily ordered sequence consisting of those
ℓ symbols in MX ∩ MY . Then, we modify ALG by adding the concatenation procedures, X+

= X+
⊕ Z ′, Y+

= Y+
⊕ Z ′,

and Z = Z ⊕ Z ′ after Line 10. See the modified algorithm ALG’.
It can be shown that the approximation ratio of the modified algorithm ALG’ is at most two as follows: Consider

the status right after Line 10 in ALG’; we get MX and MY at this moment. Note that the quadruple (X, Y ,MX ,MY)
is standard. Let OPT (X, Y ,MX ,MY) be the length of an optimal solution if (X, Y ,MX ,MY) is given as input. Suppose
hat after Line 10, ALG’ obtains the subsequence Z0 for the input (X, Y ,MX ,MY). One sees that even if the input is
(X, Y ,MX ,MY), ALG’ obtains the same subsequence Z0 after Line 10. Therefore, from the similar arguments to the proof
of Theorem 10, the following inequality holds:

OPT (X, Y ,MX ,MY)
≤ 2.
|Z0|
62

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

o

C

7

X
C
O
i
w
2

o
a
a

D

Algorithm 2: ALG’

Input: Two sequences X = ⟨x1, . . . , xn⟩ and Y = ⟨y1, . . . , ym⟩; and two multisets MX and MY
Output: Two fillings X+ of X and MX , Y+ of Y and MY , and a common subsequence Z of X+ and Y+

1 Xb := ε, Yf := ε;
// Set MX = ∅ and MY = ∅

2 for i = 1 to n do
3 if xi = σy for σy ∈ MY then
4 Yf := Yf ⊕ ⟨σy⟩, MY := MY \ {σy};

// Set MY := MY ∪ {σy} to keep the matched symbols
5 Y+

:= Yf ⊕ Y ;
6 for i = 1 to m do
7 if yi = σx for σx ∈ MX then
8 Xb := Xb ⊕ ⟨σx⟩, MX := MX \ {σx};

// Set MX := MX ∪ {σx} to keep the matched symbols
9 X+

:= X ⊕ Xb;
10 Find a longest common subsequence Z of the two sequences X+ and Y+;

// Set Z0 := Z to keep the current common subsequence
11 Construct an arbitrarily ordered sequence Z ′ consisting of all the symbols in MX ∩ MY ;
12 X+

:= X+
⊕ Z ′, Y+

:= Y+
⊕ Z ′, Z := Z ⊕ Z ′;

13 return (X+, Y+, Z);

Let OPT (X, Y ,MX ,MY) and ALG(X, Y ,MX ,MY) be the lengths of an optimal algorithm and ALG’, respectively, if the
quadruple (X, Y ,MX ,MY) is given as input. Since the sequence Z ′ of length ℓ is concatenated to Z in Line 11, we can
btain the followings:

OPT (X, Y ,MX ,MY) = OPT (X, Y ,MX ,MY) + ℓ

ALG(X, Y ,MX ,MY) = |Z0| + ℓ.

Hence, for non-standard inputs, the approximation ratio of ALG’ is bounded as follows:

OPT (X, Y ,MX ,MY)
ALG(X, Y ,MX ,MY)

=
OPT (X, Y ,MX ,MY) + ℓ

|Z0| + ℓ

≤
OPT (X, Y ,MX ,MY)

|Z0|
≤ 2.

orollary 5. Algorithm ALG’ is a polynomial-time 2-approximation algorithm for 2FLCS.

. Conclusion

We have studied four variants of the problem of computing the longest common subsequence of two sequences
and Y (LCS): the Repetition-Bounded Longest Common Subsequence problem (RBLCS), the Multiset-Restricted

ommon Subsequence problem (MRCS), the Two-Side-Filled Longest Common Subsequence problem (2FLCS), and the
ne-Side-Filled Longest Common Subsequence problem (1FLCS). We first showed that each of MRCS, 1FLCS, and 2FLCS
s polynomially equivalent to RBLCS. Then, we designed a DP-based algorithm for RBLCS that runs in O(1.41422n) time,
hich implies that MRCS, 1FLCS, and 2FLCS can also be solved in O(1.41422n) time. Finally, we gave a polynomial-time
-approximation algorithm for 2FLCS, and answered one conjecture in [7] affirmatively.
For MRCS, 1FLCS, and RBLCS, a 2

√
min{n,m}-approximation algorithm [13], a 5

3 -approximation algorithm [7], and an
ccmax-approximation algorithm [1] are known, respectively, where occmax = maxσ∈Σ {min{occ(X, σ), occ(Y , σ)}}, |X | = n,
nd |Y | = m. Future work includes designing even better approximation algorithms and faster (exponential-time) exact
lgorithms for the LCS variants studied here.

ata availability

No data was used for the research described in the article.
63

Y. Asahiro, J. Jansson, G. Lin et al. Discrete Applied Mathematics 353 (2024) 44–64

A

J

R

cknowledgments

This work is partially supported by NSERC Canada, JST CREST JPMJR1402, and JSPS, Japan KAKENHI Grant Numbers
P20H05967, JP21K11755, JP21K19765, JP22H00513, JP22K11915, and JP24K02902.

eferences

[1] Said Sadique Adi, Marília D.V. Braga, Cristina G. Fernandes, Carlos Eduardo Ferreira, Fábio Viduani Martinez, Marie-France Sagot, Marco Aurelio
Stefanes, Christian Tjandraatmadja, Yoshiko Wakabayashi, Repetition-free longest common subsequence, Electron. Notes Discret. Math. 30 (2008)
243–248.

[2] Yuichi Asahiro, Jesper Jansson, Guohui Lin, Eiji Miyano, Hirotaka Ono, Tadatoshi Utashima, Exact algorithms for the repetition-bounded longest
common subsequence problem, Theoret. Comput. Sci. 838 (2020) 238–249.

[3] Yuichi Asahiro, Jesper Jansson, Guohui Lin, Eiji Miyano, Hirotaka Ono, Tadatoshi Utashima, Polynomial-time equivalences and refined algorithms
for longest common subsequence variants, in: Hideo Bannai, Jan Holub (Eds.), 33rd Annual Symposium on Combinatorial Pattern Matching, CPM
2022, June 27–29, 2022, Prague, Czech Republic, in: LIPIcs, vol. 223, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 15:1–15:17.

[4] Lasse Bergroth, Harri Hakonen, Timo Raita, A survey of longest common subsequence algorithms, in: Pablo de la Fuente (Ed.), Seventh
International Symposium on String Processing and Information Retrieval, SPIRE 2000, A Coruña, Spain, September 27–29, 2000, IEEE Computer
Society, 2000, pp. 39–48.

[5] Laurent Bulteau, Falk Hüffner, Christian Komusiewicz, Rolf Niedermeier, Multivariate algorithmics for NP-hard string problems: The algorithmics
column by Gerhard J. Woeginger, Bull. EATCS 114 (2014).

[6] Mauro Castelli, Riccardo Dondi, Giancarlo Mauri, Italo Zoppis, The longest filled common subsequence problem, in: Juha Kärkkäinen, Jakub
Radoszewski, Wojciech Rytter (Eds.), 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, July 4-6, 2017, Warsaw, Poland,
in: LIPIcs, vol. 78, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 14:1–14:13.

[7] Mauro Castelli, Riccardo Dondi, Giancarlo Mauri, Italo Zoppis, Comparing incomplete sequences via longest common subsequence, Theoret.
Comput. Sci. 796 (2019) 272–285.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, 4th Edition, MIT Press, 2022.
[9] Daniel S. Hirschberg, A linear space algorithm for computing maximal common subsequences, Commun. ACM 18 (6) (1975) 341–343.

[10] Daniel S. Hirschberg, Algorithms for the longest common subsequence problem, J. ACM 24 (4) (1977) 664–675.
[11] Haitao Jiang, Chunfang Zheng, David Sankoff, Binhai Zhu, Scaffold filling under the breakpoint and related distances, IEEE ACM Trans. Comput.

Biol. Bioinform. 9 (4) (2012) 1220–1229.
[12] Roy Lowrance, Robert A. Wagner, An extension of the string-to-string correction problem, J. ACM 22 (2) (1975) 177–183.
[13] Radu Stefan Mincu, Alexandru Popa, Better heuristic algorithms for the repetition free LCS and other variants, in: Travis Gagie, Alistair Moffat,

Gonzalo Navarro, Ernesto Cuadros-Vargas (Eds.), String Processing and Information Retrieval - 25th International Symposium, SPIRE 2018, Lima,
Peru, October 9–11, 2018, Proceedings, in: Lecture Notes in Computer Science, vol. 11147, Springer, 2018, pp. 297–310.

[14] Radu Stefan Mincu, Alexandru Popa, Heuristic algorithms for the longest filled common subsequence problem, in: 20th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2018, Timisoara, Romania, September 20–23, 2018, IEEE, 2018, pp.
449–453.

[15] Adriana Muñoz, Chunfang Zheng, Qian Zhu, Victor A. Albert, Steve Rounsley, David Sankoff, Scaffold filling, contig fusion and comparative gene
order inference, BMC Bioinform. 11 (2010) 304.

[16] Robert A. Wagner, Michael J. Fischer, The string-to-string correction problem, J. ACM 21 (1) (1974) 168–173.
64

http://refhub.elsevier.com/S0166-218X(24)00142-2/sb1
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb1
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb1
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb1
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb1
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb2
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb2
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb2
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb3
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb3
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb3
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb3
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb3
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb4
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb4
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb4
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb4
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb4
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb5
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb5
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb5
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb6
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb6
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb6
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb6
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb6
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb7
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb7
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb7
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb8
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb9
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb10
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb11
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb11
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb11
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb12
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb13
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb13
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb13
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb13
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb13
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb14
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb14
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb14
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb14
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb14
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb15
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb15
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb15
http://refhub.elsevier.com/S0166-218X(24)00142-2/sb16

	Polynomial-time equivalences and refined algorithms for longest common subsequence variants
	Introduction
	Longest common subsequence problems with occurrence constraints
	Longest common subsequence problems on incomplete sequences
	Our contributions

	Preliminaries
	Notation
	Repetition-bounded longest common subsequence
	Multiset restricted common subsequence
	Filled longest common subsequence
	Known results on exact/approximation algorithms

	Polynomial-time equivalence of RBLCS and MRCS
	Polynomial-time equivalence of RBLCS , 1FLCS, and 2FLCS
	Proof tools
	RBLCS and 1FLCS
	RBLCS and 2FLCS

	O(1.41422n)-time exact algorithm for RBLCS
	Overview
	Previous DP-based algorithm
	New DP-based algorithm
	Type
	Occurrence vector w
	Base cases
	Optimal substructure
	Recursive formula
	Time complexity

	A polynomial-time 2-approximation algorithm for 2FLCS
	Conclusion
	Data availability
	Acknowledgments
	References

