Multi-vector signed by unsigned integer multiply-add long long by vector
The instruction operates on two or four ZA quad-vector groups.
This signed by unsigned integer multiply-add long long instruction multiplies each signed 8-bit element in the two or four first source vectors with each unsigned 8-bit element in the second source vector, widens each product to 32-bits and destructively adds these values to the corresponding 32-bit elements of the two or four ZA quad-vector groups. The lowest of the four consecutive vector numbers forming the quad-vector group within each half or each quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.
The vector group symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector groups respectively. The vector group symbol is preferred for disassembly, but optional in assembler source code.
This instruction is unpredicated.
It has encodings from 2 classes: Two ZA quad-vectors and Four ZA quad-vectors
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | Zm | 0 | Rv | 0 | 0 | 0 | Zn | 1 | 0 | 1 | 0 | o1 | ||||||||
sz | U | S |
if !HaveSME2() then UNDEFINED; constant integer esize = 32; integer v = UInt('010':Rv); integer n = UInt(Zn); integer m = UInt('0':Zm); integer offset = UInt(o1:'00'); constant integer nreg = 2;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | Zm | 0 | Rv | 0 | 0 | 0 | Zn | 1 | 0 | 1 | 0 | o1 | ||||||||
sz | U | S |
if !HaveSME2() then UNDEFINED; constant integer esize = 32; integer v = UInt('010':Rv); integer n = UInt(Zn); integer m = UInt('0':Zm); integer offset = UInt(o1:'00'); constant integer nreg = 4;
<Wv> |
Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field. |
<offsf> |
Is the vector select offset, pointing to first of four consecutive vectors, encoded as "o1" field times 4. |
<offsl> |
Is the vector select offset, pointing to last of four consecutive vectors, encoded as "o1" field times 4 plus 3. |
<Zn1> |
Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn". |
<Zn4> |
Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn" plus 3 modulo 32. |
<Zn2> |
Is the name of the second scalable vector register of a multi-vector sequence, encoded as "Zn" plus 1 modulo 32. |
<Zm> |
Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field. |
CheckStreamingSVEAndZAEnabled(); constant integer VL = CurrentVL; constant integer elements = VL DIV esize; integer vectors = VL DIV 8; integer vstride = vectors DIV nreg; bits(32) vbase = X[v, 32]; integer vec = (UInt(vbase) + offset) MOD vstride; bits(VL) result; vec = vec - (vec MOD 4); for r = 0 to nreg-1 bits(VL) operand1 = Z[(n+r) MOD 32, VL]; bits(VL) operand2 = Z[m, VL]; for i = 0 to 3 bits(VL) operand3 = ZAvector[vec + i, VL]; for e = 0 to elements-1 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]); integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]); bits(esize) product = (element1 * element2)<esize-1:0>; Elem[result, e, esize] = Elem[operand3, e, esize] + product; ZAvector[vec + i, VL] = result; vec = vec + vstride;
Internal version only: isa v33.53, AdvSIMD v29.11, pseudocode v2022-09_rel, sve v2022-09_rel ; Build timestamp: 2022-09-30T16:37
Copyright © 2010-2022 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.