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ProblemDefinition

A phylogenetic tree is a binary, rooted, unordered
tree whose leaves are distinctly labeled. A phylo-
genetic network is a generalization of a phyloge-
netic tree formally defined as a rooted, connected,
directed acyclic graph in which (1) each node has
outdegree at most 2; (2) each node has indegree 1
or 2, except the root node which has indegree 0;
(3) no node has both indegree 1 and outdegree 1;
and (4) all nodes with outdegree 0 are labeled
by elements from a finite set L in such a way
that no two nodes are assigned the same label.
Nodes of outdegree 0 are referred to as leaves and
are identified with their corresponding elements
in L. Nodes with indegree 2 are called reticula-
tion nodes. For any phylogenetic network N , let
U.N / be the undirected graph obtained from N

by replacing each directed edge by an undirected
edge. N is said to be a galled phylogenetic
network (galled network, for short) if all cycles
in U.N / are node-disjoint. Galled networks are
also known in the literature as topologies with
independent recombination events [15], galled-
trees [6], and level-1 phylogenetic networks [2, 5,
7, 9, 10, 14].

A phylogenetic tree with exactly three leaves
is called a rooted triplet. The unique rooted triplet
on a leaf set fx; y; ´g in which the lowest com-
mon ancestor of x and y is a proper descendant
of the lowest common ancestor of x and ´ (or
equivalently, where the lowest common ances-
tor of x and y is a proper descendant of the
lowest common ancestor of y and ´) is denoted
by xyj´. For any phylogenetic network N , the
rooted triplet xyj´ is said to be consistent withN
if N contains three leaves labeled by x, y, and ´
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Fig. 1 A dense set T D
fabjc; abjd; cd ja; bcjdg
of rooted triplets with leaf
set fa; b; c; dg and a
galled phylogenetic
network that is consistent
with T . Note that this
solution is not unique
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as well as two internal vertices w and ´ such that
there are four directed paths of nonzero length
from w to a, from w to b, from ´ to w, and
from ´ to c that are vertex-disjoint except for in
the vertices w and ´. A set T of rooted triplets is
consistent with N if every rooted triplet in T is
consistent with N . See Fig. 1 for an example.

Denote the set of leaves in any phylogenetic
network N by !.N /, and for any set T of
rooted triplets, define !.T / D S

ti2T !.ti /.
A set T of rooted triplets is dense if for each
fx; y; ´g ! !.T /, at least one of the three
possible rooted triplets xyj´, x´jy, and y´jx
belongs to T . Observe that if T is dense, then
jT j D ".j!.T /j3/. Jansson and Sung introduced
the following problem in [10].

Problem 1 Given a set T of rooted triplets, out-
put a galled networkN with!.N / D !.T / such
that N and T are consistent, if such a network
exists; otherwise, output null.

A natural optimization version of Problem 1
is:

Problem 2 Given a set T of rooted triplets, out-
put a galled network N with !.N / D !.T / that
is consistent with the maximum possible number
of rooted triplets belonging to T .

A generalization of Problem 1 studied by He
et al. in [8] involves forbidden rooted triplets and
is defined as follows.

Problem 3 Given two sets T and F of rooted
triplets, output a galled network N with!.N / D
!.T / [!.F/ such that (1) N and T are consis-
tent and (2) N is not consistent with any rooted
triplet belonging to F ; if no such network exists,
output null.

Below, we write L D !.T / and n D jLj.

Key Results

As shown in [11], Problem 1 can be solved in
(optimal)O.jT j/ D O.n3/ time for dense inputs:

Theorem 1 ([11]) Given any dense set T
of rooted triplets with leaf set L, a galled
network consistent with T (if one exists) can
be constructed in O.n3/ time, where n D jLj.

The algorithm referred to in Theorem 1 was
extended by van Iersel and Kelk [14] as follows.

Theorem 2 ([14]) Given any dense set T of
rooted triplets with leaf set L, a galled network
consistent with T (if one exists) that contains
as few reticulation nodes as possible can be
constructed in O.n5/ time, where n D jLj.

For the more general case of nondense inputs,
Problem 1 becomes harder:

Theorem 3 ([11]) The problem of determining if
there exists a galled network that is consistent
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with an input nondense set T of rooted triplets
is NP-hard.

Since not all sets of rooted triplets are con-
sistent with a galled network, it is of interest to
consider Problem 2. It follows from Theorem 3
that Problem 2 is also NP-hard for nondense
inputs, and this motivates polynomial-time ap-
proximation algorithms. Say that an algorithm
for Problem 2 is an f -approximation algorithm
if it always returns a galled network N such
that N.T /

jT j " f , where N.T / is the number of
rooted triplets in T that are consistent with N .
Define the nonlinear recurrence relation S.n/ D
max1!a!n
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for n > 0 and S.0/ D 0. It was shown in [4]

that limn!1
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D 2.
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and that S.n/

3.n3/
> 2.

p
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3 % 0:488033 : : : for

all n > 2. The following theorem was proved by
Byrka et al. in [2].

Theorem 4 ([2]) There exists an S.n/

3.n3/
-approxim-

ation algorithm for Problem 2 that runs in
O.n3 C njT j/ time.

A matching negative bound is:

Theorem 5 ([11]) For any f > limn!1
S.n/

3.n3/
,

there exists a set T of rooted triplets such that
no galled network can be consistent with at least
a factor of f of the rooted triplets in T . (Thus,
no f -approximation algorithm for Problem 2 is
possible.)

For Problem 3, Theorem 3 immediately im-
plies NP-hardness by taking F D ;. The follow-
ing positive result is known for the optimization
version of Problem 3.

Theorem 6 ([8]) There exists anO.jLj2jT j.jT j
CjF j//-time algorithm for inferring a galled net-
work N that guarantees jN.T /j $ jN.F/j "
5
12 # .jT j $ jF j/, where L D !.T / [!.F/.

Finally, we remark that the analogous version
of Problem 1 of inferring a phylogenetic tree con-
sistent with all the rooted triplets in an input set
(when such a tree exists) can be solved in poly-
nomial time with a classical algorithm by Aho
et al. [1] from 1981. Similarly, for Problem 2, to

infer a phylogenetic tree consistent with as many
rooted triplets from an input set of rooted triplets
as possible is NP-hard and admits a polynomial-
time 1=3-approximation algorithm, which is op-
timal in the sense that there exist certain inputs
for which no tree can achieve a factor larger than
1=3. See, e.g., [3] for a survey of known results
about maximizing rooted triplet consistency for
trees. On the other hand, more complex network
structures such as the level-k phylogenetic net-
works [5] permit a higher percentage of the input
rooted triplets to be embedded; in the extreme
case, if there are no restrictions on the reticula-
tion nodes at all, then a sorting network-based
construction yields a phylogenetic network that
is trivially consistent with every rooted triplet
over L [10]. A number of efficient algorithms
for combining rooted triplets into higher level
networks have been developed; see, e.g., [2,7,14]
for further details and references.

Applications

Phylogenetic networks are used by scientists to
describe evolutionary relationships that do not
fit the traditional models in which evolution is
assumed to be treelike. Evolutionary events such
as horizontal gene transfer or hybrid speciation
(often referred to as recombination events) which
suggest convergence between objects cannot be
represented in a single tree but can be modeled in
a phylogenetic network as internal nodes having
more than one parent (i.e., reticulation nodes).
The phylogenetic network is a relatively new tool,
and various fast and reliable methods for con-
structing and comparing phylogenetic networks
are currently being developed.

Galled networks form an important class
of phylogenetic networks. They have attracted
special attention in the literature [5, 6, 15] due
to their biological significance (see [6]) and
their simple, almost treelike, structure. When
the number of recombination events is limited
and most of the recombination events have
occurred recently, a galled network may suffice
to accurately describe the evolutionary process
under study [6]. The motivation behind the
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rooted triplet approach taken here is that a highly
accurate tree for each cardinality-three subset of
the leaf set can be obtained through maximum
likelihood-based methods or Sibley-Ahlquist-
style DNA-DNA hybridization experiments
(see [13]). The algorithms mentioned above can
be used as the merging step in a divide-and-
conquer approach for constructing phylogenetic
networks analogous to the quartet method
paradigm for inferring unrooted phylogenetic
trees [12] and other supertree methods. We
consider dense input sets in particular because
this case can be solved in polynomial time.

Open Problems

The approximation factor given in Theorem 4
is expressed in terms of the number of rooted
triplets in the input T , and Theorem 5 shows that
it cannot be improved. However, if one measures
the quality of the approximation in terms of a
galled network NOPT that is consistent with
the maximum possible number of rooted triplets
from T , Theorem 4 can be far from optimal. An
open problem is to determine the polynomial-
time approximability and inapproximability of
Problem 2 when the approximation ratio is de-
fined as N.T /

NOPT .T / instead of N.T /
jT j .

Another research direction is to develop fixed-
parameter polynomial-time algorithms for Prob-
lem 1. The level of the constructed network, the
number of allowed reticulation nodes, or some
measure of the density of the input set of rooted
triplet might be suitable parameters.

URLs to Code and Data Sets

A Java implementation of the algorithm for
Problem 1 referred to in Theorem 2 (coded by
its authors [14]) is available at http://skelk.sdf-
eu.org/marlon.html. See also http://skelk.sdf-eu.
org/lev1athan/ for a Java implementation of a
polynomial-time heuristic described in [9] for
Problem 2.
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ProblemDefinition

Given a communications network or road net-
work, one of the most natural algorithmic ques-
tions is how to determine the shortest path from
one point to another. The all pairs shortest path
problem (APSP) is, given a directed graph G D
.V;E; l/, to determine the distance and shortest
path between every pair of vertices, where jV j D
n; jEj D m, and l W E ! R is the edge length
(or weight) function. The output is in the form

of two n & n matrices: D.u; v/ is the distance
from u to v and S.u; v/ D w if (u;w) is the
first edge on a shortest path from u to v. The
APSP problem is often contrasted with the point-
to-point and single source (SSSP) shortest path
problems. They ask for, respectively, the shortest
path from a given source vertex to a given target
vertex and all shortest paths from a given source
vertex.

Definition of Distance
If ` assigns only non-negative edge lengths then
the definition of distance is clear: D.u; v/ is the
length of the minimum length path from u to v,
where the length of a path is the total length of
its constituent edges. However, if ` can assign
negative lengths then there are several sensible
notations of distance that depend on how negative
length cycles are handled. Suppose that a cycle
C has negative length and that u; v 2 V are
such that C is reachable from u and v reachable
from C . Because C can be traversed an arbitrary
number of times when traveling from u to v, there
is no shortest path from u to v using a finite
number of edges. It is sometimes assumed a priori
that G has no negative length cycles; however it
is cleaner to define D.u; v/ D $1 if there is no
finite shortest path. IfD.u; v/ is defined to be the
length of the shortest simple path (no repetition of
vertices) then the problem becomes NP-hard. (If
all edges have length$1 thenD.u; v/ D $.n$1/
if and only if G contains a Hamiltonian path [7]
from u to v.) One could also define distance to be
the length of the shortest path without repetition
of edges.

Classic Algorithms
The Bellman-Ford algorithm solves SSSP in
O(mn) time and under the assumption that edge
lengths are non-negative, Dijkstra’s algorithm
solves it in O.m C n logn/ time. There is a
well known O(mn)-time shortest path preserving
transformation that replaces any length function
with a non-negative length function. Using
this transformation and n runs of Dijkstra’s
algorithm gives an APSP algorithm running in
O.mn C n2 logn/ D O.n3/ time. The Floyd-
Warshall algorithm computes APSP in a more


