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Abstract. We investigate the computational complexity of a new com-
binatorial problem of inferring a smallest possible multi-labeled phyloge-
netic tree (MUL tree) which is consistent with each of the rooted triplets
in a given set. We prove that even the restricted case of determining if
there exists a MUL tree consistent with the input and having just one
leaf duplication is NP-hard. Furthermore, we show that the general min-
imization problem is NP-hard to approximate within a ratio of n1−ε for
any constant 0 < ε ≤ 1, where n denotes the number of distinct leaf la-
bels in the input set, although a simple polynomial-time approximation
algorithm achieves the approximation ratio n. We also provide an exact
algorithm for the problem running in O∗(7n) time and O∗(3n) space.

1 Introduction

1.1 Problem Definitions

A phylogenetic tree is a rooted, unordered tree in which every internal node has
at least two children and where each leaf is labeled by an element from a set
of leaf labels. A phylogenetic tree where each leaf label occurs at most once is
called a single-labeled phylogenetic tree; a phylogenetic tree where each leaf label
may occur more than once is called a multi-labeled phylogenetic tree, or MUL
tree for short [6,8,11].1 For any MUL tree M , denote the set of all leaf labels that
occur in M by L(M). For any leaf label x ∈ L(M), the number of duplications
of x is equal to the number of occurrences of x in M minus 1. The number of
leaf duplications in M , denoted by d(M), is the total number of duplications
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of all leaf labels in L(M). Define m(M) as the number of leaves in M . Then,
d(M) = m(M) − |L(M)|.

For any two nodes u, v in a rooted tree, the notation u ≺ v means that u is a
proper descendant of v, and lca(u, v) denotes the lowest common ancestor (lca)
of u and v. (For convenience, any node is considered to be an ancestor of itself.)
A rooted triplet is a binary phylogenetic tree with exactly three distinctly labeled
leaves. The unique rooted triplet on leaf label set {x, y, z} where lca(x, y) ≺
lca(x, z) = lca(y, z) is denoted by xy|z. If xy|z is an embedded subtree of a MUL
tree M , i.e., if there exist three leaves �x, �y, �z in M labeled by x, y, and z,
respectively, such that lca(�x, �y) ≺ lca(�x, �z) = lca(�y, �z) then xy|z and M are
said to be consistent with each other; otherwise, xy|z and M are inconsistent.
A set R of rooted triplets and a MUL tree M are consistent with each other if
every xy|z ∈ R is consistent with M . See Fig. 1 for an example.

In this paper, we consider the following problem, named the smallest MUL
tree from rooted triplets problem (SMRT): Given a set R of rooted triplets over a
leaf label set L, output a MUL tree M with L(M) = L which is consistent with R
and which minimizes d(M). We also consider the following decision problem for
any positive integer d, termed d-SMRT: Given a set R of rooted triplets over
a leaf label set L, does there exist a MUL tree M with L(M) = L which is
consistent with R and which satisfies d(M) ≤ d? In the rest of this paper, we
define k = |R| and n = |L| for any given instance of SMRT or d-SMRT.

1.2 Motivation and Previous Work

The problem of determining whether there exists a single-labeled tree consistent
with all of the rooted triplets in a given set, and if so, constructing such a tree,
can be solved efficiently by a classical algorithm of Aho et al. [1]. When no such
tree exists because of conflicts in the branching information, one may try to select
a largest possible subset of the triplets which is consistent with some tree (the
maximum rooted triplets consistency problem (MRTC)), find a largest possible
subset of the leaves such that the restriction of the input triplets to those leaves is
consistent with some tree (the maximum agreement supertree problem (MASP)),
or build a phylogenetic network (a generalization of a phylogenetic tree in which
internal nodes may have more than a single parent) which contains all of the
rooted triplets. See [3] for a recent survey of related results and many references.
In this paper, we consider a new approach: Allow leaf labels to be repeated, but
try to minimize the number of such repetitions.

The main application of phylogenetic trees is to describe tree-like evolution
for a set of objects; leaves represent the objects while internal nodes correspond
to their common ancestors. In the study of evolutionary history, MUL trees arise
from the modeling of biological processes where it is necessary to use certain leaf
labels more than once. For example, a gene tree can contain several leaves labeled
by the same species due to gene duplication events [6,8,11]. As another example,
area cladograms, where the names of geographical areas are used to label the
leaves, may apply the same label to more than a single leaf (see, e.g., [2,8]). MUL
trees can also be useful for studying host-parasite cospeciation [8,10].
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Fig. 1. The set of rooted triplets {ab|c, ac|d, de|b, ce|b} is consistent with a MUL tree
containing one leaf duplication

Although the problem of inferring a MUL tree from an input set of single-
labeled phylogenetic trees that minimizes the number of leaf duplications has not
been studied before, several algorithms for manipulating already known MUL
trees have been published in the literature. Huber et al. [8] presented a method
for constructing a phylogenetic network from an input MUL tree. The network
output by their method is binary and has the fewest possible reticulation nodes
among all binary networks which exhibit the structural information of the input
MUL tree. Scornavacca et al. [11] considered some computational problems in-
volving the extraction of the unambiguous parts of an input MUL tree. More pre-
cisely, [11] proposed linear-time algorithms to identify every so-called observed
duplication node (odn) in a MUL tree, testing if two MUL trees are isomorphic,
and computing a largest duplication-free rooted subtree of a MUL tree. They
also showed that it is an NP-hard problem to prune each of the MUL trees in a
given set to a single-labeled tree at odns in such a way that the obtained set of
trees can be merged without conflicts into a single-labeled tree.

1.3 Our Results and Organization of the Paper

We present several negative and positive results regarding the computational
complexity and polynomial-time approximability of SMRT. Below, we say that
an algorithm A for SMRT is an α-approximation algorithm (and that the ap-
proximation ratio of A is at most α) if, for every input R, the MUL tree output
by A is consistent with R and contains at most α · d(M∗) leaf duplications,
where M∗ is an optimal MUL tree (i.e., having the fewest possible number of
leaf duplications) consistent with R.

The rest of the paper is organized as follows. Section 2 presents a simple
polynomial-time n-approximation algorithm for SMRT. On the negative side,
Section 3 proves that d-SMRT is NP-hard even if d = 1, and also that SMRT

cannot be approximated within a ratio of n1−ε for any constant 0 < ε ≤ 1 in
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polynomial time, unless P = NP. Finally, Section 4 presents an exact algorithm
for SMRT which runs in O∗(7n) time and O∗(3n) space.

2 Straightforward n-Approximation of SMRT

We start with the following simple observation.

Lemma 1. For any set R of rooted triplets over a leaf label set L with |L| = n,
there exists a MUL tree with 2n leaves which is consistent with R.

Proof. Let T be an arbitrary single-labeled phylogenetic tree with n leaves bijec-
tively labeled by L. Let M be the MUL tree obtained by taking two copies T1, T2
of T and joining the roots of T1 and T2 to a new parent root node. Clearly, M has
2n leaves and any rooted triplet xy|z over L is consistent with M since T1 con-
tains leaves labeled by x, y and T2 contains a leaf labeled by z. ��

Consequently, SMRT admits a trivial polynomial-time n-approximation
algorithm: Using the algorithm of Aho et al. [1], determine if there exists a
single-labeled tree consistent with R. If the answer is yes then output this
tree, otherwise output the MUL tree from Lemma 1 which has exactly n leaf
duplications.

Theorem 1. SMRT can be approximated within a ratio of n in polynomial time.

3 Hardness Results for SMRT

This section demonstrates that SMRT is computationally intractable. It is
shown that d-SMRT is NP-hard already for d = 1 and that SMRT is NP-hard
to approximate within a ratio of n1−ε for any constant 0 < ε ≤ 1. (Recall that
n denotes the number of distinct leaf labels in the input set R.) To obtain our
hardness results, we first prove strong inapproximability bounds for a problem
on directed graphs named Acyclic Tree-Partition (defined below) and then
give a measure-preserving reduction from Acyclic Tree-Partition to SMRT.

3.1 Hardness of Acyclic Partition and Acyclic Tree-Partition

Definition 1. Let D = (V, A) be a directed graph. An acyclic partition of D is
a partition of V into subsets V1, . . . , Vr called classes such that each class induces
an acyclic subgraph of D.

Definition 2. Let D = (V, A) be a directed graph. An acyclic tree-partition
of D consists of a binary rooted tree T with a node set N along with a partition
{V (x) : x ∈ N} of V (i.e., a subset V (x) of V is associated to each node x of
the tree T ) such that:
1. for every x ∈ N , V (x) induces an acyclic subgraph of D,
2. for any x, y ∈ N with x ≺ y, D has no arc from V (y) to V (x).
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Definitions 1 and 2 lead to the following natural problems. The Acyclic Par-

tition problem takes as input a directed graph D and seeks an acyclic partition
of D with the smallest possible number of classes; this number is denoted by
ap(D).2 Similarly, the Acyclic Tree-Partition problem seeks an acyclic tree-
partition of an input directed graph D with the minimum number of internal
nodes, denoted by atp(D). For any positive integer r, the two decision prob-
lems r-Acyclic Partition and r-Acyclic Tree-Partition ask if an input
directed graph D satisfies ap(D) ≤ r and atp(D) ≤ r, respectively.

Acyclic partitions and acyclic tree-partitions have some useful properties:

Lemma 2. Let D be a directed graph and let (T, {V (x) : x ∈ N}) be an
acyclic tree-partition of D. For any set X of ancestors of a leaf in T , the union⋃

x∈X V (x) induces an acyclic subgraph of D.

Lemma 3. For every directed graph D, atp(D) = ap(D) − 1.

Theorem 2. (i) r-Acyclic Partition is NP-hard for r = 2.
(ii) Acyclic Partition cannot be approximated within n1−ε for any constant
0 < ε ≤ 1 in polynomial time unless P = NP, where n is the number of vertices
in the input graph.

Proof. (i) Reduce from Not-all-equal 3SAT, which is known to be NP-
hard [7]. Let I be a given instance of Not-all-equal 3SAT with m clauses
and construct a directed graph D with 3m vertices as follows. For each clause C
in I, D contains three vertices C1, C2, C3 forming a directed cycle in D that
represent the literals of C. In addition, for each pair of conflicting literals Ci = x
and C′

j = x, D contains the two arcs (Ci, C
′
j) and (C′

j , Ci). It is easy to see that
there is a one-to-one correspondence between the valid truth assignments for I
and the acyclic bipartitions of D: given a truth assignment φ, define a biparti-
tion Vt, Vf of D by letting Vt (resp. Vf ) contain all literals which are assigned
the value true (resp. false) under φ.

(ii) Follows by giving a measure-preserving reduction from Chromatic Number

and applying known inapproximability results for this problem [5,13]. The reduc-
tion maps a given undirected graph G = (V, E) to a directed graph D = (V, A)
by replacing each edge {u, v} of G by two arcs (u, v), (v, u). Observe that for any
V ′ ⊆ V , V ′ is an independent set of G if and only if V ′ induces an acyclic sub-
graph of D. Therefore, colorings of G correspond to acyclic partitions of D. ��
Corollary 1. (i) r-Acyclic Tree-Partition is NP-hard for r = 1.
(ii) Acyclic Tree-Partition cannot be approximated within n1−ε for any
constant 0 < ε ≤ 1 in polynomial time unless P = NP, where n is the number of
vertices in the input graph.

3.2 Hardness of SMRT

We first reduce Acyclic Tree-Partition to a constrained variant of SMRT

that forbids duplications of certain labels (Proposition 1). We then reduce the
2 ap(D) is also referred to in the literature as the dichromatic number of D [9].
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constrained variant to the unconstrained SMRT problem (Proposition 2). When
combined, these reductions yield the desired hardness results for SMRT, as sum-
marized in Theorem 3. The constrained variant of SMRT is defined as follows.

Definition 3. Let R be a set of rooted triplets over a leaf label set L and U ⊆ L
a set of unique labels. A MUL tree M is consistent with the pair (R, U) if:
(i) M is consistent with R; (ii) M has only one occurrence of each label in U .

The Constrained-SMRT problem (C-SMRT) takes as input a pair (R, U)
and seeks a MUL tree consistent with (R, U) containing the fewest duplications.

Proposition 1. There exists a measure-preserving reduction from Acyclic

Tree-Partition to C-SMRT.

Proof. Given an instance D = (V, A) of Acyclic Tree-Partition, construct
a new instance (R, U) of C-SMRT with label set L := V ∪{z}, where z is a new
label not belonging to V . The set R contains exactly the following triplets: for
each arc (u, v) ∈ A, let zu|v ∈ R. The set of unique labels is U = V , meaning
that only z is allowed to be duplicated. To prove that the reduction is measure-
preserving, we show that for every r ≤ |V |, the following are equivalent:

1. D admits an acyclic tree-partition with r internal nodes;
2. (R, U) admits a consistent MUL tree with r duplications.

(1) ⇒ (2): Suppose D has an acyclic tree-partition consisting of a tree T =
(N, E) with r internal nodes and a partition {Vx : x ∈ N} of V . We construct a
MUL tree M from T by labeling each leaf by z, and then, above each node x of
T , attaching the elements of Vx in the order given by a topological ordering of
D[Vx] (where D[Vx] denotes the subgraph of D induced by vertices of Vx).

We introduce the following additional notation: given a MUL tree M , and a
sequence of labels s = x1 . . . xn, let R(M, s) be the tree obtained by starting
with a caterpillar with n + 1 leaves l0, . . . , ln (with l0, l1 being farthest from
the root), substituting l0 with M , and labeling each leaf li, i ≥ 1 by xi. We
inductively define two MUL trees Mx, M ′

x for each node x of T : (i) if x is a leaf
then Mx consists of a single leaf labeled by z; (ii) if x is an internal node with
two children y, y′ then Mx := (M ′

y, M
′
y′); (iii) for any node x of T , let sx be a

topological ordering of D[Vx] (which is acyclic by Point 1 of Definition 2), and
let M ′

x := R(Mx, sx). Finally, define M := M ′
t, where t is the root of T .

We now examine the constructed MUL tree M . Clearly, only z is duplicated
in M ; since {Vx : x ∈ N} is a partition of V , a label u ∈ Vx appears only once
in M (in the subtree between the root of Mx and the root of M ′

x). Moreover,
since the leaves of M labeled by z correspond to the leaves of T , their number is
r + 1, hence M has r duplications. Next, we show by a case analysis that M is
consistent with R. Consider zu|v ∈ R, then (u, v) ∈ A by the construction of R.
Let x, y be the nodes of T such that u ∈ Vx, v ∈ Vy. Four cases are possible:

– if x = y: Since (u, v) ∈ A, and since sx is a topological ordering of D[Vx], it
follows that u <sx v. Consider M ′

x = R(Mx, sx). Mx contains a leaf labeled
by z, and u, v appear in sx with u <sx v, so M ′

x (and thus M) contains zu|v.
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– if x ≺ y in T : Consider M ′
y = R(My, sy). My contains leaves labeled by z, u

and v appears in sy, therefore M ′
y (and thus M) contains zu|v.

– if y ≺ x in T : This is impossible according to Point 2 of Definition 2.
– if both x ⊀ y and y ⊀ x in T : Let c = lca(x, y) in T and let cx, cy be the two

(distinct) children of c such that x � cx, y � cy. Consider Mc = (M ′
cx

, M ′
cy

),
then M ′

cx
contains leaves labeled by z, u and M ′

cy
contains a leaf labeled by

v, hence Mc (and M) contains zu|v.

To conclude, M is a MUL tree with r duplications that is consistent with (R, U).

(2) ⇒ (1): Let M be a MUL tree with r duplications which is consistent with
(R, U). We may assume w.l.o.g. that M is binary. By definition, only the label z
is duplicated in M . Let T = (N, E) be the subtree of M which connects the
leaves labeled by z. For each node x of T , let Px be the path in M joining x to
its parent node in T (or to the root of M if x is the root of T ). Then, define Vx as
the set of labels appearing in a subtree along the path Px. It is straightforward
to verify that (T, {Vx : x ∈ N}) is an acyclic tree-partition of D with r internal
nodes (see the full version of this paper for a complete proof). ��

Proposition 2. There exists a measure-preserving reduction from C-SMRT to
SMRT.

Proof. Let (R, U) be any given instance of C-SMRT, where R is a triplet set
over a set L of n leaf labels and U ⊆ L is a set of unique labels. We construct an
instance R′ of SMRT by replacing each element of U by n + 1 copies. Formally,
R′ has a leaf label set L′ consisting of: (i) for each x ∈ U , labels xi (1 ≤ i ≤ n+1);
(ii) for each x ∈ L\U , a single element x1. The set R′ consists of the following
triplets: for each xy|z ∈ R and each i, j, k, let xiyj |zk ∈ R′. Assume w.l.o.g. that
r ≤ n. We show that (R, U) has a consistent MUL tree M with r duplications
if and only if R′ has a consistent MUL tree M ′ with r duplications.

(⇒): Let M be a MUL tree with r duplications consistent with (R, U). Con-
struct a MUL tree M ′ from M by substituting each leaf u having label x by an
arbitrary single-labeled binary tree Tu over {x1, . . . , xi}, where i equals either 1
or n + 1. Observe that: (i) for each x ∈ U , each label xi occurs exactly once in
M ′; (ii) for each x ∈ L\U , the number of occurrences of x in M equals the num-
ber of occurrences of x1 in M ′. It follows that d(M ′) = d(M) = r. In addition,
for any triplet xiyj |zk ∈ R′, the corresponding xy|z ∈ R is obtained from leaves
u, v, w of M ; hence xiyj |zk is obtained by selecting the corresponding leaves of
Tu, Tv, Tw in M ′. This proves that M ′ is consistent with every triplet in R′.

(⇐): Omitted due to space constraints. See the full version of this paper for
a complete proof. ��

Propositions 1 and 2 together with our hardness results for Acyclic Tree-

Partition in Corollary 1 give us the next theorem.

Theorem 3. (i) d-SMRT is NP-hard for d = 1;
(ii) SMRT cannot be approximated within n1−ε for any constant 0 < ε ≤ 1 in
polynomial time, unless P = NP.
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We remark that the analogous Minimum Duplication Supersequence prob-
lem [6] for strings behaves quite differently: it is equivalent to the Directed

Feedback Vertex Set problem, and as such it is FPT with respect to r (by a
result of [4]) and approximable within O(log n log log n) in polynomial time [12].

4 An Exact Algorithm for SMRT

Here, we present an exact exponential-time algorithm for SMRT.
We use a dynamic programming approach, exploiting the recursive structure

of the problem. More precisely, we consider pairs of subsets of L of the form
(A, B) such that B ⊆ A ⊆ L. Subproblems in our dynamic programming ap-
proach will correspond to pairs (A, B). For a given pair, we will restrict our
attention to specific MUL trees given by the following definition.

Definition 4. Let (A, B) be a pair of subsets of L with B ⊆ A ⊆ L. A binary
MUL tree M leaf-labeled by A complies with (A, B) if and only if for each uv|w ∈
R with u, v, w ∈ A and w /∈ B, it holds that uv|w is consistent with M .

For a given pair (A, B), let n(A, B) denote the minimum value of d(M) taken
over every binary MUL tree M leaf-labeled by A which complies with (A, B).
We compute the values n(A, B) by dynamic programming, and obtain n(L, ∅) as
the desired value at the end of the computation. To compute a value n(A, B), we
break the computation into two subproblems of the form (A1, ), (A2, ), where
A1, A2 are the label sets of the two child subtrees. In order to explain this in
detail, we will need the following definitions. A split of (A, B) is a pair (A1, A2) of
subsets of A such that A1 ∪A2 = A (observe here that A1, A2 are not necessarily
disjoint, and that the definition does not depend on B).

Definition 5. Let (A1, A2) be a split of (A, B). We say that (A1, A2) is a nice
split of (A, B) if and only if the following holds: for each u, v, w ∈ A, if u ∈
Ai\Aj, v ∈ Aj\Ai, w /∈ B with i �= j then R does not contain the rooted triplet
uv|w.

From here on, we will denote by Bi the intersection of B with Ai. Also, we
define B′ = A1 ∩ A2. The next property describes the recursive structure of the
problem, characterizing the fact that M complies with (A, B) by conditions on
its child subtrees.

Lemma 4. Let (A, B) be a pair such that B ⊆ A ⊆ L with |A| ≥ 2 and let M
be a binary MUL tree over A, consisting of two MUL trees M1, M2 joined by
a parent root node. Write A1 = L(M1) and A2 = L(M2), B′ = A1 ∩ A2 and
Bi = B ∩ Ai. Then the following are equivalent:

1. M complies with (A, B);
2. (A1, A2) is a nice split of (A, B), and for i ∈ {1, 2}, Mi complies with

(Ai, Bi ∪ B′).
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Proof. (1) ⇒ (2): We first show that Mi complies with (Ai, Bi ∪ B′). Suppose
that uv|w ∈ R with u, v, w ∈ Ai and w /∈ Bi ∪B′. Then we also have u, v, w ∈ A
and w /∈ B, which implies that uv|w is consistent with M (since M complies
with (A, B)). Therefore, M has leaves �u, �v, �w labeled by u, v, w such that
lca(�u, �v) ≺ lca(�u, �w) = lca(�v, �w). What we need to show is that these three
leaves all appear in Mi. If this was not the case, we would have �w appearing
in Mj (j �= i), which would imply that w ∈ B′, contradicting the hypothesis. It
follows that �u, �v, �w all appear in Mi, thus uv|w is consistent with Mi.

Next, we show that (A1, A2) is a nice split of (A, B). Let u, v, w ∈ A. Suppose
u ∈ Ai\Aj, v ∈ Aj\Ai, w /∈ B with i �= j. If R contained the rooted triplet
uv|w, then uv|w would be consistent with M since M complies with (A, B) and
w /∈ B. But this is impossible since u only appears in Mi and v only appears
in Mj.

(2) ⇒ (1): To prove that M complies with (A, B), consider any uv|w ∈ R
with u, v, w ∈ A and w /∈ B and show that uv|w is always consistent with M .
There are four (partially overlapping) cases:

1. u, v, w ∈ Ai and w /∈ B′: Then w /∈ Bi∪B′. Since Mi complies with (Ai, Bi∪
B′), we conclude that uv|w is consistent with Mi, and thus with M .

2. u, v ∈ Ai, w ∈ Aj with i �= j: Then u, v appear in Mi and w appears in Mj ,
hence uv|w is consistent with M .

3. u, w ∈ Ai, v ∈ Aj with i �= j: We have three mutually exclusive subcases.
– u, v /∈ B′: Then R contains uv|w with u ∈ Ai\Aj, v ∈ Aj\Ai and w /∈ B.

This contradicts the assumption that (A1, A2) is a nice split of (A, B).
– v ∈ B′: Then u, v, w ∈ Ai, and we are in Case 1.
– u ∈ B′: Then u, v ∈ Aj , w ∈ Ai, and we are in Case 2.

4. v, w ∈ Ai, u ∈ Aj with i �= j: This case is symmetric to the previous case. ��

Lemma 4 yields recurrence relations for n(A, B) as stated in Lemma 5 below.
Say that a split (A1, A2) of (A, B) is proper if and only if either: (i) A1, A2 are
proper subsets of A; or (ii) Ai = A and B′ � B, where B′ = A1 ∩ A2.

Lemma 5. The following recurrence relations for n(A, B) hold:

1. Let (A, B) be a pair with |A| ≤ 2. Then n(A, B) = 0.
2. Let (A, B) be a pair with B = A. Then n(A, B) = 0.
3. Let (A, B) be a pair with |A| ≥ 3 and B ⊂ A. Given a split S = (A1, A2) of

(A, B), let B′ = A1 ∩ A2, Bi = B ∩ Ai, and define m(S) = |B′| + n(A1, B1 ∪
B′) + n(A2, B2 ∪ B′). Then n(A, B) equals the minimum of the values m(S)
over all nice splits S of (A, B) which are proper.

Lemma 5 allows us to compute n(A, B) by dynamic programming on the
pairs ordered by: (A, B) ≤ (A′, B′) if and only if |A| < |A′| or (|A| = |A′| and
|B| ≥ |B′|). This yields a dynamic programming algorithm for solving SMRT.
At the end of the algorithm, n(L, ∅) gives the value of an optimal solution, and
a corresponding optimal MUL tree can be obtained by performing a traceback.

Theorem 4. SMRT can be solved using O∗(7n) time and O(3n) space.
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Proof. To prove the correctness of the algorithm, we can verify that the definition
of the relation ≤ on pairs is compatible with the above relations. Indeed, when
computing n(A, B) in point 3, we recursively call n(Ai, Bi ∪B′). Then: (i) either
Ai ⊂ A, in which case we have (Ai, Bi∪B′) < (A, B); (ii) or Ai = A, then B′ � B
since the split is proper, therefore B ⊂ Bi ∪ B′ and (Ai, Bi ∪ B′) < (A, B).

We now analyze the complexity of the algorithm. Fix an integer p ≤ n. For
any A ⊆ L of size p, there are 2p pairs (A, B), so the number of pairs (A, B)
with |A| = p is

(
n
p

)
2p. It follows that the total number of pairs considered is

∑n
p=0

(
n
p

)
2p = 3n, giving the claimed space complexity. Next, for any pair (A, B)

with |A| = p, there are 3p splits to consider, and each split is processed in O(n3)
time (i.e., the time required to check that the split is nice and to perform the set
operations). Hence, the time complexity is O(

∑n
p=0

(
n
p

)
2p3pn3) = O(7nn3). ��
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