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Problem Definition

Let S = {s1,52,...,5,} be a set of elements
called objects and let C = {c1,¢2,...,Cm}
be a set of functions from S to {0, 1} called
characters. For each object s; € S and character
c; € C,wesaythats; hasc; if c;(s;) = 1 or that
s; does not have c; if cj(s;) = 0, respectively
(in this sense, characters are binary). Then the
set S and its relation to C can be naturally rep-
resented by a matrix M of size (n x m) satisfying
MIi, j] = c;(s;) foreveryi € {1,2,...,n} and
j € {1,2,...,m}. Such a matrix M is called a
binary character state matrix.

Next, for each s; € S, define the set C5; =
{c; € C : s; hasc;}. A phylogeny for S is a tree
whose leaves are bijectively labeled by S, and
a directed perfect phylogeny for (S,C) (if one
exists) is a rooted phylogeny 7 for S in which
each ¢; € C is associated with exactly one edge
of T in such a way that for any s; € S, the set
of all characters associated with the edges on the
path in T from the root to leaf s; is equal to Cs;.
See Figs. 1 and 2 for two examples.

Now, define the following problem.

Problem 1 (The Directed Perfect Phylogeny
Problem for Binary Characters)

INPUT: An (n x m)-binary character state ma-
trix M for some S and C.

OUTPUT: A directed perfect phylogeny for
(S, C), if one exists; otherwise, null.

Key Results

In the presentation below, define a set SCJ. for
eachc; € Cby Se;, = {s; € § : s;i hasc;}.
The next lemma is the key to solving the Directed
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Directed Perfect Phylogeny (Binary Characters), Fig. 1 (a) A (5 X 8)-binary character state matrix M. (b) A

directed perfect phylogeny for (S, C)

Directed Perfect Phylogeny (Binary Characters),
Fig. 2 This binary character state matrix admits no di-
rected perfect phylogeny

Perfect Phylogeny Problem for Binary Characters
efficiently. It is also known in the literature as the
pairwise compatibility theorem [5].

Lemma 1 There exists a directed perfect phy-
logeny for (S,C) if and only if for each pair
cj,ck € C, it holds that S¢; NS¢, = 0, S¢; <
Sexr 0S¢, Scj.

Short constructive proofs of the lemma can be
found in, e.g., [8] and [14]. An algebraic proof
of a slightly more general version of the lemma
was given earlier by Estabrook, Johnson, and
McMorris [3,4].

Using Lemma 1, it is trivial to construct a
top-down algorithm for the problem that runs
in O(nm?) time. As one might expect, a faster
algorithm is possible. Gusfield [7] observed that
after sorting the columns of M in nonincreasing
lexicographic order, all duplicate copies of a
column appear in a consecutive block of columns
and column j is to the right of column k if S, is
a proper subset of S¢, , and then exploited these
two facts together with Lemma 1 to obtain the
following result:

Theorem 1 ([7]) The Directed Perfect Phy-
logeny Problem for Binary Characters can be
solved in O(nm) time.

For a description of the original algorithm and
a proof of its correctness, see [7] or [14]. A
conceptually simplified version of the algorithm
based on keyword trees can be found in Chap-
ter 17.3.4 in [8]. Gusfield [7] also gave an ad-
versary argument to prove a corresponding lower
bound of £2(nm) on the running time, showing
that his algorithm is time optimal:

Theorem 2 ([7]) Any algorithm that decides if
a given binary character state matrix M admits
a directed perfect phylogeny must, in the worst
case, examine all entries of M.

Agarwala, Fernandez-Baca, and Slutzki [1]
noted that the input binary character state matrix
is often sparse, i.e., in general, most of the objects
will not have most of the characters. In addition,
they noted that for the sparse case, it is more
efficient to represent the input (S, C) by all the
sets Scj for j € {1,2,...,m}, where each
set Scj is defined as above and each Scj is spec-
ified as a linked list, than by using a binary char-
acter state matrix. Agarwala et al. [1] proved that
with this alternative representation of S and C,
the algorithm of Gusfield can be modified to run
in time proportional to the total number of 1s in
the corresponding binary character state matrix:

Theorem 3 ([1]) The variant of the Di-
rected Perfect Phylogeny Problem for Binary
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Characters in which the input is given as
linked lists representing all the sets Sc; for
j € {1,2,...,m} can be solved in O(h) time,
where h = 3 7_, |Se; |-

For a description of the algorithm, refer to [1]
or [6]. Observe that Theorem 3 does not contra-
dict Theorem 2; in fact, Gusfield’s lower bound
argument for proving Theorem 2 considers an
input matrix consisting mostly of Is.

When only a portion of an (n X m)-binary
character state matrix is available, an O(nm)-
time algorithm by Pe’er et al. [13] can fill in the
missing entries with Os and 1s so that the resulting
matrix admits a directed perfect phylogeny, if
possible. A ZDD-based algorithm for enumerat-
ing all such solutions was recently developed by
Kiyomi et al. [11].

Theorem 4 ([13]) The variant of the Directed
Perfect Phylogeny Problem for Binary Charac-
ters in which the input consists of an incomplete
binary character state matrix can be solved in
O (nm) time.

Applications

Directed perfect phylogenies for binary charac-
ters are used to describe the evolutionary history
for a set of objects (e.g., biological species)
that share some observable traits and that have
evolved from a “blank” ancestral object which
has none of the traits. Intuitively, the root of a di-
rected perfect phylogeny corresponds to the blank
ancestral object, and each directed edge e =
(u#,v) corresponds to an evolutionary event in
which the hypothesized ancestor represented by u
gains the characters associated with e, transform-
ing it into the hypothesized ancestor or object rep-
resented by v. For simplicity, it may be assumed
that each character can emerge once only during
the evolutionary history and is never lost after it
has been gained, so that a leaf s; is a descendant
of the edge associated with a character c; if
and only if s; has c¢;. When this requirement
is too strict, one can relax it to permit errors,
for example, by letting each character be asso-
ciated with more than one edge in the phylogeny
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(i.e., allow each character to emerge many times)
while minimizing the total number of such asso-
ciations (Camin-Sokal optimization) or by keep-
ing the requirement that each character emerges
only once but allowing it to be lost multiple
times (Dollo parsimony) [5, 6]. Such relaxations
generally increase the computational complexity
of the underlying computational problems; see,
e.g., [2] and [15].

Binary characters are commonly used by biol-
ogists and linguists. Traditionally, morphological
traits or directly observable features of species
were employed by biologists as binary characters,
and recently, binary characters based on genomic
information such as substrings in DNA or protein
sequences, SNP markers, protein regulation data,
and shared gaps in a given multiple alignment
have become more and more prevalent. Chap-
ter 17.3.2 in [8] mentions several examples where
phylogenetic trees have been successfully con-
structed based on such types of binary character
data. In the context of reconstructing the evo-
lutionary history of natural languages, linguists
often use phonological and morphological char-
acters with just two states [10].

The Directed Perfect Phylogeny Problem for
Binary Characters is closely related to the Perfect
Phylogeny Problem, a fundamental problem in
computational evolutionary biology and phylo-
genetic reconstruction [5, 6, 14]. This problem
(also described in more detail in Encyclopedia
entry » Perfect Phylogeny (Bounded Number of
States)) introduces nonbinary characters so that
each character ¢; € C has a set of allowed
states {0,1,...,r; — 1} for some integer r;,
and for each s; € S, character ¢; is in one
of its allowed states. Generalizing the notation
used above, define the set S, I for every o €
{0,1,...,r; — 1} by Scj,a = {5, € §
the state of 5; on ¢; is a}. Then, the objective of
the Perfect Phylogeny Problem is to construct (if
possible) an unrooted phylogeny T for S such
that the following holds: for each ¢; € C and
distinct states o, B of c¢;, the minimal subtree
of T that connects Scj « and the minimal sub-
tree of T that connects S, g are vertex-disjoint.
McMorris [12] showed that the special case with
rj = 2 forall ¢; € C can be reduced to the
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Directed Perfect Phylogeny Problem for Binary
Characters in O(nm) time: for each ¢; € C, if
the number of 1s in column j of M is greater
than the number of Os, then set entry M [i, j] to
1 —Mli,j]foralli € {1,2,...,n}. Therefore,
another application of Gusfield’s algorithm [7] is
as a subroutine for solving the Perfect Phylogeny
Problem in O(nm) time whenr; = 2forallc; €
C. Even more generally, the Perfect Phylogeny
Problem for directed as well as undirected cladis-
tic characters can be solved in polynomial time by
a similar reduction to the Directed Perfect Phy-
logeny Problem for Binary Characters (see [6]).

In addition to the above, it is possible to
apply Gusfield’s algorithm to determine whether
two given trees describe compatible evolutionary
history, and if so, merge them into a single tree
so that no branching information is lost (see [7]
for details). Finally, Gusfield’s algorithm has also
been used by Hanisch, Zimmer, and Lengauer [9]
to implement a particular operation on docu-
ments defined in their Protein Markup Language
(ProML) specification.
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